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1. Industrial vision

About the lecturer

* Name: Matej Kristan

* Where to find me: 2" floor, ViCoS 2. Deep structured models
R

(not in office, in the lab most of time)

e Online contacts and resources:

e www.vicos.fri.uni-lj.si/matejk

e ResearchGate

* Google Scholar 4. Visual object tracking

-

e eclassroom (https://ucilnica.fri.uni-lj.si/)
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* mail:matej.kristan@fri.uni-lj.si




Practicum (2-week long guided projects)

* Guided by:

* mag. Jon Natanel Muhovic (jon.muhovic@fri.uni-lj.si)

* mag. Jer Pelhan (jer.pelhan@fri.uni-li.si)

e dr. JOSi,D §Gf'iC" (Josip.saric@fri.uni-lj.si) [eng only]

Start planned:
3'd week Details at the lab.

* Schedule 5 cycles, assistants will send you
options to enroll

* Practicum starts next week (13.10. - 17.10.)



Practicum (2-week long guided projects)

* Practice the theory covered in lectures

* Implementation-oriented

* Result is a working source code (Python)

 Two-week assignments: Start planned:
« 1 week consultation (bug the assistants!!) 3" week Details at the lab.

* 1 week defense (have to defend in your assigned slot!)

Attend ANY cycle for consultations (except first week),
but you can defend only IN YOUR OWN cycle.

@ python’




Requirements of the course

1. Practicum (programming assignments) > 50% each assignment
evaluated during the semester (watch out for deadlines!)

2. Written exam > 50%
Cannot access the written exam without passing the practicum/Ilab.

Content: practicum assignments + lectures

3. Oral exam:

Not necessary if written >X%
(Will depend on class attendance and progress at assignments)



What is machine perception about?

* Building machines that perceive their environment

e Digitalize environment through sensors
* Image of light, ultrasound, force field, etc.

Perception through images: Computer vision




Development of Computer Vision

* Origins: 1950-1965 as side project at MIT:
”...building perceiving machines would take about a decade...”

 Development paced by hardware development (numerical maths)

First multipurpose comps Embedded computers Graphic processing units
(UNIVAC ~1951) (ARM ~2001) (GPU ~2016)

Image digitization Face detection Instance segmentation




Human vs. Computer vision

* Much harder than it looks...

* Neuroscience: >50% brain dedicated to vision*

*Prof. Cornelia Fermueller ,University of Maryland in College Park

www.BrainHealthandPuzzles.com
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Human vs. Computer vision

e Much harder than it looks...
* Neuroscience: >50% brain dedicated to vision

 Humans apply experience (prior knowledge)

What do you see?

The CV “tools”:
Algebra, Analysis
Statistics

Signal processing
Machine learning
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Modern industrial applications

Industrial applications CONTROL Smart cameras  http://www.matrox.com
THE SETUP.

Vicos (http://www.vicos.si)

http://www.cognex.com




Modern autonomous vehicles applications

e & Y 7 - - m ! \ | Segmentation mask \ Frequency weighted I0U; 93.37%
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Modern visual query / AR applications

|\/|S H0|0|en5 https //youtu. be/lhKUonNCIA

IKEA AR

https://youtu.be/ZDWRI9A1p6s




Topics covered in this course

Might change a bit...

1.

Image processing 1
Image processing 2

Edge detection

Fitting parametric models
Local features

Camera geometry
Multiple-view geometry

Recognition & Detection




Literature

* The topics covered in lectures can be found in the following textbooks:

e R. Szeliski,Computer Vision: Algorithms and

Computer Vision

Applications, 2010
Available online:
http://szeliski.org/Book/

Algorithms and Applications

David A. Forsyth, Jean Ponce, Computer Vision:

Computer

A Modern Approach (2nd Edition) Vision

A MODERN APPROACH

Simon J.D. Prince, Computer Vision: Models,
Learning, and Inference, 2010

& B Available online:

EL@% 33 http://www.computervisionmodels.com/

COMPUTER . .
st R Considerable book collection:
http://homepages.inf.ed.ac.uk/rbf/CVonline/books.htm

AND INFERENCE




Literature

* Use the books for studying and solving the practicum assignments

e Lecture slides will be made available from the e-classroom

* Hopefully a few days before the next lecture

e Slides are not books!

* You will need to make your own notes to properly follow the course

Crucial: be proactive
* Attend the lectures and make notes!
* Ask questions (in class and especially at the practicum — come prepared)!

* For translation of terms, see: https://terminoloski.slovenscina.eu/
.
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Machine perception

IMAGE FORMATION




Let’s design a cameral!

Object Film

* |dea 1: put an object in front of a film...

Do we get a good image of the object?



Let’s design a cameral!

Object Barrier Film

»l
L

* Add a punctured barrier that blocks most of the rays
 Significantly reduces blurring

* The ,hole”is known as aperture




A pinhole camera

e Earliest and remarkably correct written description:
~500 BC Mohist canon [founder Mo-ti]
(ancient Chinese texts)

* Asimple standard camera model
* A box with a small aperture

 Works in practice

\ |
Eif

3D object virtual image aperture image plane




Field of view

 Field of view (FOV) (2 x ¢) is an angular measure of space perceived by the
camera.
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Field of view

* Small f results in wide-angle image

(Large field of view) -

* More 3D points project to the sensor.

* lLarge fresults in a telescopic image
(small FOV) >

* Smaller portion of 3D scene is

I
) ;

Image plane

210 mm lens, 9.8° x6.5°

projected to the sensor.




Field of view and focal length

Large FOV, small f
Camera close to the car

Small FOV, large f
Camera far away from the car




Effects of the aperture size

* Too large — multiple directions averaging,
resulting in a blurred image.

* Too small —light starts diffracting,
causing blurred image. 0.6mm

* In general, small number of rays hit the

film, which results in a dark image.
OPFPTICA

e How do we deal with this? roroemar

N w—

0.15S mm

I mm

0.35 mm

0.07 mm




Let’s add a lens...

cbject lens filrm

* The lens focuses light to film

* The rays that travel through the center do not refract.




Let’s add a lens...

cbject lens filrm

“—The bluring
disk

* The lens focuses light to film

* The rays that travel through the center do not refract.

* Points at a particular distance remain in-focus.
* Points at other distances are blurred.




Focus and the depth-of-field

* Thin lens: Points at different depths get focused on different depths of
image plane.

(Real-world lens have a greater depth of field)

chbject lens filrm

Blured

Would be sharp
here.

* Depth of field: distance between image planes at which the blurring
effect is sufficiently small..




Focus and the depth-of-field

e Effects of aperture on the depth-of-field

\

V

e Small aperture increases the depth-of-field.

e But due to reduced illumination we have to increase the exposure time.




Chromatic aberration

* Different wave-lengths refract at different angle and focus at slightly

different distances:

* The more oblique angle, the greater the
effect (consider off-axis, edge points)

* On-axis angles are less oblique + symmetry

has a cancelling effect Close to image edge

X Fobsy B3 ey XL
Rl Rl ATI T - :
X - o . "4 4 3 -




Spherical aberration

e Spherical lenses do not focus the light perfectly.

* Rays close to lens edge focus closer than those at the center.

Aspherical Lens

Without Ear With
aberration aberration

http://photographylife.com/what-is-spherical-aberration




Vignetting




Radial distortion

Without distortion Barrel distortion

* Due to lens imperfections or fisheye.

 Most apparent at the edge of the image.




Digital image
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World Camera Digitizer Digital
Image

* Instead of film, use matrix (array) of sensors.

* Discretize image into pixels.

* Quantize light into intensity levels.




Sensor: Camera

Electromagnetic spectrum

Visible light

Wavelength Energy Frequency
A (m) E (eV)

10—12 o

oy | Near-infrared light

Far-infrared light

Terahertz light




Visible light cams: CCD vs CMOS

Charge coupled device (CCD) Complementary metal—-oxide—semiconductor (CMOS)

image capture area

8
Row Decode

storage area

t—o
Lo

LI \!\!\J—D;:;g;;r

I3 High voltage electron i
multiplying register

In both: Photons cause charge on each sensor ,,cell”. Column Decode

serial shift register

* CCD reads out the charge (FIFO) serially and digitizes.

CMOS performs digitization on each cell separately.
* CCD used to deliver better images, but CMOS technology has progressed.

e CMOS is cheaper to produce and is thus wide-spread.
g



Color sensing in digital cameras

Bayer sensor

Incoming Light

Filter Layer

Sensor Array

Resulting Pattern

In classical design, we cannot read out R,
G and B channel at a single pixel.

Why twice as many greens compared
to blue and red?

Luminance is mostly determined by
the green values.

Human visual system much more
sensitive to changes in intensity than in
chroma (color).




Color sensing in digital cameras

What you see  Your camera sees Missing green!

De-mosaicking: The missing
color channels at a pixel
need to be interpolated!

& - B -

See further info on methods: Wei & Sun, JIG2022; Malvar et al., ICASSP2024




Color sensing : Foveon X3

e CMOS-based sensor.

e Based on the fact, that red, green and blue color penetrate the silicon at different depths.

Silicon color absorption Foveon X3 sensor stack

|-— 27 microns 4-'

= Green A

“é < absorption (0]

First came fiim. Then came digital. Now there's Foveon X3 o g

8 <R.d . )

COLOR FILM contains three TYPICAL DIGITAL SENSORS FOVEON X3 direct image o | absorption S

layers of emulsion which hawve just one layer of pixels and  sensors have three layers of o o

directly record red, green, capture only parl of the color. pixels which directly capture _l
and blue light. all of the color. ;=

http://www.foveon.com/article.php?a=67 http://en.wikipedia.org/wiki/Foveon X3 sensor

Better image quality

Bayer-like Foveon X3




From camera to perception
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* How does a human perceive the bottles, plates, forks,...,
using only brightness?

e How do we perceive depth?

 Can a computer program do that?




Machine perception

IMAGE PROCESSING 1




Images as functions: RGB to grayscale

e Consider a color image I(x,y,c) as a 3D matrix

* At each coordinate, [x,y] we have 3 gray-scale (sca
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Images as functions: Grayscale images

* Consider a grayscale image I(x,y) as a matrix of just gray-scale values

* At each coordinate, [x,y] we have a gray-scale value (e.g., 0-255)

; I(x,y) € [0,255]
S ‘ AT
B s _ ;;,;.‘}:g,\\\\\\\\\\\.l» Ul ,l '\‘.«‘\\{!l&‘
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Binary images

* Only two possible gray levels

* Foreground vs. background
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Usage: Machine vision, OCR, etc.

Fig. 3 Schematic diagram of
marking mspection setup at

- : .. —» Accept
Texas Instruments Decision p SPPI——
Camera making
software e s s i Ry A
—» Reject e — i tm

Chips on — = - e L .
conveyor for | e - — = e
inspection mage TR e :
Capturing .

OCR on documents

Hand written numbers

i

U N~ O
o B W N -l

LA
Fig. 7 Binarized image

R. Nagarajan et al. “A real time marking inspection scheme for semiconductor industries”, 2006
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Use case: Count the “round” cells

Generate hypotheses Classify each region Keep “round” regions
into a “round” and
“not round”

_NN-"y
NN e
.......

Localize, Describe, Classify




The “Localize” block: Sequence of processing steps

* Convert gray image to a binary image "v <
* Thresholding -

* Clean binary image

* Morphologic filtering

e Extract individual regions

e Connected components

... then describe each localized region and classify




Machine perception

IMAGE THRESHOLDING




Thresholding

Object/background separation

 Transform an image into a Binary Mask

* Various approaches

* Apply asingle threshold

1,if F[i,j]<T
0, otherwise

FT[lJJ] = {
* Apply two thresholds l

FT[i,j]={

* A general view: apply a classifier

FT[i,j]={

1, if T, <F[i, j]<T,

0, otherwise

1, if Fli,jlez

0, otherwise




A simple example: Bimodal histogram

> |deal case:
§ bright object on
o dark background.
0) 255 Grey level
froquency| A more realistic noisy

pixel value




A not so simple example...

What to do here?

Overlapping modes

Separate modes

Generally thresholding is a difficult problem

Domain knowledge helps a great deal.

E.g., the portion on letters on a page.
E.g., size of the structure we want to detect...

Multiple modes




Global binarization [Otsu "79]

* Find a threshold T, that minimizes intensity variances within classes separated by T:

0 ithin(T) = 11(T)oi (T) + n2(T)o3(T)

n2(T) = [{I(zy) > T}

ni (T)

T
* This equals to maximization of between class variance o, ., ua (T) u2(T)

2 _ ~2
Opetween (T) — 0 'wzth’z,n( )2 U1 (T) ...mean value 1
= N1 (T)ng (T) [ﬂl (T) 1%, (T)] U, (T) ...mean value 2

Otsu, N (1979), "A threshold selection method from gray-level histograms", IEEE SMC




Otsu’s Algorithm

For threshold value T
1. Separate the pixels into two groups by intensity threshold T

2. For each group get an average intensity and calculate aﬁemeen according to
the equation on the previous slide.

Select the T", that maximizes the variance: T = arg maXT[o'getween(T)]

Used in several thousand modern algorithms in particular in medical imaging




State-of-the-art: Generalization of Otsu (CVPR2020)

 “Recently”, Otsu’s method revisited:

* Formulate the problem as fitting 2 Gaussians |

to the histogram with priors on mixture

weights and variances (Bayesian view) /ZfZuacfin

* Efficiently computed by a single pass

through the histogram (like Otsu)

* Outperforms all single-pass algorithms
and all deep learning algorithms on the |

text binarization benchmark

(d) Otsu’s Method (e) MET

Barron, J.T., A Generalization of Otsu’s Method and Minimum Error Thresholding, CVPR2020 ; link to video




Local binarization [Niblack’86]

e Estimate a local threshold in neighborhood W:

A

TW :’UW_I_k.GW Effect: /\L
with k& €[-1,1] set by user. >

e C(Calculate the threshold separately for each pixel.

Niblack, W (1986), An introduction to Digital Image Processing, Prentice-Hall
o Source: Bastian Leite



Examples of thresholding

Original Global (Otsu) Local (Niblack)




Additional improvements

e The shade in documents is often smooth...

—Try to model it by a polynomial!

300 T T T

20| o 1

dll

200 300 400 a0 7o0 800

2

2
=1

- We show the ROC curve for the
port vectors (bold solid line), two
of 10 and 100 reduced sets (both in
AREAEhna o the 10 codicced 56t co-
ith the full set of support vectors.
) element sets of 200 and 576 cle-
Note that an element set of 576
asingle support vector. Hence, the
it to the 10 reduced set in terms
uses much less memory.

1
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=
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Fitted surface

Figure 4: Face Dataset: We show the ROC curve for the
fll set SVM of 1434 support vectors (bold solid line), two
reduced set methods of 10 and 100 reduced sets (both in
dashed line). The dashed line of the 100 reduced set co-
incide almost entirely with the full set of support vectors.
In addition, we show two element sets of 200 and 576 ele-
meats (both in solid line). Note that an element set of 576
elements is equivalent to a single support vector. Hence, the
B76 element set is equivalent to the 10 reduced set in torms
of classification power but uses much less memory.

Shadow compensation

Pgere 4: Face Dataset: We show the ROC curve for the
fall st S¥M of 1434 support vegtore (bold selid line), Lwo
reduced set methods of 10 and 100 reduced sets (both in
dushed line). The dashed line of the 100 reduced set co-
Incide almost entirely with the full set of suppart vectors,
In sddition, we show two element sets of 200 and 576 cle-
ments {both ip solid line). Note thar 2o element set of 576
dlements is equivalent to asingle support vector. Hence, the
576 slement set is equivalent to the 10 reduced set in terms
of elasifivation power bt uses much. less mermory.

Binarized result




Comparison of results

Original image

Local (Sauvola)
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Machine perception

CLEANING THE IMAGE
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Cleaning the binary image

* Thresholded image still includes noise

* Require post-processing to remove artefacts
 Morphological operators
* Remove isolated points and small structures

* Fill holes




Dilation: A sneak peak preview

e Dilate the regions of ,white“ pixels
* |ncreases the size of the structures

* Fills holes in regions

Before dilation After dilation




Erosion: A sneak peak preview

 Erode the regions of ,white” pixels
e Reduce the size of structures

 Remove bridges, branches, noise

Before erosion After erosion




Central to morphology: Structuring element (SE)

* Can be any shape and content: 0

O/ 1|0

1 1

D\e

QA\_'._\O
O |l a|la|lal0
O o~ 0| O

\0\};’4

Origin of the SE SE placed on image at (2,2)
O 1 2 3 4 5 6..
e Fit: All “1” pixels in SE cover “1” ©|0(0/0/0/0/0)0]0
. . . ~lojojo|1|1]|0]0]|0O
pixels in the image. sloTol a7 7 1710
: : : wlOf 11101 [1]1]1

* Hit: At least one of “1” pixels in o
s10(1 (1 (111111
SE cover “1” pixels in the image. alofo[1{1[1]1]1]1




Fitting & Hitting

Structuring
Element

Fit / Hit?

A:

Fit : All “1” elements in SE cover 1

0/0]0

0000

00|00

00|00

1

1
1
1
1

1
1
1

1

0/0J0|0]0}JO|O0

1

1
1

1

0

0, 0/0/0(0|]0]O0]0|0O]|O0O]|O

000

0/0{0]0]|O0

0{0]0[0]0 0]0[0|0]0]0|O0([ Hit: Any “1” element in SE cover 1




Erosion

* Erosion of image f by structuring element s is given by g = fOss.

* The structuring element s is positioned with its origin at (x, y) and the

new pixel value is determined using the rule:
SE placed on image at (2,2)

,1 T S 0 1 2 3 4 5 6.
g(xy):<1S1tsf ‘131‘1) -|lolojojofo|olo0]oO
> .

0 otherwise T30 ~|ofofofif1jojo|0

w|O0JO]1f1f1[1]1]0

w Ol 111111

. wan . ‘an SO 1111111
Fit: All “1” pixels in SE cover “1

. . . AlO{O 111111

pixels in the image. N e J




Erosion Example

Processed Image With Eroded Pixels

, , o Structuring Element
Fit :All 1 in SE covered in image




Erosion Example

Original Image Processed Image With Eroded Pixels

\

\
Eroded gway
(nixels remaved)

, o Structuring Element
Fit :All 1 in SE covered in image




Dilation

 Dilation of image f by structuring element sisgivenbyg = f @ s.

* The structuring element s is positioned with its origin at (x, y) and the

new pixel value is determined using the rule:
SE placed on image at (2,2)

S 0 1 2 3 4 5 6 ..
( o .

(x. ) 1 1f s hits f OlREIO -lololololo|ofo]o

g(xX,y =< . 11111
0 otherwise o[1jo| PRty 0/0/0
\ sloJofl1f1f1[1][1]0
wlOl 111111
. A . an NUIEREEERERERERE
Hit: Any “1” pixels in SE cover “1 N FITICIEEEEE
pixels in the image. i —— -




Dilation Example

Processed Image

i Structuring Element

Hit: Any 1 in SE covered in image




Dilation Example

Original Image Processed Image

“TDilated regian

(pixels added)

} Structuring Element

Hit: Any 1 in SE covered in image




Effects of erosion and dilation

Dilation by a round
structuring element.

/
N

Original

Erosion by a round

Source of images: http://homepages.inf.ed.ac.uk/rbf/HIPR2/ .
structuring element.




Combined operations: Opening

e Definition

* Apply erosion then dilation

A°B=(ASB)®B

A
AOB
—Fo— ) ) N
& | &
1) G - ) (
e Effect: e U Gy g )

— Removes small objects, A°B=(ASB)®B

preserves rough shape.




Effects of opening

* Can filter out structures by selecting

the size of structuring element.

Opening by a small
structuring element

structuring element

- [
Original e b o




Effects of opening

* Choose the structure in image by choosing the shape of the structuring

element.

Original image Opening by a round
structuring element




Combined operations: Closing

e Definition

* Apply dilation then erosion —
A-B ® B)O B -
c-B=(A
(A® B) -
A
S T >
________________________ ADB
S i o = E
* Effect X |
------------- S A-B=(A®B)OB

=> Fill holes, preserves

the original shape.




Effects of closing

* Fill holes in thresholded image

(eg., reflections)
- -

4
Original Thresholded

Closing by a round
structuring element

The size of structuring

element determines the

maximal size of holes -
that will be filled.




Example: opening + closing

Original i

Structuring
element

Dilated




Morphological operators in OpenCV

* Main operations
e Dilation (OpenCV:cv2.dilate)

* Erosion (OpenCV:cv2.erode)

* Several important combinations
* Opening (OpenCV: cv2.morphologyEx (img,cv2.MORPH OPEN, kernel) )
* Closing (OpenCV: cv2.morphologyEx (img,cv2.MORPH CLOSE, kernel))

* Boundary extraction Examples of structuring elements:

e Much more available E °

(see help)
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LABELLING REGIONS

Machine perception




Connected components for labeling

* Goal: find separate connected regions

NSO RN EREE BRI EE R
Tt lolilolt o1 i lolilolilol2
1 1 1 1 Dj1ojol1 1 1 1 1 oprojo)]2
oTolololololol3 olololofololol2
SR R E 2 ERER R D DR
oTololiToliTol3 > Tolololslolalol2
1 1 11 0100 1 al51013101010] 2
TTiloliloli i1 sTslolslolzlz(2

Binary image connected components




Examples of connected components

connected
components
of 1's from
thresholded
image




Connectivity

 Determines which pixels are considered neighbors.

LI

-

[i, j]

=)

v

T

4

-

[i, j]

4-neighborhood

¢

L

Y 4
=)
&

8-neighborhood




Sequential connected components

* Process image from left to right, from top to bottom:

1.) If the current pixel value is 1

i.) If only one neighbor (left or top) is 1,
. 11111111
copy its label. :lﬂ 212121212 11111
3 11
4 5/5/5/5 11
ii.) If both neighbors are 1 and have same label, 6166666686 | |77
8|88

copy that label. :i

iii.) If they have different labels

— Copy label from the left.

— Update the table of equivalent labels. g

iv.) Otherwise form a new Iabel.‘

N
~]
—

T e o]

—Uub W
o
©
[—

* Relabel with the smallest equivalent labels. [




IVity

8-connect

Example SCC

o
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new label (2)

(b) only background neighbors
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: 8-connectivity

Example SCC

(c) exactly one neighbor label

OIO(O|C|O|O|O0|O
OlH|H|H|H|lH O|O
OO0 |H|H|O|O
OlH|O|IO|H|H|O|O
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OO H|O|H|O|H|O
OO0 |C|O|O0|0O0|O




Example SCC: 8-connectivity

Equivalency table

PaN

&
@

First pass: label

212(0]0|3[3](0]4|0
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Machine perception

REGION DESCRIPTORS




Simple region descriptors

 Aregion can be detected using the connected components.

* How to describe it? cv2: connectedComponentsWithStats

* Some examples:
« Area 4
* Penimeter/

« Compactness c¢=/-/{47Ad)

« Circulanty, roundness //¢

* Centroid (center of mass)

* Major and minor axes A, A,

» Eccentricity ||A,|)/]| A,]

* Minimal bounding box area 4, = h b

« Rectangularity 4/4
(Easy to come up with your own)




Require a level of invariance (App dependent)

* |deal descriptor will map:
 Two images of the same object close-by in feature space.

* Two images of different objects to points far between each other.

, /21




Task: Detect round cells




Summary: Binarization

* Pros
* Fast, simple to store
e Simple techniques

 Works in constrained setups

* Cons
* Difficult to get ,,clean” shapes
 Many real-world scenarios contain noise
* Often too coarse representation

* Not robust in 3D view changes
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Machine perception

FILTERING




Can be applied for...

* Noise reduction and image restoration

noisy Less noisy




Types of image noise

* Salt and pepper (sol in poper)

e Random black and white dots.

* Impulse noise (Impulzni Sum)

e Random occurrence of white dots.

e Gaussian noise (Gausov Sum)

* The intensity variation sampled
from a Gaussian (Normal)
distribution.

Impulse noise Gaussian noise



Gaussian noise

Matlab:

>> im = imread(“peppers.jpg”) ;
>> noise = randn(size(im)) .*5;
>> output = im + noise;

> o

-

-

Ideal Image Ideal Image Noise process
—— e g, Ideal Image
f(x,y) fl@y)= f(z,y) + n(z,y) m——

f(x,y)

Gaussian i.i.d. ("white”) noise:
n(i'! y) e *"\'r(;'['! J)




How to remove a Gaussian noise?

A = ones(100,100)*150 B = A + randn(size(A))*20

* (B) = (A) + (Gpoise) = (A) = 150
* Solution: just compute the average value!

 Might it really be this simple?

149.97 -> 150

C =B*0 + mean(B(:))




Let’s try to remove the noise...

* Assumption:
* Pixels are similar to their neighboring pixels
 The noise is independent among pixels (“i.i.d. = independent, identically distributed”)
| " b e

“,\x'. . .';., ..‘

"

. »
o @ . e
! :
. '
> Iv : ‘ ." " . -
; -4 v

.‘l:_'. 4
. all- 2_ -
. A ¢

Xy . ) -

* So let’s compute an improved estimate of pixel’s intensity by replacing it
with an average of pixel intensities in its immediate neighborhood...



A moving average 2D

Flz, y] Glz, y.




A moving average 2D

Flz, y] Glz, y.




A moving average 2D

Flz, y] Glz, y.




A moving average 2D

Flz, y] Glz, y.




A moving average 2D

Flz, y] Glz, y




A moving average 2D

* Assume the averaging window size is 2k+1 x 2k+1:

G[i,j]—(2k+1)2 > z u,j + vl

——kv=—
J \ J
Y |
Equal weights for A loop over all pixels within the
all pixels. neighbourhood of F[i,j].

* Now let’s generalize this by making a weight depend on relative position from the
central element.

Gli, ] = Z Z H[u ’U]F[”& u, j + v]

u=—kov=—Fk'

Nonun/form weights




Correlation filtering

k k
Gli,j1= >_ Y Hlu,v]F[i+ u,j+ v]

u=—kv=-%k
* This is called cross-correlation and abbreviate as:

G=HQF

1 2| |(0,0)

* Image filtering

* Replace image intensity with a weighted F
sum of a window centered at that pixel.

* The weights in the linear combination
are prescribed by the filter’s kernel.

(N,N)




Convolution as correlation

 Compute convolution by cross-correlation:
* Flip the filter in both dimensions (horizontal + vertical)

* Apply cross-correlation

Gli, 7] = Z Z Hlu,v]F|i —u,j — v]

u=—kv=—%k

14 € (0,0

G=HxF H
T F

convolution

operator




Convolution vs. Correlation

 Correlation

Gz, 7] = Z Z Hlu,v]F|i + u, 7 + v]
u=—kv=—=%k T

G=HXF
Notice the difference?

* Convolution

k \
Gli,71= > Y Hlu,v]F[i—u,j—v]

u=—kv=-—k%k

(we will also use “*” to denote convolution,

G=H~xF ie,G=H=xF)
* Comment;:

* For a symmetric filter, H[-u,-v] = H[u,V], correlation = convolution.



Properties of convolution

e Shift-invariant:
The filter weights remain the same, regardless the position.

* Linear (superposition & scaling): h * (a1 f; + axf,) = a;(h * f1) + a,(h * f5)
« Commutative: fxg=g=*f

* Associative: (f*g)*h=f=*(g=*h)

* As result, application of multiple filters is equal to application of a single filter :
((f*b1)*b2)*b3 = f % (by * by * b3)

* Identity: f xe = f ,wheree=[...,0,0, 1,0, 0, ...] a unit impulse.
Derivative: 5 (f=g) = (5-9) /= (5=
erivative: ™ f*g)= 729 f= axf g



Filtering: Boundary conditions

* What to do at the image boundaries?

* The kernel exceeds image boundaries at the edge

* Need for extrapolation -
 Methods (assumptions):

e Crop (black)

* Bend image around
* Replicate edges

* Mirror image




Filtering: Boundary conditions

 What to do at the image boundaries?

* The kernel exceeds image boundaries at the edge
* Need for extrapolation

 Methods (Python): cv2.filter2D( .. BorderTypes= )

Enumerator https://docs.opencv.org/master/d2/de8/group core array.h
oon cvooRoue consTayy | Mititileseserenlisssiss winsome spectea 3|ty | #2922 09F2f4869e304c82d07739337eae7c5

BORDER_REFPLICATE
- | poaasalabcdefgh|hhhhhhh

Python: cv.BORDER_REPLICATE

BORDER_REFLECT
Python: cv.BORDER_REFLECT

BORDER_WRAP
Python: cv.BORDER_WRAP

cdefgh |abcdefgh | abcdefg
BORDER_REFLECT_101 1 .
o e aution: the method performs
Python: cv. BORDER_REFLECT_101 []
BORDER_TRANSPARENT

T e “crizins correlation, not convolution

BORDER REFLECT101 | meas BORDER_REFLECT_101

Python: cv. BORDER_REFLECT101

BORDER_DEFAULT

aaaaa BORDER_REFLECT_101
Python: cv. BORDER_DEFAULT - -

BORDER_ISOLATED
Python: cv.BORDER_ISOLATED

do not look outside of ROI



Filtering kernels: A Gaussian kernel

Original Filtered




Filtering kernels: A Gaussian kernel

* Instead of using uniform weights, pixels closer
to the center should have higher weight.

* A kernel with such property: A Gaussian

- 1 _ (m2+2y?>
p— e 20
° 2ro2

* Rotation symmetric, bell-shaped




Filtering kernels: A Gaussian kernel

* How about parameters?

* Variance o? determines the extent

of smoothing...

o = 2 by kernel o =5 by kernel
30x30 30x30




Filtering kernels: A Gaussian kernel

0,4

* How about parameters?

0,3

e Kernel size!

0,2

* Infinite support, but discretization makes it finite.

0,1

o =5 with 10x10 o =5 with 30x30
kernel kernel

* Rule of thumb: set half size of the kernel to 30




Effects of smoothing

Increasing the noise extent—>

a=0.05 a=0.1

& 9715 [9uJdy] 3y} Suisealdu




Efficient implementation

In case a filter is separable, we can rewrite it as a convolution of two 1D filters:

G:gx*gy >

9(9™ 9(v) |

 Recall: Convolution is linear, associative + commutative

I+«G=1 *(gx*gy):(l*gx)*gy

* Apply convolution at each row separately using a 1D kernel: 9(x) =
2= 75— exp(-y*1207) =
* Next apply a 1D convolution at each column: | * I
g(x)= \/%cr exp(—x>/(207%)) 90/ g & |:> 1&

* Both, Uniform as well as Gaussian kernels are separable!



Strange artefacts in convolution results...

Original




Convolution and spectrum

* Convolution of two functions in image space is equivalent
to the product of their corresponding Fourier transforms (spectra).

T(< */g) =F(f)OF(9)

~_
Image f Fourier transforms
and filter g of fand g.

* Convolution manipulates the image spectrum

* Enhancing/suppressing frequency bands in image.




Recall the Fourier transform

A signal is represented as a sum of sines/cosines of various frequencies

SolgosfSedooy

f(x) = z a,, cos(nx) + b, sin(nx)

n
- T
5 M -
f\,\\j - ,:’ -\:\/:/\j\:::\’\:’vw ~
oA e
\'\A\,\’\,\ . e
N J,/"-’ T
\\f/ i L‘ . ec'“\)m
sP

Images from: https://en.wikipedia.org/wiki/Fourier_transform




Convolution: removing noise

* Noise corresponds to adding high
signal Frequency spectrum

frequencies. To remove these, we apply a .
9 | PPy fen (eg., FFT fas:
low-band pass filter.

* The spatial box filter transforms to a sinc in F(f~9) =F()OF(9)
frequency space, causing artefacts (side

lobes).

* A Gaussian maintains a compact support in

both image and frequency space. Hence, it's fagn
nal ‘pec
more appropriate as a low-band-pass filter. B% . A‘ -

See Forsyth, Ponce: Computer vision, a modern approach.




Strange artefacts in convolution results...

Filter does not
introduce high
frequencies

Filter introduces
high frequencies

Original

_ Filtered




Linear filters in practice

oJoJo NEAAR
0[2]o| = S[i[1][1])=
olofo 1[1]1

Original

Sharpening filter:
Enhances differences by local averaging.

To explain this, think about what happens in te frequency domain.




Sharpening filter

before after

To explain this, think about what happens in frequency domain.




Previously at MP...

Convolution <->Correlation = Dot product




Filtering as template matching

Where’s waldo?

Template




Apply correlation with template

Template

Correlation map

Convolution <->Correlation = Dot product = Measure of similarity




Issues with template matching over scales

* But the object may be bigger/smaller in the image!

 Well, we could carry out correlation for different scales of the

template...

% 3T
Y x g

& K

PN
o

pA

‘CID

etc. ...

Then with this one

Start with this small one



Template matching in scale space

* But rather than template, we scale the input image

Reduce the image size [+* « *

Al
9_@@_ « | Keep the same size

Reduce the image size| « % .+ ¢

>r
%@94 —1| Keep the same size

P
{2} = « =7/|  Start with this small one




Efficient resizing: Image pyramids

Low resolution

level k (= 1 pixle\ i
level k-1 / \\/ .
A
L 7\ .
i b,
= 2 2

level 0 (= original image)

Reduce (resample) the image!

High resolution



How do we reduce an image?

e Naive:

* Remove every second pixel...

original image subsampled

I — =
[HHHH

* Problem: the structures in image change!
e This effect is called Aliasing.

* look into frequency domain to explain this (Forsyth-Ponce Book)
5



Avoiding aliasing

* Nyquist theorem:

* |f we want to reconstruct all frequencies up to f, we have to sample the signal by
at least a frequency equal to 2f.

A
S —
* Meaning: we cannot reconstruct some of /\M

the high frequencies when subsampling!

(incorrectly) 8
b |€d Sampled at 2f
original image subsamp
ink

“
N
©

IIIIIIIIII /VV\/ Sampled a Mf/s

Image source

41



Avoiding aliasing

* Nyquist theorem:

* |f we want to reconstruct all frequencies up to f, we have to sample the signal by
at least a frequency equal to 2f.

original image subsampled

« Meaning: we cannot reconstruct some of IIIIIIIIII — I
the high frequencies when subsampling! IIIIIIIIII

e Solution:

* Remove the high frequencies that cannot be reconstructed, then subsample.

* How to remove? Blur the image.



Gaussian pyramid

Low resolution .gG4 = (G3 * gaussian) 2
v G, = (G, * JaTSSIEAY Subsample
smooth

High resolution




Summary: Gaussian pyramid

e Construction: get a new level directly from the previous

* Smooth by a small filter and resample

e Reasons for Gaussian smoothing...

* Convolution Gauss*Gauss = new Gauss

* G(of) * G(05)=G(of + 03)

e Reason for size reduction...

* Gaussian is a low-band-pass filter, so we get a redundant representation of a
smoothed image.

—> No need to store a smoothed image in full resolution.



Image/Feature Pyramids widely applicable

* Enables efficient implementation of many (even) modern methods

* Multi-scale object detection ...
* Multi-scale edge detection ...

* Multi-scale feature point detection ...

Manipulation of selected frequency bands ...

Suleiman and Sze, JSPS2026



Nonlinear filters: Median filter

 Basic idea

* Replace the pixel intensity by a median of intensities within a small patch.

Median value
10 15 20

* Properties

* Does not add new gray-levels into the image.

* Removes outliers: appropriate for impulse noise and salt&pepper noise

removal.

15

20
27
30

l Sort

30 31 33 90

10

20

23

i

33

27
31

27
30

l Replace




The Median filter

Salt&pepper
noise

1 , )l " |

] i & - W{?\“

u U ' 1 i M

% ™ dm @ !m Bl % ﬁMTma& * E T Ui 0

Plot of a line in the image
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Machine perception

COLOR




Sensor: Camera

Electromagnetic spectrum Visible light
Wavelength Energy Frequency

A (m) E (eV) v (Hz)
1072} 10°

: 10' ~
10° 10 C))
1[}15

10—6 - 100 = LG
Lo ) o




Light

* Lightis an electromagnetic radiation composed of several frequencies

* Properties are described by its spectrum (i.e., how much of each frequency is present)

Energy radiated in a unit of time w.r.t. wavelength

e E.g., laser light contains only a narrow band of wavelengths (frequencies)

intensity

wave length

* Visible light contains radiation with
wavelengths in interval 400-700nm

Spectral power
distribution

400 450 500 550 600 650 700
Wavelength (nm)




Human color perception

* Human eye (retina) contains specialized cells that react to different

wavelengths differently. sourelk
fa
* Three types of cells called “cones”: R, G, B L% .
Cone
* Atype of cells called “rods”: intensity only Come.
40 S0 o0 T00

Wavelength {rum) Yellow

palicice

cepki

opticni
Zivec

paliCice




Additive mixture model

 What color do we get if we shine a red and green light

to a white sheet of paper?

colors mix by summation of
their spectra.

perceive g
400 500 600 700 nm

"\, perceive 5

L
400 500 600 700 nm

2

perceive —

L

>

400 500 600 700 nm
colors added to black.




stems using the additive model

Dichreic Combiner Cube

Mirror

L A T I

e e
T e
e
e
wmm M N
R T T
T
R Red Dichroic
mmm i NI Mirror
R e T T HH“HM

W I | /) /

R _ —

L | |

prmm

WML (’1 Blue Dichroic

Mirror Dichroic Mirror

"Wavelangth Selector

-

Light Source

Monitors LCD projector



Subtractive models

colors mix by spectra
Intersection.

 What color do we get if we paint some
and pigment to white paper?

perceive

c
<
P
Q

400 500 600 700 nm

perceive 2
;g‘
400 500 600 700 nm
perceive g Pigments remove
2l
L the color from the

400 500 600 700 nm

iIncident white light.
T e



Systems using a subtractive model

* Printing on paper

* Crayons

* Photographic film

additive

eeeeeeeeeeee

* See this nice app and play with setups: s=in

\\\\\\

https://graphics.stanford.edu/courses/cs178/applets/colormixing.html =
[C3]&S)




Color spaces

* Role of color space: Unique color specification (e.g., for reproduction)
» Specifying a color in a color space allows accurate color reproduction on various

media like photo, print and monitor.

* Defined by the choice of primary colors (primaries)
Recall: The human eye is equipped with sensory cells for the perception of the three primary colors (RGB)

* A new coloris a weighted sum of primaries

By mixing the colours, we get any colour that
lies within the triangle of primaries.

* Mixing weights r,g,b to get any color were estimated on human subjects



Linear color space example: CIE XYZ

e |International Commission on lllumination
(Commission international d’eclairage -- CIE), 1931

Artificial brirharies

1 1
0 800 850
eeeeee gth in n

* Representation by chromaticity only [x,y]:
X _ Y o Z
xXiv+2' Y T X7v12 T X3v+Z

r+y+z=1

T ==




Linear color space example: RGB

* Single wave-length primaries R

Yellow _ Magenta

e Appropriate for use in imaging
devices (e.g., monitors), but
not for human perception

>
----
-
-

.
-"
.
P
.
-
.
.
.
.
.
L - -t
........
""""
aae



HSV colorspace

* Hue (barvnost), Saturation (nasicenje), Hue

Value (intenziteta)

* Nonlinear — hue coded by angle

* Python: cv2.cviColor(l, Type) A N
Type increasing hue :
cv2.COLOR_RGB2HSV {H=g|flé? magenta
cv2.COLOR_HSV2RGB

Saturation

cyan
(H=1/2)

increasing . .
saturation increasing
moves away value moves 0
from the axis toward
lighter

colors

black
(v=0)




Distances in colourspaces

* Do distances between points in the colourspace make sense
perceptually?

ES S5e = ME..A

. o e = .‘
R TS ’ = E T Y E—
// % - ,7;::_‘.‘




Distances in color spaces

* Not necessarily: CIE XYZ is nonuniform colorspace — Euclidean distance between
coordinates of colors in colorspace is not a good indicator of color similarity (in
terms of human perception).

........
\

03 03 04 05 06 07 08
X
McAdam ellipses:
Just (human) noticeable differences in color



Uniform color spaces

* Transforms such that ellipses are mapped
into circles
= distances better replicate the human
perception of color similarity.

 Examples of uniform colour spaces:
e CIEu'v’
* CIE Lab (1976)

07

500nm
05

CIE XYZ |

LAl 1
a
o I 1 I I 1 I 1 1 1
0 LA b2 03 04 05 06 o7 0B 0a 1
X
T T T

CIE u'V’

700nm

Nonuniform colour space

Uniform colour space




Computing color similarity between objects

* How to summarize the color?

* |deal: just compute the average (r,g,b)
| N
2

Tis Gis bi)
Color of the (r,g,b) at i-th pixel

Plrgb
T

— ZIH

X

Issue: a single value does not
sufficiently capture the color
distribution




Describe the color by a Gaussian

 Summarize the color by parameters of a Gaussian distribution

0o 01 02 03 04
| 1 1 1 |

But often a more flexible model of color distribution is required!




Machine perception

COLOR DESCRIPTION BY USING HISTOGRAMS




What is a histogram?

* Image histogram records the frequency of intensity levels

h(z) = the number of pixels in I with the intensity value ¢ 256 intensity levels

h(i) = card{(u,v) | I(u,v) =i }

e Example:

h(z) |0[2(10/0[0[0|5|7(3]|9]1|6]|3]6|3]|2

t 01 23 45 6 7 8 9101112131415
Intensity value




Color histogram

* Color statistic
* Example of a 3D RGB histogram H(R, G, B) visualization
* Each pixel color is a point in 3D space (RGB)
e Calculate the 3D color histogram

* H(R,G,B) = number of pixels with color [R,G,B]

[Swain & Ballard, 1991]




Color histogram

* Robust representation of images

* Translation, scale, partial occlusion

[Swain & Ballard, 1991]



Intensity normalization

* |Intensity is contained in each color channel
 Multiplying a color by a scalar changes the intensity but not the hue (,,true” color).
* This means that we can normalize a color by its intensity.
* Intensity is defined as: =R + G + B:
* Chromatic representation:

_ R g = G h — B
~ R+G+B R+G+B ~ R+G+B

f"l

 We can now use only a 2D space (rg), since it holds that

r+g+b=1




Color comparison via histograms

* Compare images indirectly — compare only their descriptors
(histograms)

Test image

A measure of distance/similarity
between the histograms is required!

WIZEE 260

Known objects




Popular distances: Euclidean distance

* Definition (=L, norm)

dQ,V) = \/Z (gi — v7)?

* Explanation
* Looks for differences in histogram cells.
* Interpretation: Distance in feature space.
* Range of output values: [0,1]
* All cells receive equal weight. V

* Susceptible to noise!




Popular distances: pdf similarity

* Similarity between two probability density functions A
e Chi-squared (slo., hi-kvadrat):

2
2 (Qi — Uzi)
V) =
X (Q,V) E ——
WATCH OUT FOR gi=vi=0!!

e Kullback-Leibler divergence: . . . ,
Symmetric version (Jeferey’s divergence):

KL(Q,V)=> glog g— JD(Q,V)=KL(Q,V)+ KL(V,Q)

1
Not a proper metric (not symmetric)

* Hellinger distance:

duen(Q, V) = [1 =) /@i

Proper metric, constrained to interval [0,1]




References

* David A. Forsyth, Jean Ponce, Computer Vision: A Modern Approach (2nd Edition), (prva izdaja

dostopna na spletu)

(Ozadje linearnih filtrov in povezavo s Fourierjevim transformom najdete v Poglavjih 7 in 8)

* R. Szeliski,Computer Vision: Algorithms and Applications, 2010

e Kristen Grauman, ,Computer Vision“, lectures




Appendix: Fun with hybrid images...

Gaussian filter

A. Oliva, A. Torralba, P.G. Schyns, “Hybrid Images,” SIGGRAPH 2006

......

Laplacian filter: <>

Unit impulse Gauss Laplacian of Gaussian




Previously at MP...

e Correlation, Gaussian pyramids

Template !
levelk (=1 plxle\
|

level k-1 / /

level k-2

level 0 (= original image)

g
1
g
R B AN S

. ), N o) '(, =2 w5y L oS
Input image Correlation map

* Color — perception, color spaces and color histograms as image descriptors

Jou R

2
Y

1¥ Saturation
Value
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Edge detection

* Goal: map image from 2D grayscale intensity pixel array into a set of

binary curves and lines.

e Why?

Measurement

Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV2023




What constitutes an edge?

Anything that appears

Discontinuity of depth:
as an edge...

object borders

Local texture:

Shadows

Changes in 3D normal
orientation caused by
shape changes




What constitutes an edge?

Anything that appears
as an edge...

- m
L !
& -
-
o2
e -.;,;'.'5 e

Operator that measures
a local intensity change:
Derivative

Edge presence is strongly
correlated with the local
intensity changes.

o i W e e W e o e ]




Machine perception

IMAGE DERIVATIVES




1D derivative: Intuition

H:I N\
3]_
101
1]
First order derivative ol T
d -
= f(x) o Ma.xun.a of first
> / derivative

R T - T




Derivatives and convolution

* A partial derivative of a continuous 2D function f(x,y) :

8f(x9y) :limf(x_l_g?y)_f(x?y)

ax e—0 E

* For a discrete case, approximate by using finite differences:

af(xay) ~ f(x_l_lay)_f(xay)
Ox 1

* Question: If implemented by convolution, what would the convolution kernel for
derivative look like? (Next slide)



Partial derivatives: Implementation

Horizontal derivative

of(z,y)  flz+1l,y)—f(x
ox ™~
* 11 =

Vertical derivative

oy 1

* -1
1




Partial derivatives: Image gradient

Image gradient: Vf — [gf) gf]
z’ 0y

Gradient points in direction of greatest intensity change:

v/ =[50] vi=09]

- T K

Gradient direction (orientation of edge normal):
_ -1 (9f 5_f>

Gradient strength is defined by its magnitude:

Gradient magnitude

VA1l = /G0 + (3’




Discrete world is noisy...

* Take asingle line in the image:

* Plot intensities w.r.t. pixels:

.................................................

| | | | | | | | |
200 400 600 800 1000 1200 1400 1600 1800 2000

| | | | | | | | |
4] 200 400 600 800 1000 1200 1400 1600 1800 2000

So where did the edge go!? Noise gets amplified by derivation...




Solution: Smooth the image first

Sigma = 50

~+
Signal

=
Kernel

T TR Itaes
1400 1600 1800 2000

= I [ I [
15 Lo e SRR SIS &% , _
= :
J oL L _
hxf  Spe
R S E— i Uttt ittt
0 200 400 600 800 1400 1600 1800 2000
E} T T T T T | T
d (1, 2 |
*x f) &
6913(: JF E : : : :
;= : : : : .
DD_ """" i I I I I I [
0 200 400 600 800 1000 1200 1400 1600 180 2000
Where’s the edge? Find maxima in map 3$(h * f)



Remember convolution properties

* Derivatives: L (hx f) = (Lh) % f
ox ox
Sigma=50 ! Sigma = 50
........................................... ]
T O S S S AU
1
f 1
1 —
1 ™
1 c
‘ | ! N e T T PTY F PP PPy
R S I : f N
020 40 600 800 1000 1200 1400 1600 1800 2000 '
et iousniothlete S S S
h ! 0 200 400 600 800 1000 1200 1400 1600 1800 2000
i T T T T T T T T T
1 :
: '
n —_
! 0 A N 0 VT S SN SV SO SO DU R SO |
1 - @
hx f i Ox B
1
| | | | | | | | |
0200 40 600 800 1000 1200 1400 1600 1800 2000 i 600 800 1000 1200 1400 1600 1800 2000
c T T T T T T T T T 1 T T T T T T T T T
g S S : : ' ! ! ! T T T T
9 : : 5 f
O (h * f ) ] i 5 :
X L 1 8 © :
50 . / ; : — i (a_h) * f E
020 40 600 800 1000 1200 1400 1600 1800 2000 ! €Zr S :
i Op-—--- I 1 I I I 1 1 1 . ]
! )] 200 400 600 800 1000 1200 1400 1600 1800 2000




2D partial derivatives — naiive approach

1. Smooth the image by a 2D Gaussian filter

2. Take derivative w.r.t. x
Image Gaussian Blurred image

kernel

1 Blurring

“\\)‘ i / . N
Blurred image perivative  Derivative image
kernel '

2 Differentiating
w.r.t. X




2D partial derivatives — smarter approach




Smarter way

\ Can precompute
analytically and discretize!




2D partial derivatives — smarter approach

* Recall the convolution property: 2([>1<G) = [>x<(i G)
Ox Ox

Naiive:

Smarter:




Gaussian partial derivatives

* Convolution kernels for taking partial derivatives
w.r.t. x and y:

278

w.r.t. x



Some other popular kernels

-0 1171
Prewitt: M, = [-1]0 M, = 1] 0
-1pn -1]-17-1
L{o}1 L 2] 1
Sobel: M, = 1 E | M, = R
L{opl 1 ]1-271-1
01 1
Roberts: M: = 7715 o My = T

>> My = fspecial(‘sobel’);

>> outim = imfilter (double(im), My);
>> imagesc (outim) ;

>> colormap gray;




Edges exist at different scales

Depends on what we’re looking for...

Thin edges or thick edges (leaves, branches, trunks,...)




Tuning the filter to the right scale

Parameter o is the “scale”/“width” of a Gaussian kernel that determines
the extent of smoothing, i.e., determines which edges will be removed.

H -
10
20
30

0 10 20 30 0 10 20 30




Tuning the filter to the right scale

How does o affect the derivative?

o = 1 pixel o = 3 pixels

The enhanced/detected structures depend on the Gaussian kernel size.

Large kernels: emphasize edges on a larger scale.
Small kernels: emphasize edges on a smaller scale.




Machine perception

FROM DERIVATIVES TO EDGE DETECTION




Recall: The task of edge detection

* Goal: map image from 2D grayscale intensity pixel array into a set of

binary curves and lines.

——

~
~ . g o
abstraction Robust, compact representation Measurement

Derivative enhances the edges, but these are not binary curves.




The task of edge detection

* Basic approach:
find strong gradients + post process




Designing an edge detector...

* Criteria of “optimal” edge detector:

1. Good detection: optimal detector minimizes probability of false positives
(edges caused by noise), and false negatives (missing true edges)

2. Good localization: detected edges should be close to the location of the true
edges.

3. Specificity: detector should return only a single point per true edge; minimize
number of local maxima around true edge.

True Poor robustness Poor Too many
edge to noise localization responses



The Canny edge detector [canny, IEEETPAMI 1986]

* Most popular edge detector in computer vision.

 Theoretical model of the edge:
A step function + Gaussian noise.

* Canny showed that first derivative of a Gaussian well approximates an
operator that optimizes a tradeoff between signal-to-noise ratio and
localization on the specified theoretical edge model.

Python:
>> cv2.Canny (image, Th lo, Th hi,..)

J. Canny, A Computational Approach To Edge Detection, |IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.



Canny edge detector

1. Filter image by a derivative of a Gaussian (smooth and enhance)

2. Calculate the gradient magnitude and orientation
# =tan—1 (af/ )
VA= /(D7 + (G’

3. Thin potential edges to a single pixel thickness

4. Select sequences of connected pixels that are likely an edge




Canny: enhancing the potential edge pixels

Original image (Lena) Gradient magnitude




Canny: enhancing the potential edge pixels

Original image (Lena) ,Thresholding“: Set magnitudes lower
than a prescribed threshold to O.




Canny: thinning the edges

How to convert
these thick lines
into thinner - {
curves?

\-Edge

Not by thresholding...




Thinning by hon-maxima suppression

] @ q @
Gradient /

& ® T e L
I

* For each pixel check if it is a local maximum along its gradient direction.

* Advanced: Actually, for q, we should check interpolated pixel values at p and r.

* Only local maxima should remain.



Canny: thinning the edges

Thinning
(non-maximum suppression)




Canny: thinning the edges

Problem: pixels along this
edge did not ,survive”
thresholding.

Thinning
(non-maximum suppression)



How to select a threshold?

Threshold + Thinning




Canny edge detector: Hysteresis thresholding

* Trace each contour separately
(e.g., using 4-connectedness).

* Apply two thresholds ky,, and ki,

e Start tracing a line only at pixels that
exceed a high threshold k.

e Continue tracing if the pixels exceed a lower
threshold k

low*

* Typical threshold ratio: kygp, / Kigy = 2




Hysteresis thresholding

High threshold Low threshold Hysteresis thresholding
(strong edges) (weak edges)



The Canny edge detector in a nutshell

1. Convolve the image by a derivative of a Gaussian.
2. Calculate the gradient magnitude and orientation

3. Non-maxima suppression (NMS)
* Setlow gradient magnitudes to zero to reduce the number of candidates in NMS

* Thin edges to one-pixel width.

4. Trace the edges by hysteresis thresholding

* Apply a high threshold on the magnitude to initialize a contours and continue

tracing the contour until the magnitude falls below a low threshold.




Canny edge detector in “action”

1.‘ Q. A N

Input image ‘gradient angle

thinned
3y



Canny edge detector in “action” ... with ControlNet

“hyperrealistic dramatic sky of a dragon”

https://huggingface.co/lllyasviel/sd-controlnet-canny

Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV2023




Beyond Canny edge detector

e Since Canny’s publication, lots of new approaches for edge detection by
machine learning.

e Essentially, look at patches and learn what an edge is by inferring the
structure from intensities.

EEVLEE I
il Ll B | -
NI (
e N2 1S
RYRNANENAN VAN
"EENEET TN mEa T e
BNy AN IWEN

Sketch Tokens, CVPR 2013. Joseph Lim, C. Zitnick, and P. Dollar
T



Beyond Canny edge detector

* CNNs trained for edge detection

boundary detection

Kung and Fowlkes, Recurrent Pixel Embedding for Instance Grouping, CVPR2018 B




Machine perception

EDGE DETECTION BY PARAMETRIC MODELS




Example: line fitting

 Why should we fit lines?
Many scenes are composed of straight lines

e - Explorer 16

Developme

AR L L R e e s s L

e
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3 n-!h;p
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Challenges of line fitting

* Noisy edges, multiple models:

* Which points correspond to
which line, if at all?

 Some parts of lines are not detected:

» 0010 4

y 1D

 How to find a line that connects the missing
points?

WO

'[| _—
|
|

<
s O
o
Q
40
&
a
Q
O
A

* Noisy orientation:

* How do we determine the unknown parameters
of true lines?

y = 1.6x + 21.5




Line fitting by voting for parameters

* Given a set of points, find the lines.
* How many lines?

* Which points correspond to which lines?

* Hough Transform is a voting technique that
answers these questions.

* Main idea:
1. For each edge point compute parameters of
all possible lines passing through that point
2. For each set of parameters cast a vote

3. Select the lines (parameter combinations) that

receive enough votes.



Hough space: straight lines

y A b
y = mox =+ bo
ﬁ
bo -—-8
‘ i :
X m, m
Image space Hough (parametric) space

* Connection between spatial (x,y) and
Hough space (m,b):

* Aline in image corresponds to a point in the Hough space.




Hough space: straight lines

y A b A
Yo ° b= —xzom + Yo
ﬁ
X, X m
Image space Hough (parametric) space

* Connection between spatial (x,y) and
Hough space (m,b):
* Aline in image corresponds to a point in the Hough space.
* Mapping from image to Hough space:

* For a point (x,y), find all (m,b) for which this holds : y =mx + b



Hough space: straight lines

xbort
y 1 — ')Crmopt, ,f”” b 1
= -~
,¢” (xb yl)
o b b= —xzom + Yo
7T (o, 20) —  PL
b=-xm+y,
X mopt m
Image space Hough (parametric) space

* Connection between spatial (x,y) and
Hough space (m,b):
* Aline in image corresponds to a point in the Hough space.
* Mapping from image to Hough space:

* For a point (x,y), find all (m,b) for which this holds : y =mx + b



Hough space: straight lines

Y] e b Discretize the
a’,” ‘Oo’@t
2 X — | parameter
L2 ?Cmopt bopt - —1
,,,,,, g7 — — — 1 | space...
P // T~
)2 Mopt r}l
Image space Hough (parametric) space

* Connection between spatial (x,y) and
Hough space (m,b):
* Aline in image corresponds to a point in the Hough space.

* Mapping from image to Hough space:
* For a point (x,y), find all (m,b) for which this holds : y =mx + b



Encode the line in polar coordinates

* Issue with Cartesian (m,b): infinite values for vertical lines!

[0,0] X . d : perpendicular distance
@ from the origin
d @: angle of perpendicular line
y with x axis

xcos@—ysinf=d

/

v

* Pointinimage = sinusoid in Hough space




Algorithm: Straight lines

Using polar representation: H: accumulator array (votes)
xcos@—ysin@=d o l'
Basic Hough transform: 0 - l'l
1. Initialize H[d, 6] = 0. |
2. For each edge point (x,y) in image 0 - : 0
For =0 to 180 // over quantized values!! d

d =xcosf—ysinf
H[d, 0] += 1

3. Find local maxima {d(‘,pt, H‘l’?’t}i—uv in accumulator array H[d, d).

4. Detected line is defined by: d(i)pt = xcosH(‘;pt — SinG};pt

Hough line demo




ough transform in action

Only the longest segments along each detected line are
shown here.




Hough transform: Noise — binning

Coordinates of Votes
edge points in image

Are there any significant problems with the noise?
o slide credit: David Lowe



Hough transform: Noise — amplitude of votes

Coordinates of Votes
edge points in image

Random points still form some local maxima in the accumulator array!



Hough transform: Extensions

Extension 1: Use the gradient direction!

1. same as standard HT

2. For each edge point [x,y]

@ = gradient direction at (x,)) *~
d =xcosf—ysmb
H[d,0] +=1

3. same as standard HT

4. same as standard HT

Reduces the number of degrees of freedom (dof)!




Hough transform: Extensions

. . ' ] -‘.F:'L?‘ _1‘513'—‘3:1:“.: \L::-wl:\‘:,.:'.!
Extension 1: Use the gradient direction! ' *W

1. same as standard HT

2. For each edge point [x,y]

0= gradient direction at (x,))*”
d - XCOSH_ySine .................................................

H[d 0] +=1 *
3. same as standard HT

4. same as standard HT

Extension 2:

* Assign higher weight in votes to points with Igrge edge magnitude.
Instead H[d,d] += 1, use H[d, ] += m(x.y).

 These extensions can be applied in general:
line, circles, squares, general shapes...



Hough transform for circles

* Circle parameters: center (a,b) and radius r
(x, ~a)* +(3,~b) =7

 Example of center detection at known radius r

Image space Hough space




Hough transform for circles

* Circle parameters: center (a,b) and radius r
(x, ~a)* +(3,~b) =7

* Example of center detection at known radius r

Intersection:
: Most points
: vote for this
center.

Image space

Hough space




Hough transform for circles

* Circle parameters: center (a,b) and radius r
(x, ~a)* +(3,~b) =7

 Unknown radius r — How many dimensions in Hough Space?

A r
¥l
O b
0 = a
Image space Hough space



Hough transform for circles

* Circle parameters: center (a,b) and radius r
(x, ~a)* +(3,~b) =7

e Unknown radius

A r
¥
““'O"~,. \
© -V b
0 . (x,y)

Image space ° Hough space




Hough transform for circles

* Circle parameters: center (a,b) and radius r
(x, ~a)* +(3,~b) =7

But assume we know the

 Unknown radius r . o
gradient direction!

A
Y

/
:

Image space Hough space




Hough transform for circles

For each edge pixel (x,y) :
For each radius value r:

For each gradient direction 6:
// or use the estimated direction only

a=x—r cos(0)

b =y + rsin(0)

H[a,b,r] += 1(or the magnitude)




Hough circle detection in action!

Original Edges (e.g., Canny) Votes for penny  (x —a)? +(y, —b)* = 1>

Given a known radius:
r = 50 pixels,

what are the center
coordinates, i.e.,

a =? pixels,
b =?pixels .

Comment: here we use a separate HT for each coin size.




Hough circle detection in action!

Original Edges (e.g., Canny) Votes for 25cent  (x,—a)*+(y, —b)* =#7

Given a known radius:
r = 80 pixels,

what are the center
coordinates, i.e.,

a =? pixels,
b =?pixels .

Comment: here we use a separate HT for each coin size.




Hough circle detection in action!

Combined detections Votes for penny Votes for 25cent  (x, —a)’ +(y, —b)* =r>

Given a known radius:
r = 50 or 80 pixels,

what are the center
coordinates, i.e.,

a =? pixels,
b =?pixels .

Comment: here we use a separate HT for each coin size.




Generalized Hough transform (GHT)

Building a model to detect objects by GHT — intuition:

* Assume we know how to detect parts (recognize+localize), i.e., eyes
and beak of an howl. Task: create an how! head detector.

* Encode parts by displacements to the neck center.

The owl head model:
Given a part, where is the neck center?

eye  beak

Sl




Generalized Hough transform (GHT)

e Detection — intuition

The owl head model:

eye beak




Generalized Hough transform (GHT)

e Detection — intuition

The owl head model:

eye beak




GHT for shape-based models

* Define the shape model by edge points and a reference point.

M | Model shape Model learning:

For each edge point
calculate the
displacement vector to

the reference point:
Edge/gradient r=a-— p
.

direction Voting vector

O

The owl head model:

eye  beak A1 7. Collect displacements
R |;_| w9 '\ in table, indexed by

gradient direction 6.




GHT for shape-based models

Detection:

For each edge point:

e Use its gradient orientation 0 to _ '
index into the table. /]

 Use the displacement vectorsr
to cast a vote for the center.
/ / New image =
6

v\se \

Assumption: the only transformation is the translation (orientation+scaling are fixed)




G H T i n p ra Ct i Ce Csaba Beleznai, et al., Automated pallet handling via occlusion-robust recognition

learned from synthetic data, CAl12023

* Approach: Use a simulated 3D model of an object (automatically annotated)

and train a neural network that predicts the 3D object center for each point




Hough transform line detection: Practical advices

* First minimize irrelevant responses
(use only edges with significant magnitude of gradient)

* Appropriately discretize the parametric space

* Too coarse: votes from different lines fall into the same accumulator

* Too fine: losing lines — due to noise, collinear points cast votes into nearby (BUT DIFFERENT)

accumulators.

* Vote for neighboring cells as well
* Correct: cast a vote by a Gaussian or a bilinear interpolation

* Approximate: convolve the voting array by a Gaussian

* Use the gradient direction to reduce the number of free parameters




Hough transform: +/-

Pros

* Each pointis processed independently:

* robustness to partial occlusion,

* highly parallelizable.
* Robustness to noise: noise will unlikely contribute consistently to a single cell
* (Candetect multiple instances of a single model in one pass.

Cons

 Time complexity increases exponentially with the number of free parameters.
e Spurious shapes may generate false local maxima in the parametric space.

* Quantization: Not trivial to choose a proper accumulator cell size — Application
dependent!



References

 David A. Forsyth, Jean Ponce, Computer Vision: A Modern Approach (2nd Edition),

(prva izdaja dostopna na spletu)

* R. Szeliski,Computer Vision: Algorithms and Applications, 2010

* R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision,
2nd Edition, Cambridge University Press, 2004

e Kristen Grauman, ,,Computer Vision“, lectures
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Parametric models: Forward application

* Transformation parameterized by (many) parameters
/

x; = [(Xs;P)

* Example: transform x; into x; by a function f(x; p)

e [;(/ eps PR RTeR"
X, X

!

X3
@ ? ‘P( SR) "\:I
—>
O O x; =Rx; +T
X, % X, £




Parametric models: Use cases

* Inverse problem: 'Given a set of correspondences, what are the
parameters of the transformation?”

——__------

————————
~~~~~

~
S~o
. S~ao
——————

i

O Source keypoint O Destination keypoint

* Assuming the transformation can be well approximated by f (x; p), what
are the best parameter values for p?



Parametric models: Use cases

* Best parameter values: those that minimize the projection error

Stitched images:
Coordinates of all pixels in the left-hand
image transformed by f (x; Pop¢)




Least squares: Line fitting

Problem formulation

* Data: {(X1, yl)' e (xN' yN)}

* Line equation:
y =f(x;p) =xp1 +p2

* Parameters:
P = [pl’ pZ]T

* Projection error at i-th correspondence:
& = f(xi;p) — i N

* The cost function (goodness of fit): E(p) — Z Eiz

1=1

* Best parameters:  Popt = argmin E(P)
P




A 1D minimization

How do you minimize a 1D continuous error function?
(with respect to one parameter)
(with respect to N parameters)




Least squares: Line fitting

Strategy:
1. Rewrite the cost function E(p) into a vector-matrix form
2. Take derivative w.r.t. p, set to zero, solve for p.

f(x;p) =xpy +p; + Yy
p — [P1» pZ]T

& =flxi;p) — i

E(p) = gngiz




A cookbook for normal equations:

1. Define the set of corresponding points
xi}izin, {xiizen
2. Define the linear transformation
flp):x—x
3. Define the per-point error and stack all errors into a single vector &:

E(p) = é&g

T T T]T
g = flxi;p) —x/

E = |:€1 ] 767, 7"'7€N

(=
(s €i 2
4. Rewrite the errorintoaforme=Ap—»b Note: point f-\oﬂa\‘\w
o\e: e
5. Solve by pseudoinverse: p = A'b of 5a™Me ?mts X -

Matlab: p=A\b



Least squares: A simple image alighment

e Task: Align two images based on correspondences

e Assume a similarity transform (scale, rotation, translation)

x' = f(x;p)
* The similarity transform is parameterized by (See Szeliski, Section 2.1.2):

—_

ﬁz{xf'j:[B%wﬁ%“L]} s Pl pepe P T
Tn 733)(’ -/-ﬁ_z —4-75,( F F
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Weighted least squares: Line fitting

Problem formulation

* Data: {(xl' yl)' "ty (xN; yN)}
e All points are not equally
accurately measured!

A

* Weight at each point: w;

* Projection error at i-th
correspondence:

& = f(xi;p) — Vi
* Aweighted cost: E(p) = Z,fil W,

* Best parameters: p,,; = arg min F(p)
P



Weighted least squares: Line fitting

Strategy:
* Rewrite the cost function E(p) into a vector-matrix form
* Take derivative w.r.t. p, set to zero, solve for p.

f;p) =xp +py A
P = [pl,pz]T
& =f(xip) — Y

E(p) = Y0, wie?

~

p = arg min F(p)
P




A cookbook for weighted least squares:

1. Define a weighted set of corresponding points
xi}izin X}z, Wiz Note: x" € R%,w € R*
2. Define the linear transformation
flp):x—x
3. Rewritetheerrorintoaforme=Ap—»b
4. Create a weight matrix W as

W = diag([wl,...,wk]) Note: think about why
. T are w; vectors of same
with w; = will,..,1]1xq dimensionality as the
points x'. .
. tne
5. Solveby: p=(A"WA)"'A"Wb To practic™ SO\r\r’\i)\e
” a
ucailboat’ &



NOTE

 Weighted least squares can be used for
NONLINEAR/ROBUST least-squares problems as well!

* Robust least squares, for example can be implemented
by iterative algorithm that applies a weighted least
squares solver

* See the slides on e-classroom if you're interested




Robust least squares

e Quadratic cost function behaves poorly with outliers:

1 Ideal fit

>

Corrupted fit @

 To see where the problem lies, we will have to rewrite our cost functio
into a general form.

* The cost can be generally written as:  E(p) = Zﬁil h(e;)

* For ordinary least squares we had: h(g;) = ||&||*




Robust least squares

* For a cost function with robust error function h(g;)
N
E(p) = Zf,;:1 h(e:)
* Itis possible to find an equivalent weighted L, cost
N 2
Ew(p) = 2_i—1 wle)lled

with ¢ = @ and h’(g) — 8}5(;) :

* Problems:

1. Weights depend on the errors incurred by the optimal parameters of our mod
2. Butthe parameters are unknown and so are the weights.

e Solution: Can apply an iterative approach
that will converge as long as h (\/ |E|) is concavel.

IAftab, K. and Hartley, R., Convergence of Iteratively Re-weighted Least Squares to Robust M-estimators, WACV 2015
R. Hartley, Robust Optimization Technigues in Computer Vision, Session 3,ECCV2014 tutorials
D P



Iterative reweighted least squares

1. Set all the weights tow; ! = 1.
Solve for pt by the weighted least squares problem.
Using the estimated parameters p' re-calculate per-point
projection errors ef.

4. Using the projection errors re-calculate new weights Wl-t from:

W — h’is) b (g) = 8?9(:)

5. Go back to step 2 and continue until the change in parameters is
negligibly small (convergence).

Note: ()¢ indicates a step of iteration in the iterative reweighted least squares.

For an instructive discussion on parameters of the Huber cost function from data, please see:
J. Fox, Robust Regression--Appendix to An R and S-PLUS Companion to Applied Regression, 2002, 1.1 Objective Functions”.




Constrained least squares

* Often we will seek parameters p that satisfy constraints.

* Reconsider line-fitting example, but this time we’ll minimize
perpendicular distances!

E(p) =i, el

* Re-parameterize:

p = [p1, 2 p3]"
e Distance of a point to line:

|l&:11* = (x;p1 + yiD2 — P3)?
* Let’s minimize:
N 2
E(p) = Zizl =
B




Back to line fitting example...

e Distance of a point to line:
2 _
|l&:l1* = (xip1 + yip2 — p3)°
* Let’s minimize:

N 2
E(p) = 2_i— ll&l]
ATAp = )\p




Constrained least squares

e The solution: dE(p) — QATAP =0 In case you are not confident with Lagrange

dp multipliers, see this excellent tutorial!

* Trivial solution: p = 0

2
* A nontrivial solution is obtained by constraint le‘ =1

* Taking the derivative of a Langrangian and setting to O:

ATAp = )\p —— Homogenous equation!

* The solution is the eigenvector of (AT A) corresponding to the smallest
eigenvalue.

e Actually, it can be shown that this is also the eigenvector corresponding to
the smallest eigenvalue of A. (see notes on “Avoid computing ATA”)



Previously at MP...

* Least squares fitting f(xp)

x' =Dx+c
p=1{D,c}="7

N 2 _______________ -‘.\‘_*‘\"**
O Source keypoint O Destination keypoint
Unconstrained least squares: Constrained least squares:
 Ordinary least squares * Requires a constraint on

* Weighed least squares the admissible solution




Recognizing the hammer for your nail!




For nonlinear cost functions

e Often nonlinear & nonquadratic error functions are used which cannot
be minimized analytically in a closed form. TR

* Popular approaches:
* Gradient descend

Linear and Nonlinear

e Newton‘s method

Optimization

e Gauss-Newton method

 Levenberg-Marquardt (very popular in, e.g., camera geometry in CV)
e Alternate direction method of multipliers (ADMM) [!lvery powerful & simple]

e More about these:

Fua and Lepetit: Computer Vision Fundamentals: Robust Non-Linear Least-Squares and their Applications

Griva et al., Linear and Nonlinear Optimization (See appendix on Matrix Algebra)

The Matrix Coockbook (List of common vector/matrix solutions)
Forsyth, Ponce, ,,Computer Vision — A modern approach”, (Appendix in 2nd ed.)




Need to deal even better with outliers

* Large disagreements in only a few points (outliers) cause failure of the
least-squares-based methods.

* The detection, localization and recognition in CV must work in
significantly noisy data.

* |In some cases >/ data is expected to be outliers.

e Standard methods for robust estimation can rarely deal with such a
large proportion of outliers.




RANSAC

The RANSAC [1] algorithm (random sample consensus).

* Very popular due to its generality and simplicity.
e Can deal with large portions of outliers.

e Published in 1981 (Fischler in Bolles)

* One of the most cited papers in Computer Vision
* Many improvements proposed since!

[1] M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image
Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp. 381-395, 1981.




RANSAC: Intuition by line fitting

* A good estimate of our model should have a strong support in data:
“recognize a good model when you see it”

Allowed error 4

% Allowed error
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10 point support this line! 4 point support this line!

e How to find a model with a strong support?
By randomly sampling potential models.



RANSAC: Intuition by line fitting

* Task: Robustly estimate the most likely line




RANSAC: Intuition by line fitting

* Task: Robustly estimate the most likely line

®
®
®
@
®
®
O ¢ ¢
[
o o Randomly choose a pair of points
(Note: the smallest number of points to fit a
® line is two)



RANSAC: Intuition by line fitting

* Task: Robustly estimate the most likely line

Fit the line to the selected points.




RANSAC: Intuition by line fitting

* Task: Robustly estimate the most likely line

Count the number of inliers!
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® The inliers are all points whose
® ® error &; is lower than some
® prescribed value t..

& = |f(xi;p) — vl
- Glidecredit: Jinxiang Chz\"



RANSAC: Intuition by line fitting

* Task: Robustly estimate the most likely line

Repeat N-iterations, or, until the support
(i.e., number of inliers) becomes strong
enough

(actually this is an oversimplification).

/”



RANSAC: line fitting

° An Other exam ple iter=0, maxiter=10000->10000 support=16|0
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A general setting

1. Define the set of “potentially” corresponding points:
{xi}i=1:N ’ {xg}i=1:N
2. Define the transformation model: f(x;p): x = x’

In this example, let f(x; p) be a simple translation + scaling.

Important: Some correspondences are correct and some are NOT!



A simple RANSAC loop

{Xi}i=1n {xé}i:m

fx;p):x - x'

scaling.

1. Randomly select the smallest group of correspondences, from which we
can estimate the parameters of our model.

2. Fitthe parametric model p to the selected correspondences (e.g., by LS).




A simple RANSAC loop

xi}i=1v  (Xii=1n
fx;p):x - x'

. Inthisexample, let f(x; p)
. beasimple translation +
scaling.

1. Randomly select the smallest group of correspondences, from which we
can estimate the parameters of our model.

2. Fit the parametric model P to the selected correspondences (e.g., by LS).

3. Project all other points and count how many of all correspondences are in
agreement with the fitted model — number of inliers.

* Remember the model parameters p,,; that maximize the number of
inliers.



The choice of parameters

n_r

e How many correspondences "'s' are required?

e Typically the smallest number that allows estimating the model parameters, i.e.,
as many as the model parameters.

 Threshold distance t for identifying the inliers

* Choose t, such, that the probability that an inlier falls below the threshold is
equal to p . For example (p,=0.95)

* Assuming a Gaussian noise on the measurements.
The noise standard dev. 0: t=20

1

e Number of sampling iterations N

e Chose N such, that the probability
p of drawing a sample with all
inliers at least once is high enough.

1

oo 01 02 03 04




The choice of parameters: N

e Setting the number of sampling iterations N:
e Assume we know the proportion e of outliers (probability of selecting an outlier at random).

e Choose N such, that the probability of drawing a sample set with
all inliers at least once in N draws is p,(e.g., p=0.99).

 Derive the probability of drawing a bad sample in N trials, 1 — p = p, 4", and expose N
* Probability of choosing a single inlier: 1 -e
* Probability of an all-inlier sample:
-> s-times sample an inlier: (1 —e)s
* Probability, of a bad sample:
— at least one of s not an inlier: [1- (1 —e)?]
* Probability of always drawing a bad sample in N trials: (1- (1 —e)$)N

l-p=(1-(1-¢)" = N= logl(cig—(%l_—pg)s)




The choice of parameters: N

Number of iterations N required to sample an inlying model with s
parameters at least once with probability p if the proportion of outliers is e:

Prob. of selecting at least one uncontaminated sample p=0.99

: : : . . . —e=05 }
- - - - : - 0.3
NS00 | e

portion of outliers:
5% 10% 20% 25% 30% 40% 50%
) 6 7 11 17
14 9 11 19 35
9 13 17 34 72
12 17 26 o7 146
16 24 37 97 293
20 33 54 163 588
26 44 78 272 1177

Tabulated values of N forp = 0.99

O~NO Ol WNW®W
AR, oOwiN
©oo~NO O W




After RANSAC: Refit by LS

 RANSAC splits the data into inliers and outliers, and calculates the
model parameters using a minimal number of correspondences.

* Improve the model parameters by applying least squares to the inliers.




Beyond the simple RANSAC

* A great deal of research was invested by many researchers into improving
RANSAC
* Finding the right solution faster & with better resiliency to outliers
» See an excellent tutorial: https://danini.github.io/ransac-2025-tutorial/

* Further reading:

 PROSAC (state of the art, better chooses the order of samples)
e MAGSAC++ (best among hand-crafted methods)

* Excellent tutorial in recent RANSAC developments and toolboxes:
RANSAC in 2020: A CVPR Tutorial, CVPR 2020 (Video presentations available!)

 Generalized differentiable RANSAC (ICCV2023): paper, code
 V-RANSAC (learns the entire estimation pipeline)

* Currently the top performer among all variants
eeeeeeTGTGTGTGTGTLGLLL.—....——.———————_—T



RANSAC: Summary

* Pros
* Verysimple and general
* Applicable to many real-life problems
e Often used in practice

e Cons
* Requires setting some parameters (modern methods make it simpler)
e Potentially many iterations required to find the optimum.
e Fails at very small number of inliers.

* |n some cases more accurate procedures, that do not require brute-force
sampling, can be found.




Fitting: Challenges

e |f we know the inliers how to estimate the parameters?
* Least squares

e What if our data includes outliers?
* Robust least squares, RANSAC

e What if we have multiple instances of our model (e.g., multiple lines)?
* Apply voting: sequential RANSAC, Hough transform

e What if we have multiple models (e.g., unknown degree of a polynomial)?
* Apply model selection (e.g., MDL, BIC, AIC)

 Complicated nonparametric models

* Generalized Hough (GHT)
* |terative Closest Point, (ICP) == iterative local least squares




Further reading

 Asimple and interesting way to iteratively fit a complicated model to data:
lterative Closest Point method

Matlab implementation: ICP

* Avery nice and accessible tutorial on nonlinear optimization in computer
vision: http://cvlabwww.epfl.ch/~fua/courses/Isqg/Intro.htm

e Excellent tutorial in recent RANSAC developments and toolboxes:
RANSAC in 2020: A CVPR Tutorial

RANSAC in 2025: An ICCV Tutorial
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* See appendix on Matrix Algebra

The Matrix Cookbook

* List of common vector/matrix solutions




Univerza v Ljubljani

ViC@s
- sualgnitive
R ystemslab

Machine Perception
Key-points and matching

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme,
Fakulteta za ra¢unalnistvo in informatiko,

Univerza v Ljubljani




Recall the panorama creation process
f(xp)

Identification of the
corresponding
“key points” required!




Corresponding key points selection

Manual selection often nontrivial

NASA Mars Rover images
(Figure by Noah Snavely)



Corresponding key points selection

Manual selection often nontrivial

NASA Mars Rover images
with SIFT feature matches
(Figure by Noah Snavely)



A case study: Automatic panorama creator
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A case study

e Standard procedure
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case study: Automatic panorama creator

e Standard procedure:

* Detect interest points (key-points) in both images

* Find pairs of corresponding points




A case study: Automatic panorama creator

e Standard procedure:
* Detect interest points (key-points) in both images

* Find pairs of corresponding points
(e.g., RANSAC/least-squares

e Use these pairs for image registration < transformation model estimation)




Efficient keypoint detector requirements

* Requirement 1:

* Detect the same structure independently in each image.

Try random sampling?

Bad idea: By random sampling in each image,
we will not likely detect the same points.

A detector with a high detection repeatability is required!




Efficient keypoint detector requirements

* Requirement 1:

* Detect the same structure independently in each image.

* Requirement 2:

e For each point find a corresponding point in the other image.

A reliable and distinctive descriptor is required!



Outline of this lecture

1. Keypoint DETECTION

2. Keypoint DESCRIPTION

3. Keypoint MATCHING




Machine Perception

SINGLE SCALE KEY-POINT DETECTION




Corners as keypoints

e Distinctive and repeatedly occurring on the same structures even if the
structure changes pose in 3D

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.” Proceedings of the
4th Alvey Vision Conference, 1988.




Require a corner response function — CRF

* An operator that gives a strong response on the corner structure

No corner: Low value
Corner: High value

Corner response function (CRF)

—




Corner response function: Intuition

* A good corner detector criteria: Self similarity
* Observe a small window R around a potential corner (locality).

* A small shift in window in any direction results in a large intensity change
(good localization)

“Flat” region: “Edge”: “Corner”:
A small shift in any No change when shifting A shift in any direction
direction does not cause along the edge, otherwise significantly changes the

an intensity change. there is a change. local intesity.




Harris corner detector

* The intensity change for a shift [u,v]: .
(weighted self-similarity function) /

Er(u,v) = z w(x,y) (I(x y) —I(x + u, x+v))
S

X,YER
Inten5|ty before Intensity
the shift afer the shift

Er (u, v) should quickly
drop for a small
dlsplacement (u,v)

Weight
function

Weight function w(x,y) =

Gaussian kernel G (o)

The o specifies the region R size!




Harris corner detector

Er(u,v) = Z w(x,y) (I(x,y)—I(x+u,x+v))2

X, YER

The function Ey is minimal at (u=0,v=0), i.e.,

Er(0,0) = 0, and increases as we move away.

* We are interested in analyzing the shape, i.e.,

how fast the difference increases.

 Approach: t Er(W
* Approximate E at (u=0,v=0) by a
guadratic function and analyze its shape.
om |~ U




Harris corner detector

* Linearize the image values I(X,y) for small shifts (u, v):

[(x+uy+v)=I(xy)+ [Ix(x,y),ly(x,y)] m

_0l(x,y) _0l(x,y)
0y

L,(x,y) = Ox ’Iy(x’y)_

* Plug into the weighted self-similarity:

Fruv) = ) winy) (1) - 1+ wx +v)°

X,YER
Er () ~ Xeeyer w3, ([ L] [Y])

~ [u,0] ( S w(z,y) Hzg:g%i [Lc(a:,y),fy(m,y)]) [u]

r,yeER v




Harris corner detector Exv) = ) wxy) (1Y) =16+ ux +))°

X,YER
* For small shifts (u, v) E can be linearly approximated by:
@ u
ER(u,v) ~ [u,v] M ||
with M 2x2 matrix of image derivatives:
o > w(z,y) (. y) >o w(x,y) (e, y) L, (x,y)
M — (z.y)ER (z,y)ER
> w(z, y) o (x,y) L, (x,y) > w(x,y) I} (x,y)
| (z,y)ER (z,y)ER |

T

A weighted sum over the region R in which we are verifying a corner
(centered at red dot in the sketch above — the red dot is thus treated
as the origin of coordinate system)

Construction of M can be made more efficient!




Construction of M (for all locations e)

G(o) * I}

@
Note, M is different for each location @

l (z,y)eR (z,y)eR
Y wEy) (e, y)ly(2,y) > w(x,y)IZ(x,y)

(z,y)ER (z,y)ER

M

\ G(o) * LI




Harris corner detection

 We have approximated the autocorrelation function o

E ’ / Image /

locally by a quadratic form

Er(u,v) = [u,v]| M E}L]

 Matrix M is the covariance matrix of region gradients:

A — Glo)xIZ2 G(o) = I, - v
G(o)* I,I, G(o)xI; Wi
* Quadratic function “peakiness” can be quantified by JR\M’ V} v U
analyzing the matrix M
L,



The Covariance matrix analysis

* Visualize the covariance matrix as an ellipse...

Direction of a slow change
(smal gradient)

=> M =

Direction of

a fast change

. . . (large gradient)
 Decompose into eigenvectors and eigenvalues:

A 0
M =R| "m RT
- fO Amin - \ eigen vectors

eigen values (ellipse SCALING) (ellipse ROTATION)




The Covariance matrix analysis

* Visualize the covariance matrix as an ellipse...

(smal gradient)

)\max
M=k [ 0 )\min

=> M =

0 ] RT Direction of a slow change

Direction of

a fast change

. . . (large gradient)
 Decompose into eigenvectors and eigenvalues:

* A corner has a strong gradient in both major directions!

* A corner is present when both eigenvalues are large.




Eigen values: Interpretation

* Corner detection by eigenvalues of M:

mE
=

ﬂ.] and ﬂz small;

FE almost constant in all
directions.

Direction of a slow change (smal gradient)

S

Direction of a fast change (large
gradient)




The Harris corner response function

* Problem: Calculating the eigenvalues at each pixel is computationally intensive!
e Solution:
* Possible to compute functions of eigenvalues: det(IM) = A\ Ag,trace(M) = A1 + Ao

 We are actually not interested necessarily in the individual eigenvalues, but a corner
response function that will be large when eigenvalues are comparable and large

r— M trace?(M) _ (AM+X2)® _ (r+1)? 1
= — = «
A2 det(M) A1A2 T

det(M) — atrace?(M) =0 (forr =1, a = 1/4)

Harris corner response function (with a set to small value):
c = |[M| — atrace(M)?



The Harris corner response function

* |In practice, a small a (0.04-0.06) is applied
c = |M| — atrace(M)? 1

- 2
C—)\lAz - 0.05(A1+A2)

1\ \.\

10 |

Az




The Harris corner response function

e In practice, fix a (0.04-0.06) and check if corner response function exceeds a threshold

det(M) — atrace?(M) > t

 We can calculate the Determinant and Trace directly:

A C ] det(M)=AB — C?

M —
C B | trace(M)=A+ B

AB — C? —a(A+ B)* >t

Glo)*«I? G(o)x .1,
G(o)* 1,1, G(0)* 15

27

M —




Harris corner detector: Summary

e Calculate the covariance matrix | 1=
0. The source image N - N

(by virtue of autocorrelation)

M — G(O‘) * 1323 G(O‘) * Ixfy 1. Image
— G(O’) * Ia:Iy G(O’) * [y2 derivatives

2.S d

det(M) o OétI‘aCGZ(M) > 1 deri?/l;?i:/ees

3. Gaussian

filtered squared
derivatives g(s))

4. Corner response function:
c(l) = det[ M] — a[trace?( M)]
=g(I)Ng(I)—[gU 1)) —algI)+g()]

5. Apply a non-maxima suppression




Harris corner detector: Summary




Harris corner detector: Summary

* The Corner response function: c(1) = g(I7)g(I;}) — [g9(I.1,)]> — alg(I7) + g(I)]?



Harris corner detector: Summary

* Set values lower than a threshold to zero: ¢(c < threshold) =0




Harris corner detector: Summary

+ Find the local maxima in c(l)




Harris corner detector: Summary

e Detected Harris corners
OGBS



Harris detector




Harris corner detector: Motivation

ntensity values extracted along the image row

In 2D image:

How about fitting the
guadratic function to the
intensity values locally?

e B 8 8 8 8

Res ponseE function: \, .
Curvature of the fitted function




The Hessian corner detector

e Curvature measure = Determinant of a Hessian

Hessian([) = [ %‘T ?’y ]
vy  Ayy

o B 8 8 8 8

Note: these are second order
derivatives!
(Recall what Hessian means
- a measure of local curvature)

Intuition: Find strong gradients in two orthogonal directions



The Hessian corner detector

e Curvature measure = Determinant of a Hessian

Hessian([) = [ %‘T %y ]
vy  Ayy

Note: these are second order
derivatives!
(Recall what Hessian means
- a measure of local curvature)

det(Hessian([)) = I, 1, — I2

ry
InMatlab: [ .1 —(1,)."2

L\, **2

In Python: I, *1 Xy

yy




The Hessian corner detector

i1y

[ :}u

Result: responses on corners and blobs.




A number of keypoint detectors exist

* Hessian & Harris [Beaudet ‘78], [Harris ‘88]

* Laplacian, DoG [Lindeberg ‘98], [Lowe 1999]
* Harris-/Hessian-Laplace [Mikolajczyk & Schmid ‘01]

* Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04]
 MSER [Matas ‘02]

FAST, and lots of others
* Avery good tutorial ECCV 2012.

* Learning-based detectors gaining traction.

* These detector have become building blocks of numerous computer vision

applications!



Previously at MP...

 Automatic image stitching
* Keypoints detection
e Keypoint description

e Keypoint matching

* Key-point detection

* Analysis of gradient distribution

* Harris, Hessian




Harris/Hessian detector: properties

e |s it rotation invariant?

™

Ellipse rotates, but its shape (e.g., eigenvalues)
remains unchanged!

The corner response function is rotation invariant!




Harris/Hessian detector: properties

e Rotation invariance

* |sitinvariant to scale change?

r" HD scale the c%

corner None of the points
classified as a potential
corners!

NOT invariant to scale change!




Machine Perception

SCALE SELECTION




Automatic scale selection

* Requirement: Select the “characteristic” scale independently for each keypoint

\\\\

\

S I S

E \\\ I’I \‘é ,l,

H ’ —

S| e O Oppt = argmax f (o)
270 - o

m - = T

7y >

Z o (i.e., region size)




Automatic scale selection

* Scale evaluated independently at each point and each image

e 0w




Automatic scale selection

* Scale evaluated independently at each point and each image

e v




Automatic scale selection

* Scale evaluated independently at each point and each image




Automatic scale selection

* Scale evaluated independently at each point and each image

e




Automatic scale selection

e Scale evaluated independently at each point and each image

e




Automatic scale selection

e Scale evaluated independently at each point and each image

Oppr = argmax f (o)
o

Topt == argmax f (o)
H o

T T




What is a useful scale signature function?

* Natural images abundantly contain blob-like features

* Blob detection —find regions that locally look like “spots”
0°G  0°G
+
oz?  0Oy?
e But, for larger scale parameter (larger o), max response of
LoG is reduced — Response is NOT SCALE INVARIANT

e Laplacian of Gaussian: V2@ =

» Differential operators must be normalized by ™, where n is the

derivative factor [1]: = second-order gives o2

e Scale-normalized Laplacian of a Gaussian (LoG*):

LOG = 02(V2G)  wirmy - (2252 L 222)

*We'll use LoG to refer to a normalized Laplacian of a Gaussian from here on



Detecting characteristic scale

 The characteristic scale is the scale at which the LoG filter yields a

maximum response.

2000

1500

1000

500

0

filter ,, diam«ter”
characteristic scale

T. Lindeberg "Feature detection with automatic scale selection." International Journal of Computer Vision 30 (2), 1998.




Detecting keypoints & scales in LoG scale space

* Key-points:

* Local maxima in scale space of
the LoG filter.

Scale-normalized laplacian pyramid




Laplacian pyramid implementation

* Key-points:

* Local maxima in scale space of Os |
the LoG filter.

3

Scal Ao
cale
ST TFEBT T 7
T TITET 7
77777

L
A
S A

Compare LoG at each point to its 8+9 X 2 neighbors (same scale + upper/lower scale.)




Laplacian pyramid implementation

* Key-points:

* Local maxima in scale space of Os |
the LoG filter.

A e
S A

s, L A S

VA A A A A

Scale ST A A A
~N T TINT 7
ST T

3

77
..‘ ’. ?@'
|y LT T
VAT =7 Y e

Compare LoG at each point to its 8+9 X 2 neighbors (same scale + upper/lower scale.)




Laplacian pyramid implementation

* Key-points:

L AT S

ST
Scale AT
VAl v T
ST

VA AL A

A =Yy

* Local maxima in scale space of
the LoG filter.

= List (x, y, o)

Let’s look at
an example...

Compare LoG at each point to its 8+9 X 2 neighbors (same scale + upper/lower scale.)




LoG detector in action

0x? * dy?

LoG = 6%(V2G) = o? <

302G OZG)

Input image




LoG detector in action

LoG = 6%(V2G) = o? <

902G N 902G
0x? = dy?

sigma = 11.9912

LoG filtered image (varying sigma)
O slide credit: Svetlana Lazebnik



LoG detector in action
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Local maxima across scales
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LoG approximation by difference of Gaussians

* The LoG can be well approximated with a difference of Gaussians at

different values of o.

P N =

o Voodoo?I _____ N W ________________ e
L = 02 (wa(xayao')_'_Gy’y(x?ya J)) | : | | | |

(normalized Laplacian of Gaussian)

— .Laplaci.an

DoG(z,y,0) = G(z,y, ko) — G(z,y,0)

(Difference of Gaussians)




Not voodoo... DoG(z,y,0) = G(z,y, ko) — G(z,y,0)

* Let’s Taylor-expand G(z,y, ko) around k, withk =1+ €:

G(z,y,(L+¢€)o) = G(z,y,0) + EJZ—f + O(€%)
G(z,y, ko) — G(z,y,0) = eag—f

* Then, since oG _ oV2G , we have:
o

G(z,y, ko) — G(z,y,0) = ec(cV?G) = V3G

* Recalling that e = k — 1, we have: DoG(z,y,0) ~ (k — 1)6*V*G(z,y, o)
DoG(x,y,0) < 6°V2G(X,y, 0)



Difference of Gaussians (DoG)

* Difference of Gaussians is an approximation of the LoG

 Advantages

* Results of Gaussian filtering already calculated during

calculation of image resizing (Gaussian Pyramid! — see next slide).




LoG pyramid approximation

L =G, —upscale(G,,,)
Gaussian pyramid DoG pyramid
G, =L, +upscale(G,,,)




DoG pyramid- Efficient calculation

 Calculated from a Gaussian pyramid (sequential octaves equivalent to filtering with Tnest = 20prev )

* Ineach octave, apply filtering s times, with k® = 2, so that opext = 20prey (€.8., 5=4 in example below)

o, = og k"

Scale
(next
octave)

4, wn
b o
.: (U
D scale S
X (first Lg
[

— octave) | _ a
-lu-, wn

Reference image

v
T
\\

l‘
v
™
M
N
I

P Difference of
Gaussian Gaussian (DOG)

David G. Lowe, 1JCV 2004




Key-point localization using DoG

* Find local maxima of DoG in the scale-space. A
L 2 L L
* Check 8+2*9=26 neighbors T T
* Remove the low contrast points Scal
Vil T A
S S S S
(threshold dependent)
* If local change in response is small compared to .= v
neighbors. J
* Remove points detected at the edges

Key-point candidates:
e Test using the Hessian matrix. List of triplets (x,y,0)

Fit a quadratic function to each key-
point and its neighbors to improve
localization of the maxima (x,y ,0).




Results: Lowe’s DoG-based detector

(a) 233x189 image
(b) 832 extremes in DoG

(c) 729 remain after

il N contrast verification
Zaii "“"‘l o
o Z;.}:::;..i;kv L &é’ (d) 536 remain after
(b) = = = verification of the Hessian
matrices.

David G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, 2004




Results: Lowe’s DoG-based detector




Summary: scale-invariant key-point detection

* Input: Image of some scene taken at unknown scale.

* Goal: Find key-points and their scales independently in each image.

e Solution:
Find local maxima of specialized functions in scale-space and image

coordinates.

* Two strategies
* (normalized) Laplacian of Gaussian (LoG)
* Difference of Gaussians (DoG) as an efficient approximation



Machine Perception

LOCAL DESCRIPTORS




Local descriptors

* Now we know how to detect the key-points

* Next question:

How to describe them?

Key-point descriptors should be:
1. Distinctive (be different for keypoints on different structures)
2. Invariant to ambiental changes



Invariance of descriptor

e Geometric transformations

_1;‘ simjlarityi 7 projective
translation
—¥
-y
Fuclidean

Aﬁ >

X

Multiple View
Geometry
In comnuter vision

e Photometric transformations

e Often modeled by
intensity scaling and translation




Normalizing region scale (already covered)

* For comparing regions, normalize: Rescale to a predefined size

Important: the region location and size (scale) is determined independently
in each image for each key-point!

scale 10 A LEEEE 4?3}3 1
[t 1., (.0




Normalizing region rotation

* Need to automatically determine the inherent orientation
of every patch independently of all others!

Rotation estimation
required!

Per-pixel comparison
will not produce a good match!




Normalizing region rotation

* Calculate gradients in the image patch and look at
gradient directions/ pixel orientations

e C(Calculate the histogram of orientations

* 36 bins by angle, each point contributes proportionally
to its gradient magnitude and distance from the center.

 Determine the dominant orientation from histogram

* Normalize: rotate the image into a rectified orientation The considered reigion:

Gradient orientation histogram




Normalizing region rotation

e Several directions may hold non-negligible strength.
* Find all orientations in histogram, whose amplitude is, e.g., 80% of the strongest bin.

* Qutput each detected oriented region as a separate keypoint.

The considered reigion:

Gradient orientation histogram

il .

o > 2T

45 80




Normalizing affine transformation: Affine adaptation

A

A,
»

¢ TCTIORN \RY OF
2 UFMPORARY

P
«‘.
N
0N
e
g8
P
Ny

We have addressed invariance to
* Translation
e Scale

* Rotation

But that’s not enough for very large changes in viewpoint

 We require an affine adaptation!



Affine adaptation

Iterative approach:
* In circular window calculate a gradient covariance matrix (similar to Harris)
* Estimate an ellipse from the covariance matrix

* Using the new window calculate the new covariance matrix and iterate.

e

4

®,

K. Mikolajczyk and C. Schmid, Scale and affine invariant interest point detectors, IJCV 60(1):63-86, 2004.
78




Example

Affine adaptation
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Detect blobs accross scales




Example

Affine adaptation

Affine-adapted regions




Affine patch normalization

Scale

* Transform the patch such that the ellipse becomes as circle.

Rotate the region such that the ellipse rotates into a horizontal position

Scale the region such that the ellipse transforms into a circle

Note: Rotation + Scaling computed from the (ellipse, X) eigen vectors and eigen values

> =USsSu’




Local descriptors / Region descriptors

* The simplest descriptor: a vector of region intensities.

* Small shifts due to noise may cause a large change in the descriptor.

e Sensitive to photometric changes. region A

region B

¥

!

< . &5
) N N
| . -\ | . I\ |

Region A Region B

ﬁ

!

vector a

vector b

o
=

Intensity & Spatial shifts




Descriptor: SIFT

* Scale Invariant Feature Transform: Note: for computational efficiency,
_ _ _ _ [Lowe2004] implements region
* Split region into 4x4 sub-regions: 16 cells rotation implicitly in the computation

of individual sub-region histograms
(i.e., for each pixel, compute the sub-
regions it might contribute to after
rotation, rotate the gradient

e Each point contributes with a weight proportional to its gradient magnitude @ appropriately and thus calculate the
sub-region histogram bin). Thus,
classical implementations give
rotation-invariant SIFT descriptor, and
do not require per-region geometric
lé 'Ié T rotation prior to SIFT construction.

SIFT
NN o

L N e

e Calculate gradients on each pixel and smooth over a few neighbors.

* In each cell calculate a histogram of gradient orientations (8 directions)

* The contribution is weighted by a Gaussian centered at the region center

* Descriptor (Stack histograms into a vector and normalize): 4x4x8 = 128 dim

Actually, there are a few important suttle details:
David G. Lowe. "Distinctive image features from scale-invariant keypoints.” [JCV 60 (2), pp. 91-110, 2004.




Summary: SIFT

* Detect keypoints and their scale/orientation/affine frames and normalize the patches
 Encode by a SIFT descriptor

* Asurprisingly robust key-point descriptor

* Allows ~60 degrees of out-of-plane rotation ; Robust to significant intensity changes

* Fast (lots of real-time implementations)




Correspondences using keypoints

* Compare keypoints by calculating the Euclidean distance (L, distance) between
descriptors.

timage right image

e Strategy 1: For each keypoint in the left image identify the most similar keypoint in
the right image.

* Result: potential (putative) matches/correspondences




Correspondences using keypoints

e Strategy 2: Keep only symmetric matches

Definition of a symmetric match:

 “Let point A be a point in the left image and point B its match in the right image. If B is most similar to A
among all points in the right image and vice versa, they form a symmetric match.”




Correspondences using keypoints

* Strategy 3: Calculate the distance between A and the second-most similar keypoint
DESCRIPTOR and the most similar keypoint DESCRIPTOR in the other image.

* Ratio R of these two distances will be low for distinctive key-points and high for

non-distinctive ones. P = dfirst

* Threshold ~0.8 on R gives good results with SIFT. dsecond

0.8

0.7 |

0.6 PDF for correct matches ——
PDF for incorrect matches -+

0.5

PDF

04

03 |

0.2

0.1

- s

0 01 02 03 04 05 06 07 08 09 1

Ratio of distances (closest/next closest)

David G. Lowe. "Distinctive image features from
scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004.




Finally stitching can be fully automated

e Detect key-points independently in each image
* Determine potential correspondences

* Reject improbable correspondences by strategy 1,2, or 3

e Perform RANSAC to find the inliers and fit the model
All correspondences + filtering by strategy 1,2,3 +RANSAC:




Trainable keypoint detection (modern approaches)

e SuperPoint —a convolutional neural network trained to “fire” on a key point

* Keypoints trained on simulated data, adapted to real data, re-trained for
joint extraction of keypoints and descriptors

Quads / Tris Cubes

MagicPoint FAST Harris Shi

Train MagicPoint
Base Detector

i

DeTone et al., SuperPoint: Self-Supervised Interest Point Detection and Description, CVPR2018




Recent work on keypoint detection

DeTone et al., SuperPoint: Self-Supervised Interest Point Detection and Description, CVPR2018




“Recent” work on correspondences matching

Results: indoor - ScanNet

local <’f>—\_/| Qfﬁ ; o .
image features SuperPoint + NN + heuristics SuperPoint + SuperGlue
pair / Graph Neural Network
. e
L - / E
® e N
[ ]
.« S N £
| — S
::5#""'
/ T
. o : L
. AL x
L1 1 sfrtr:;ng
matcnes
Detector & Descriptor SUP&I‘G'UE
Deep Front-End Deep Middle-End Matcher
SuperGlue: more correct matches and fewer mismatches
Attentional Graph Neural Network Optimal Matching Layer “ .
- Quote: “The estimated correspondences are so
femunes Attentional Aggregation matching Sinkhorn Algorithm _ p . )
o N || descrpors T\ partial good that a robust estimator is not required...
d‘g—wsual desariptor Self Cross > f}fl score matrix ow assignment
pA position > 4 M _I — normalization
i eypoin By N
pp o] | e | B
d;"g___’ L g f‘B i o T
- Y Seae 2 =1

Sarlin et al. SuperGlue: Learning Feature Matching with Graph Neural Networks, CVPR2020 (video)




MaSt3r

* Grounding Image Matching in 3D with MASt3R

e Built upon a 3D foundation model

* Considers keypoints+descriptors+3D jointy at Al SR SN

> Featu(eoas
‘matching “

 Remarkable matching capabilities!

O

(2R | :
O C v oME D T DN GF O ey

https://github.com/naver/mast3r?tab=readme-ov-file

Leroy et al., Grounding Image Matching in 3D with MASt3R, ECCV 2024
P




Numerous detectors/descriptors exist

* We have only considered the most popular descriptor (SIFT, Lowe2004)
* Note that Lowe proposed DoG for keypoint detection and SIFT for descriptor —

don’t mix these!

* Many efficient and really fast descriptors have been presented since.

e Significant research currently invested into end-to-end learning the
keypoint detection, description and matching process by neural nets.
See Image Matching Challenge (link to the CVPR2023 workshop)




Back to the panorama stitching

e Keypoints: Detection, Description, Matching

 RANSAC: Robust estimation of transformation model parameters

e But... What should “the transformation model” be?

e camera model...
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Extracting 3D information from a 2D image?

* Shading, Texture, Focus, Perspective, ...

e Humans learn how 3D

structure looks ina 2D image

* In computer vision, we require
a model of 3D-to-2D transform

to measure the 3D content




Recall the pinhole camera

e Earliest and remarkably correct written description:
~500 BC Mohist canon [founder Mo-ti]
(ancient Chinese texts)

* Asimple standard camera model
* A box with a small aperture

* Image forms on the back

* Virtual vs actual image
plane

o L ~N—
3D object -

aperture : -
P image plane

virtual image plane




Single-view geometry

e Points in a world 3D /7’/
coordinate system (c.s.) /

* Project to image plane, i.e., =at

into 2D pixels

C;‘m\era 3D c.s.

Projection decomposed into two kinds: |
1. “Extrinsic” projection N
3D World = 3D Camera \\

2. “Intrinsic” projection
3D Camera =2 2D Image

v

World 3D
coordinate system



Consider “Intrinsic” projection first

Recall the image formation process:

— Pointin 3D

In jmage

* A point written in camera 3D coordinate system (meters)
* Projected to camera image plane (meters)
* Projected to discretized image (pixels)

e Let’s derive transformations for a pinhole cameral!



Homogeneous coordinates

* Euclidean geometry uses Cartesian coordinate system

e But for a projective geometry, homogenous coordinates are much more
appropriate

 E.g., can easily encode a point in infinity (try that in Euclidean...)

Cartesian Homogeneous Multiplying by a scalar (# 0) value
form form does not change a point!
L —> | 7 wx
Y Y = | wy
1
w

* From homogeneous system to Euclidian:
Simply divide by the last coordinate to make it 1.



Camera coordinate system (meters)
“[

\ =z
]_:nr] nci pal axis

centre image plane

\

camera

* Principal axis:

A line from camera center perpendicular to image plane.

* Principal point (p): A point where the principal axis punctures the image plane.

 Normalized (camera) coordinate system: 2D system with origin at the principal point.




A pinhole camera revisited

¥
i | “Sideways” view
X _eX Y
b =
o beviz

- 7 C . _

\ g \ - z
i ipal axi f

camera principal axis

centre irnage P].H.EIE

3D point in world c.s. 2D projection to image plane fX/Z

— [X.7.2] & [fX12,fY1Z] —| fY/Z

Rewrite in homogeneous coordinates

Projection as vector-matrix multiplication:

In 3D camera c.s.

x =P X
In 2D image
plane c.s.

—

X\ |f
/Y= f

. Z ) 1




From image plane to image pixels

* Change of coordinate system to image corner
“J‘.’

* Normalized camera coordinate system:

T
Origin in principal point p = [px, py] :

* Image coordinate system:
Origin in the corner of the image sensor.




From image plane to image pixels (1/3)

* Change the c.s. origin by the principal point p:

py— """""" e
Fi Xcam
e Write the transformation: — ;
(X, Y. 2)>(fX/Z+p.,fY/Z+p,)
* Rewrite in vector-matrix multiplication:
_ (X))
(fX+Zp\ |[f O p. O
' —P X
fY+Z Py | = 0 f Py 0 7 X = 0
L YA J 10 0 1 0
e 1)

*



From image plane to image pixels (2/3)

* Projection to a sensor of size W X Hg (in meters).

* Pixels are arranged into a rectangular

M, X M,, pixels matrix.

* Letm, = M, /Wsand m, = M,,/H;.

* Construct projection to pixels:

Just multiply by another matrix:

_ - (X 3 (X))
(x) [m. 0 Offf 0 p O] (x) [a. 0 x, 0
yi=0 m_ 040 f p, O p —> yl=l0 a y, O r
) 1o o 1llo o 1 o o o 1 ol?
- pixel/m m 1 2L '\1/




From image plane to image pixels (3/3)

* In general difficult to guarantee a rectangular sensor.

Rectangular Skewed
Rectangular Skewed

} (X)) ) (X))

(x) [a, 0 x, O (x) |a. s x, O
Y g Y

yI=|0 a, ¥ 0 y|=|0 a, Y, 0
VA /

\z) L0 01 0j lz) |0 0 1 0

Projection matrix P;) N Projection matrix P_OK 1 Y




Calibration matrix

* Expand the projection matrix P,

(x) |a. s x,|[1 0 0 O] kS
yi=[0 «a »|0 1 00 ;
z) |0 0 1100 1 0
b
P, =K|[I]0]

e Calibration matrix K:
“Prescribes projection of 3D point in camera c.s. into pixles

Ill

a5 x|
K - Ox . " Q: What is the meaning of each
- 0 Oy ylo element of the calibration matrix?




Single-view geometry

* Points in a world 3D
coordinate system (c.s.)

* Project to image plane

into 2D pixels

Ce\u\i*n\era 3D c.s.
Two kinds of projection:

1. “Extrinsic” projection
3D World = 3D Camera ?

2. “Intrinsic” projection * -
World 3D

3D Camera =2 2D Image coordinate system




From world c.s. to 3D camera c.s.

 The 3D camera coordinate system (c.s.) is related to 3D world c.s. by a

rotation matrix R and translation £ = C.

=

... How to rotate the world c.s.
about its own origin to align
it with the camera c.s.
... Camera origin in world c.s.
... Point in 3D world c.s.
cam - Same point X, but
written in 3D camera c.s.

><l il O

World-to-camera c.s. transformation:

World c.s.: icam = R(X - 6)




From world c.s. to 3D camera c.s.

e Euclidean form:

~~

X..=R(X-C)

cam

* Rewrite by using homogeneous coordinates:

Xcam - - X= >
1 _ 1 | World c.s.




Putting it all together

* Camera parameters are specified by a calibration matrix K, the

projection center in world c.s. € and rotation matrix R.

* A 3D point in world coordinates (homogeneous) X, )
_|R —RC
is projected into pixels x by the following relation: Kcam = [o 1 ]X

x=K[I0]X,,, =K|R|-RC |X=PX

P=K|[R|t], t=-RC

Note the structure of the projection matrix!

Q: What needs to be known to construct the projection matrix?




Lens adds a nasty nonlinearity (and other issues)

Straight lines are no longer straight! —

Nonlinearity should be removed
to apply a pinhole model!

Image Plané

radially distorted image radial distortion removed  Lens

Square ObjeCt



Lens adds a nonlinearity to the camera model

* Lens distortion assumed radially symmetric

* Radially expand an image to un-distort
distorted undistorted

(p,0) > (p,0)
* In this transformation, only the radius of transformed point changes, but

the angle remains unchanged.




Lens adds a nasty nonlinearity

* What kind of analytic function to use for transforming p?

% _ M)
_-;__fk_ - . ¢ 4
(‘ . ' &

* Typically, a polynomial is used (low degree used in practice):

T=xq+ (xg — cp)(K1p? + Kop* +...)
J=ya+ (ya — cy)(K1p* + Kop* +...)

 Parameters estimated by adjusting them until straight lines become straight.

[in Matlab use fminsearch (Python, fmin) for optimization method]




Summary: camera parameters  Degrees of freedom (DoF)

* [ntrinsic parameters: DoF
* Principal point coordinates 2
*. 5 DX
* Focal length 1 K=| &, py
* Pixel scaling factor (rectangular pixels) 1 11
* Shear (non-rectangular sensor array) 1
* Radial distortion
* Extrinsic parameters
* Rotation R 3
* Translation t 3
e Camera projection matrix P= K[R | t]
= A pinhole camera: 9 DoF
—> Camera with rectangular pixels: 10 DoF
—> General camera (skewed sensor): 11 DoF



Looking at flat objects

* A camera looking at the some planar object

* How would it look if the camera changed position?

* A plane-to-plane projection is called a Homography



Apps: Panoramas, Augmented reality, etc.

Ouverall:3.42ms Corners: 166
Find Pts:1.25ms Matched Features: 29
Track Pts:0.32 ms Wrong Rotation: @
Features:1.16 ms Bad Linetest: 0
Outliers: .50 ms Bad Homographytest: @
Pose: 8.19 ms Correct: 29
From Cache: 8
From ActiveSearch: 20
Levels: 0000000000
Rotation: 6
Aug. Reproj. Err:1.31

» "\g - U

www.topmodelgossip.com




Homography estimation from correspondences

 Example of four corresponding points

Hy,
H
H

wx' = Hx wly'| =

(O8]
—

T T o
=
<

 The elements of H can be estimated by applying
a direct linear transform (DLT)!




Matrix form of a vector product

 Before we continue...

a. bx 0 —d_ ay bx CTa:O
c=axb= a, |x by =| a, 0 -—a, by b~ 0
C =
a, | | b, -a, a, 0 || b,
0 —-a, a, ]
[a]=| a. 0 -q axb=|[a_|b
—a, a, 0 |




Homography estimation by DLT

wx', = Hx,
x| _Hll

Wy | =] Hy
1| | Hy
X, xHx, =0

=

2

A

22

T

32

T

13

A

23

T

33

Change the vector product into vector-matrix:

X;

X

T
X h,

T
X h,

[X'ix ]

T
X h,

T
X, h,

-1

v

T
X h,

T
X. h,




Homography estimation by DLT

x' xHx, =0
Multiply in the matrix terms...
B v T T T v oo T ]
0 -1 y' ||xh —X; h, + " X; h,
' . ' T . T ' T
X, xHx, =| 1 0 —x"|xh,|=| xh-x'xh,
-y ox, 0 x; h, -y, x;h, +x', x;h,

Expose the homography terms h4, h,, h;into a single vector:

B T T v oI T ]
0 —X; VX || h
T T T
X xHx, = x 0 -x''x; ||h, |[=0
' T ' T T
__yixi X X 0 __h3_

A single point contains three coordinates, but gives only two linearly independent equations
EEEEEEEEEELECECECEGEGESESESSESESESESSSST



Homography estimation by DLT

The n points yields a
_ system of equations:

T 17 v T
00 x| y'\x |
T T . Homogeneous system!
x 0" —x'x |(h

X' &x h, |=0 Ah=0

n Correspondences...

X, X T T T
2 7% 0" -x, y,x, |[(hy)
T T T
x 0 —=x'x
SVvD
- -r T
l d, Vi Vi
T . . . . [1719; "';1799]T L
A=UDV' =U . . P h = o Minimizes the mean squared error.
i dgg || Vo, Vool

Reshape h into H.



Preconditioning

 DLT works well if the corresponding points are normalized separately in
each view!

* Transformation T,

e Subtract the average

e Scale to average distance 1.

pre

—

I
S O 8
S O

C ) ~
7 X—TpreX
1 —

* Set [a,b,c,d] such that the mean of the points X; is zero and their variance is 1.




Homography estimation

1. Apply preconditioning (i.e., multiply by the transform matrices) to
points in each image separately:

S—_T S —
x=T, x  x=T X

2. Apply DLT to estimate the homography H: X'=HxX

3. Transform back the solution to remove preconditioning: H = T;lﬁTpre




Secret knowledge

Compute a
homography L\
to this rectangle |

Flagellation of Christ (Piero della Francesca, ~1460)

Check out : Secret Knowledge by David Hockney, 2002




Marker-based Augmented Reality

x =p.o0r_model  x{* =100

P=K[1‘1,T2,T3, t]
x = K[ry,ry, 3 t]x™) = K[r,,r,, t]x™)’
x = HxW)'

Note, x")’ are only (x,y) coordinates of x™) without z=0!
w)r _

x" =1[1,0,0,1]" eg,x, =101, 1]T (the last 1 is due to homogeneus coordinates)




Vanishing points

 What happens with projection of parallel lines?
Vanishing point!

TN N
JEX\E\\\ -~ s
Z 2 S e

* Sets of 3D parallel lines intersect at a vanishing point!




Vanishing points

* Where in image do sets of 3D parallel lines projections intersect?

A 3D point: _ _
X
Camera o .
projection /Vanlshlng point (VP)! X = Y
center [ 7 7
~f X Ground plane Perspective projection:
X / X e
4N Parallelﬁ?mzs X — r | fX / A
. o — —
Y 1Y)z

* Note that this image shows a special case with lines parallel with
principal axis.

e But our derivation of VP will be general.




Vanishing point: calculation (1/2)

e Consider a point on one of parallel lines

Camera
projection
center

A 3D point A and vector D:
_Vanishing point! XA XD
, A=|Y, | D=|Y,
> Z Z
y Ground plane LA LD

Ve A point on a line:

w
S~
~
~
~
~,
~
~

e X(1)=A+AD

Perspective projection:

= | 7)== |

(Za+XZp)

C f(Xa+AXDp) ]




Vanishing point: calculation (2/2)

* Now push the point far away from the camera... -
D
D=7,
C .
p?or?:cr;on __Vanishing point! As the point is pushed towards Zp_
center f , infinity, the projection approaches
> the vanishing point v!
X T
.~ @ SR ------_--------“---""“----n-
L : infinity. ie. 0): ) o _
Projection of a point at infinity, i.e., X(00) fXA ye VamShlng point! )
. |7 Z,+AZ, X, Z,
v=Ilimx(A)=1im — V=
A—>0 A—>0 YA +ﬁ’YD ](Y /Z
! JEp " “D
2t AZ, |




Vanishing points

* VP depends on direction D, not on point A.

e A different set of parallel lines correspond to a
different VP!

* Horizon is formed by connecting

|

the vanishing points of a plane

horizon \'

"X vanishing

point

line




Vanishing points

* Horizon is a collection of all the vanishing points corresponding to a

set of parallel planes. o ,
Vanishing point!

horizon

e Sets of 3D parallel lines intersect at a vanishing point!




Example: Use IMU to estimate horizon projection

O Camera tilt estimated from IMU,
horizon projected into image

Bovcon, Pers, Mandeljc, Kristan, Stereo Obstacle Detection for Unmanned
Surface Vehicles by IMU-assisted Semantic Segmentation, RAS 2018




Example: Use IMU for obstacle detection

Input image and IMU data A Segmentation mask Frequency weighted IOU: 94.38%
M— Mean pixel accuracy: 96.42%

Mean |10U: 94.12%

. - W. Edge: 3.6px [0.3%] i i
Separation and L A— R [¢] [}

Refinement Network - Total FP: 0
Total FN: O

-0.0840 0.0700 -3.7050 Total F1: NaN%

-
o 3
> 5
o °
£ c
= i)
2 B
£ =
o 5]
o )
« &

Encoder Decoder

Bovcon, Kristan, A water-obstacle separation and refinement network for unmanned surface vehicles, IEEE TCyb 2021




Previously at MP...

Single-view geometry: Homography:

Hx“-u_____

Camera3Dc.s.

wx' = Hx  DLT for H estimation.

Vanishing points:

4 Vanishing point!

horizon \'d
.

line ~ vanishing

point

World 3D
coordinate system




Camera calibration

* Assume a fixed camera in 3D that you want to use for measuring
Ax = PX What is this distance in mm?

In principle (not really that easy...):
_ p-l _ p-l

X, =P x,X,=P X,

d=|| X, =X, |

What is required to form P?

X = K[R ‘ —Ré] X A = : World ¢

https://vizworld.com/2017/04/watsons-cognitive-
visual-inspection-in-lean-manufacturing-processes/




Camera calibration

 Camera calibration: estimate projection matrix P from a known
calibration object.

e Corner structures on calibration object for easy and accurate detection

* Coordinates (meters) in 3D known

e Coordinates (pixels) in 2D projection detected




Camera calibration: point detection

* Proper calibration requires measuring the points at sub-pixel accuracy.

* Highly depends on the calibration pattern.

Gives better results

 How many point correspondences are required?

e Arule of thumb:

* Number of constraints exceeds the number of unknowns by a factor 5.

e = For 11 parametersin P, use at least 28 points (2 egs. per point pair).




Camera calibration by DLT

e Standard approach for parameter estimation (DLT)

Ax, =PX, o IX. 7 -
X A hH, R, F, X., P,
Ay =B P, By B, XZ’2 = PzT X, X,
1 A B, By By {’3 Py o
X, xPX. =0 -

Same approach as with Homography:

OT _Xz'T Y iXiT Pl
X: 00 —xX ||B|=0
-V inT xiXiT 0" B




Camera calibration by DLT

0" Xi -»X;
X{ OT _XIX{ /Pl\
P, |=0 AP
OT Xg _ynXZ; \P3)

X, 0 —-xX

n

0

 Phas 11 DoF (12 parameters, but the scale is arbitrary).

* Asingle 2D-3D correspondence gives two linearly independent equations.
* Homogeneous system is solved by SVD of A.

* Solution requires at least 5 % correspondences.

e (Caution: coplanar points yield degenerate solutions.

*  Apply preconditioning as with Homography estimation.



Camera calibration: practical advices

* The DLT implementation is pretty simple, but it is an algebraic solution.

* Inreality we would like to minimize a re-projection error:

Measured projection of
a point X; -

Reprojection error

< | for the i-th point.—/.
X1
8- — — (Xl - PXZ) § _-_' e, .
Eyi =

— N Re- prOJected 3D point by
\I

* The re-projection error: the estimated P.

E(p)= Z, L



Camera calibration: practical advices

* Nonlinear optimization required (Hartley&Zisserman, Chapter 7.2)
* In practice, initialize by (preconditioned) DLT.

* For practical applications you will need to first remove the radial
distortion (H&Z sec. 7.4, or F&P sec. 3.3.).

* Fast and accurate approaches for P matrix estimation still an active

research topic




Camera calibration: P decomposition

Once the projection matrix P is estimated, we need to figure out the

camera external and internal parameters, i.e., P=P. P .=K[R|t].

I ext

This is @ matrix decomposition problem.

Intrinsic and extrinsic matrix have a particular form, that makes such a

decomposition possible.

Solution can be found in Forsyth&Ponce, Chapter 3.2, 3.3. for those

who are interested to learn more about camera calibration.




Standard method: Multiplane camera calibration

[N imagel |1-4] MR L inager (1-4] EARBE|| D e (-4 WEREE D inaoed (1-4) EREEBE| Qe 140 W E

* Widely-used approach

* Requires only many
images of a single plane

* Does not require knowing
positions/orientations

i Imageld H:A... Hi=

N Ei
-
.
.
™

.—._‘\“'

e Solid implementations available online!

— OpenCV“bI‘ary: http://www.intel.com/research/mrl/research/opencv/

— Matlab version by Jean-Yves Bouget: http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

— Zhengyou Zhang’s web site: http://research.microsoft.com/~zhang/Calib/




Thanks.
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Single-view geometry

* Depth of a point cannot be calculated from a single 2D image

(without a scene model or other kind of prior information, such as known object sizes)




The reason behind depth ambiguity

* All points along a ray that passes through a camera center are projected
into the same point in the image plane.

Ax, =PX,

* Impossible to calculate a 3D point from a single 2D point

(without prior on the scene structure, that is)




Taking advantage of ambiguity

* Anamorphosis (earlier than 15th century)

Author: Julian Beever




Take two images = Stereo!

* Much easier using a pair of views...




Machine perception

STEREO GEOMETRY AND SCENE RECONSTRUCTION




Depth estimation by triangulation

Left camera Right camera

* The basic principle is triangulation
* Reconstruction calculated by intersection of two rays
* Assume:

 Known camera position in 3D (calibration)

* Correspondence between points is known




Triangulation by intersection

* Intersect a pair of visual rays, corresponding to x;and x,.

* But because of numerical errors and noise, the rays will not intersect in practice!




Triangulation: Geometric approach

* Find the shortest segment connecting the two rays and take the value X
in the middle.

* Not very principled...

X




Triangulation: A linear algebraic approach

/11X1 — P1X X1 X P1X = () [X1X]P1X =0

AZXZ — PzX X9 X P2X = () [XZX]PZX =0

Recall: Vector product written in matrix form: K
| _ax]l \ /

= [ax]b X X2
P, P,




Triangulation: Linear algebraic approach

A%, = P, X x; X P;X = 0 Tx1x]P;X = 0
AZXZ — PzX X9 X P2X =0 [XZX]PZX — O

~

J

e

Two independent equations each, 3 unknowns in X.

* Write a homogeneous system.
AX =0

* Solve by SVD. Solution for X is the
eigenvector corresponding to the smallest

eigenvalue.

* Better than geometric approach, since it
easily generalizes to multiple cameras.




Triangulation: Nonlinear refinement

* Find X that minimizes a sum of reprojection errors!

d?(xq, P1X) + d*(xy, P,X)




Triangulation: Nonlinear refinement

* Find X that minimizes a sum of reprojection errors!

d?(xq, P1X) + d*(xy, P,X)

 Most accurate, but does not have a closed-form solution.

* Requires iterative algorithm (bundle adjustment)

* [nitialize by DLT.

* Optimize by Gradient descent or Gauss-Newton or Levenberg-Marquardt
(see F&P Chapter. 3.1.2 or H&Z Appendix 6).




But in general correspondences are unknown

e Correspondences across images are usually not known in advance.

 Assume we know the location of the right camera with respect to the

left camera.

* Given a point p in the left image, can we constrain

the search region of the corresponding point
in the right image?

Left camera Right camera




But in general correspondences are unknown

e Correspondences across images are usually not known in advance.

 Assume we know the location of the right camera with respect to the
left camera.

e Potential matches for p necessarily lie on the

corresponding epipolar line l'.

http://www.ai.sri.com/~luong/research/
Meta3DViewer/EpipolarGeo.html

Right camera

Left camera




Example




Derivation of the epipolar constraint

* The epipolar constraints, for a general stereo system:
“Given a point x in the left image what is the equation of the epipolar
line in the right image?”

Leftimage

I‘ -
e

e Will look at two cases:

e Calibrated cameras (known calibration matrices K, K’)
* Noncalibrated cameras (unknown calibration matrices K, K’)




Epipolar constraint: A calibrated system

Note: X’ is written in c.s. of O, while T and X are written in c.s. of O!
Write transformation of X' to X. X world point

X

T _
XT'(TxRX) =0

TXX=TXRX +TXxXT
=T x RX’



Epipolar constraint: A calibrated system

X world point

XT(T x RX) = 0

X"([TxJRX") =0

Let E = [T]R , then XTEX' =0

* Points on image plane definedas x = A, X and x’ = 1,X’, where A;and A4, are
scalars.

e Then this holds: xTEx' = 0

 Matrix E is called an essential matrix, that relates the corresponding image points
[Longuet-Higgins 1981]



Epipolar constraint: Essential matrix

A 3D pointis mapped to points x and x” which are related by
xTEx' = 0.

Distance d of point x to line h:
ax+by+c=0
h =[a,b,c]”

X = [x0, Y0, 1]T

7 ; |
P g d = hTx/\/a? + b2

https://brilliant.org/wiki/dot-product-

distance-between-point-and-a-line/
BT -
P \
o) /I/ o’

I = Ex' the epipolar line vector [, defined in I1, containing x.

.—"l‘J

l! = (xTE)T the epipolar line vector I’, defined in IT’, containing x’.




Epipolar constraint: Essential matrix

* Relates images of corresponding points (meters) in both cameras at a
given rotation and translation.

e Can be calculated from known extrinsic parameters:

X world point

Translation and rotation of
the second camera with
respect (w.r.t.) the first.




Epipolar constraint: A noncalibrated system

* Now consider image points in pixels! ¥
 x' & x ...image plane coordinates

(meters)

x x’

« X' & X... image sensor coordinates

(pixels) o
0 ~_ B "
* Epipolar constraint for a calibrated system:
xTEx' =0
* Coordinates related by camera calibration matrix K: X =Kx X' =K'x'

(pixels)  (meters) (pixels)  (meters)

e Camera calibration matrices K and K’ unknown - derive the epipolar constraint for
the points in pixels




Epipolar constraint: A noncalibrated system

X, X' inimage pixels ; x, x' in meters

N\

O OJ

Epipolar constraint: xTEx' =0 | > XTKTEK'™'2' =0 =) RTFX' =0
(meters)  (meters) %
_ p-Trp-1
X=Kx | N x =K1 F=K"EK
¥ =K'x' x| = 1("1,2' Fundamental matrix
(pixels) (meters) (meters) (pixels) (Faugeras and Luong, 1992)



Epipolar geometry: Fundamental matrix

N\

EJ

O 0’

xTEx' =0; # =Kx'; £ = Kx >  £TF2' =0 with F=KTEK'™"

« FX'is epipolar line passing through X, i.e., (I = FX')
« FT'x isepipolar line passing through x, i.e., (I' = F'x )
« Fe'=0; Fle=0




Epipolar geometry: crucial terms

* Baseline: aline connecting the camera centers.
* Epipole: point where the baseline punctures the image plane.
* Epipolar plane: plane connecting two epipoles and a 3D point.

* Epipolar line: intersection of epipolar plane and image plane.

P

* All epipolar lines of a single image intersect at the camera epipole.



Epipolar matrix vs Fundamental matrix

Epipolar matrix (calibrated case): Fundamental matrix (noncalibrated case):
E= [T«]R F= K- TEK'~1

Note: in [T« ], one column is a linear
combination of the other two.

rank([T«]) = 2 = || T«]|=0, thus

|E|=0 & rank(E)=2 |F|=0, rank(F)=2
: : ' 0 0]
c 0 0 01

E=Ulo & olvT F=U|0 o, OV’
0 0 o 0 0 O

DoF:9-1-1-2=5 DoF:9-1-1=7



Special case: Geometry of a simple stereo

* Now consider a calibrated stereo system with parallel optical axes.

* This will simplify the search problem
significantly...
E=T.R

xTEx' =0

U= (x"E)T

Given [x,y] in the left
image, where will the
corresponding [x',y'] be in
the right image?




Special case: Geometry of a simple stereo

E=T,R

|

xTEx' =0

' =7

0 —a, ay ||by
axb=| a, 0 —ay||by

—a, ay 0
= [ax]b




Geometry of a simple stereo

* Parallel optical axes with aligned image lines - );
* A 3D point written in the coordinate s Z

system of the left camera: Lp,

* Baseline b,: displacement of the right
camera along x; .

* Focal length f: distance of image
planes (in both cameras) from

their projection centers.

Depth estimation simplifies...




Geometry of a simple stereo

* The corresponding points lie on the same line p X
=\|Y
of pixels (epipolar line). e Lz




Geometry of a simple stereo

. . . . r’.@"""-.,_
* The corresponding points lie on the same line oo by p X
of pixels (epipolar line) s lz
* Align the right projection onto the left Z

image (displace coordinates
of the right projection by “—b,.”).

* Depth from disparity:

* 3D from disparity

b b b
szLgx , Y=yL7x ’ Z=f—x




Stereo image rectification

* |tis convenient if the lines for searching the
matches correspond to the epipolar lines — as
simple as in parallel cameras system

* Reproject image planes into a common
plane, parallel to the baseline.

« Two homographies (3x3) — matrix transformation A,
for reprojection of left and right image planes.

C. Loop & Z. Zhang, Computing Rectifying Homographies for Stereo Vision. CVPR’99




Stereo image rectification




Previously at MP...

* A system of two or more cameras: trlangulatlon & eplpolar geometry

* A system of perfectly aligned cameras:

x bx
X—deY YLy L= f

Disparity d: the difference in x

position of a point in the left and he
right camera




Disparity and depth

 We'll assume a perfectly rectified stereo system:d = x;-xg ;d =0

1
* Disparity at point is inversely proportional to its depth: Z = rk fb,

e Relates coordinates of points in left and right image

Left camera image Disparity at each point in left image Right camera image




Disparity estimation

 We'll assume a perfectly rectified stereo system:d = x;-xg ;d =0
1
* Disparity at point is inversely proportional to its depth: Z = rk fb,

* How do we compute the disparity for all points in the left image?

Left camera image Disparity at each point in left image Right camera image




Disparity estimation

-

/P
IIIIIIIIIIIIIIIIIIIIIIII!I
BECARNNNNRNRRRRRRRRRNERES ©

* For a patch centered at a pixel in the left ighage.- | | ﬁ' |"' |\' " | || . |
. . . % o ”ﬁ qr i || ﬁ"'l | ||"'r|| “I'n |'|" ' “l| \/ "
 Compare to all patches in the right imagg wﬁ;ﬂ M lilu Il |L. |' H {l '|“ l i '..f’ww’
along the epipolar line (same line) 0

X coordinates

NCC( ) = 0.01




Disparity estimation

* For a patch centered at a pixel in the left image.- | H | Y |
z ‘ n |_. | | n ||I III
H . . g o IIIII|,|“ r"'ll'I || ||| || |||‘|II|P| d || i|| ' f\ ||'||| ||
 Compare to all patches in the right image N VAV .l \ww l ‘”" V! 'U lal JHM\M
along the epipolar line (same line) 0 X coordinates 640

e Select the patch with greatest similarity.

 Difference in position of left patch and right patch is the disparity. d = x; — X,
o Images credit: Trym Vegard Haavardsholm



Disparity estimation

* |n practice the disparity values are restricted -

Similarity

to a reasonable range of viable disparities.

085 |

Tﬂul" "Illllu'ﬁlil |

qur'"llﬂluwl '.l ‘| | i

||~

il |
||| ||P |||

1| ||||
| \| |

\f IIII| |||| II |||'

U

M||

‘ ||I I||
| '||
IJ | I|II

A V\JJ

 E.g.:disparity for an object very far away from the target is O.

Amayx 1S Specified by the minimum distance of an object from the camera

(see geometrical model of a simple stereo system)




Disparity: influence of the window size

Leftimage _ ___smal W Large W

 Small window size W/ e Large window size W/
* Details potentially better estimated * Details potentially lost
* Noisy disparity * (over)Smooth disparity

e Fast(er) computation e Slow(er) computation




Disparity quality
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Global disparity optimization

4 * Consider a single line (N pixels)

Zaa® o 4+ Similarity scores* for different
disparities for each pixel.

™+ Global cost of selecting
- disparitiesd = (d{:dy) :

E(d;) = Egqeq(d;)

v

Edata (di) —e —similarity(d;)

E(d) = ) Egatald)

“Similarity 0 means “no match”, 1 means “perfect match”




Global disparity optimization

E(d ‘)/— Edata (d )

Edata (di) —e —similarity(d;)

* Disparity calculated independently at each pixel.
* Additional constraints can be imposed on the set of
viable disparity estimates.




Disparity constraints Constraints:

e Order: Points on a single
surface appear in the same

order in both views.

* Slow local depth change:
smooth surfaces should result

in smooth disparity.




Global disparity optimization

4 * Consider a single line (N pixels)

| * Similarity scores for different
disparities for each pixel.

___[ * Global cost of selecting
A disparities d = (dy: dy) :

“Energy” output w.r.t. location i E(d) = large E(dl) - Edata (dl) T AES(dl)

E(d) = small /

Edata (di) —e —similarity(d;)

How to find d with
globally minimal Smoothness term that assigns

H e — N E(d)? a high cost if disparities change
. significantly between consecutive pixels




Global disparity optimization

* Optimal sequence of dlsparltles

I I doPt = (d:dy) obtained by

y T'{ i

, dynamic programming (e.g., Viterbi
47/, H 1!,,' i [ '-;-1, AR algorithm).

* Apply independently to each line.

Cox, Hingorani, Rao, Maggs, “A Maximum Likelihood Stereo Algorithm,” CVIU, 1996.




Semi global block matching (SGBM)

* Apply line-based optimization across several directions in the image ...




Semi global block matching (SGBM)

e ...aggregate disparity energies from all direction-optimal assignments
and take the disparity at each pixel that received a minimum energy.

Left-to-right line optimization

H 2 ' i

After aggregating 8-directin eergis ]

Heiko Hirschmuller, “Stereo processing by semiglobal matching and mutual information”. TPAMI, 2008



Application: View interpolation

Right image



Application: View interpolation

Left image



Application: View interpolation

Disparity




Application: View interpolation




Application: view interpolation

* Inpainting required: fill-in the previously occluded scene regions for
better realism

Kopf et al., One Shot 3D Photography, Arxiv 2008




Video view interpolation

1(e)

L. Zitnick et al, High-quality video view interpolation http://research.microsoft.com/IVM/VVV/
using a layered representation, SIGGRAPH 2004




Avoiding stereo: Mono-depth — a basic approch

* Train a CNN to predict depth based on a single image

* Unsupervised training: use stereo disparity prediction consistency
L disparit Predicted Right _

CNN

R disparit _ _pdirtpd Lpff. _ Rpal | eft _

o -

Godard et al., Unsupervised Monocular Depth Estimation with Left-Right Consistency, CVPR2017




Monodepth 2

.-

S
L]

Godard et al., Digging Into Self-Supervised Monocular Depth Estimation, ICCV2019 [GIT]




Reconstruction by a moving camera

* If a camera is moving freely, the “stereo system” cannot be pre-
calibrated (except from matrix K, that is)

* Actually, we are dealing with multiple “cameras”

https://www.youtube.com/watch?v=5QLutxstkw4

57



Machine perception

RECONSTRUCTION FROM MULTIPLE IMAGES
A BRIEF OVERVIEW




Problem formulation

* Given several images of the same scene, reconstruct all camera

parameters (poses Rj, t; & calibration matrices Kj;) and the 3D points X;

* it

Cameral
K, Ryt ‘)

Camera 2

K, R, t,




A simple structure from motion (SFM) pipeline

* Assume a moving camera with known calibration matrix K
* Assume a two-view problem (easily extends to multiple views)

 We will consider a pipeline that’s easier to explain (but not used in practice)

K A]_X]_j — P1X]
/12ij — PzX] -
keypoints\ 1 l S
fundamental _ essential : . N
match=» , ->  =»[R|t] =» triangulation —» - NS
/ matrix matrix ;
keypoints

O

E = K'"FK" E= [t«|R P= K|R|t]




A simple structure from motion (SFM) pipeline

. . i X;
* Finally, using P, = K[R,|t;], optimize the ]"“O
camera parameteres & 3D point positions by . o
U ‘\‘ .
minimizing the re-projection errors: e; = (x;; — PiX;)?
2
-
_ . \
p K i 9
' keypoints\ ’ 1 | Kczr;zztj
fundamental  essential Bundle adjustment
match=» matrix ™ matrix =»[R]|t] =» triangulation —» - L @E} (R}, t;, X}
keypoints/
Bundle adjustment = Minimize re-projection error {Ri, 4, X;} = argmlnz Z(X” [R;|t;] j)z

x;j should be close to P;X;:




Fundamental matrix estimation

« Assume known correspondences {x;};—1.n, {X'; }iz1.n xT'Fx' =0
 Estimate F that minimizes reprojection errors €(F)

li = FX’i

F —l ! d?(x;, Fx'; d?(x;’ FTx;
eF)=5) 1( (x;, Fx'y) +d*(x;, F'x;))
i=

* Nonlinear optimization (Levenberg-Marquardt), requires good initial estimate.

* Usually initialized by 8-point algorithm (described next).
T



Fundamental matrix estimation: The Eight-point algorithm

Coordinates of a pair of corresponding points: x=(u, v, 1)’;, x’=w’,v’, 1)’

Epipolar constraint: x’ Fx' = 0 r?ﬂ
12

Fi1 Fis F13 u'

l[: Fn
(u? .U? ]') FE] FEE F23 .U! — D (uuf? HUF? u, U'U.!? UUI? v, H!? Uf: ]') F22 = D
Fy1 Fy Fi)\ 1

Fy
! ! ! ! ! ! F32
F33 + Fizu + F3qu’ + Fo3v + F3,v" + Fjquu + Fiouv’' + Foqu'v+ Foovv' =0 | Fas )
(one equation per correspondence — require 8) L
Minimize:
- [ Fiu ] [O0] N
/ / / / !/ / 11
uiw;  uv; up vuy; o vvy v oup vy 1 T 1 12
UsUh UgVH  Ug  vouh wvovh v uh wvh 1 ?12 8 Homogeneous z(xl Fx';)
13 .
usuhy  usvh uz  vauh vsvi vy uh vy 1 By 0 System | i=1
gty ugUy U vauy vgvy vgoug vy L g ) with constraint
usug  UsVE  us vsup  UsUL U5 up  vE 1 2 0 Af =0 5
/ / / / / / 23 F|| = 1
Ugllg Uslg Us Uglg Vel Vg Ug Vg 1 Py 0 | |
uruL  urv,  wy  vrur  vrvhk vy wn vh 1 I3 0
usts! ! ! ! I I 1 32 F last ei t A
| ugUg uUgVg uUg UsUg UglUg Vs Ug Ug | Fus 0 « last eigenvector(A)




Normalized 8-point algorithm

1. Precondition: Center image points, and scale such that the standard deviation
becomes V2 pixels.
c X=Tx, ¥ =T'x'

2. Apply 8-point algorithm to calculate F from the preconditioned points.

3. Enforce rank=2

(decompose F, by SVD set the smallest singular value to zero and reconstruct F):

SVD
F =upv”
di1 Vi1 v Vi3] _ dq1
=U d,, [ P ] Set d;;=0 and reconstruct F:  F=1U d,» vr
V31 = Vsg 0

4. Transform the fundamental matrix back to original units:
Let T and T’ be the transformations used to precondition the points in each image

separately. Then the fundamental matrix equals to F = T'TFT.
EEEEEECECECEGESESEESESESSSSSSSSTTS



Fundamental matrix estimation

* In general, the correspondences are unknown

e Jointly find the fundamental matrix F AND the correspondences!
(pairs across two views (x’,y’) €< (x,y)).

 Approach
1. Find keypoints in each image
2. Calculate possible matches (potential matches)

3. Robustly estimate the epipolar geometry by RANSAC



RANSAC to robustly estimate F

 Randomly select a set of 8 correspondences

e Calculate F usi dences

g these correspc

* This gives the epipolar constraint!
e Estimate hc upport F:
* Apply the'estimated fundamental matrix to all points in
in image I.
* Numb ' lie close to their
epipolar li orresponding points
from I;.

* Choose F with maximal support (#inliers)
O Slide credit: Kristen Grauman



Fundamental matrix estimation summary

e Robust estimation of F

Potential matqhes | RANSAC Ep|polar geom.

* Improve by a nonlinear optimization of the cost function w.r.t. F using
inliers only:
1 N
«(F) =5, (@0 FX) +d*(x/ Fx))



A simple structure from motion (SFM) pipeline

K

keypoints\ 1 i
] . . £ Bundle adjustment
match=» fun:1aatrix essenl?|al =»[R|t] = triangulation —» L @/@% —_— J

(R}, t,X))
keypoints/ ) ] AR
estimate E directly

e But, if K is actually, known, we can estimate E directly in RANSAC, avoiding
computation of F.
* Transform pixels to image-plane points: x, = K‘lx,x’p= K 1x'

e Calculate E from 5 correspondences using the 5-point algorithm [Nister, TPANMI 2004].

(solves a 10-degree polinomial)



Uncalibrated structure from motion (SFM)

keypoints\

: Projective
match-» Estimate F — J

/ cameras Py, P,
keypoints
. . L . \

Without constraints on projection matrices or the prOJecnve
scene, the estimation is accurate up to a projective
invertible matrix 4 X 4 matrix Q: /

x;; = (P;Q N (QX))




Uncalibrated structure from motion (SFM)

keypoints\ ‘L”b N J>

. Projective . ] s 1.

match-» Estimate F — ) — Triangulate —.- @ﬂ

/ cameras Py, P, o .

keypoints .
Bundle adjustment

on {P;HXj}

Upgrade projection l
Bundle adjustment matrices Self-calibrate:

{Ri, i, X} T P; = K|R;|t;] T Estimate K



Try multi-view reconstruction at home

 Bundler: structure from Motion (SfM) for Unordered Image Collections

ﬂﬁ

PhotoTurism video on YouTube

& l"

@'& L.. )

Software written by Noah Snavely
Download Bundler from the bundler sfm repository on GitHub

>

a'vun QOO & 100% (D

L4
v,
> %
' ve Wy
> AN
e o/l
v : ’4 s 2
?}e
-
- _
252 »
»
2

| What is Bundler? | Downloading Bundler | Documentation | References | Links |

What is Bundler?

Bundler is a structure-from-motion (SfM) system for unordered image collections (for instance, images from the Internet)
written in C and C++. An earlier version of this SfM system was used in the Photo Tourism project. For structure-
from-motion datasets, please see the BigSFM page.

Bundler takes a set of images, image features, and image matches as input, and produces a 3D reconstruction of camera and
(sparse) scene geometry as output. The system reconstructs the scene incrementally, a few images at a time, using a
modified version of the Sparse Bundle Adjustment package of Lourakis and Argyros as the underlying optimization engine.
Bundler has been successfully run on many Internet photo collections, as well as more structured collections.

The Bundler source distribution also contains potentially userful implementations of several computer vision algorithms,
including:

e F-matrix estimation
e Calibrated 5-point relative pose

¢ Triangulation of multiple rays httpS ://WWWVO utu be .CO m/WatCh ?V=5 rYyB4p KP RO



Recent deep network DUSt3R: A 3D foundation model

 Two images processed, for each predict the point cloud in the left
camera coordinate system

Pointmap
1.1 WxHX3 P —
ViT Transformer Head, Xt eRr Common coordinate frame /i, > A~ SIS
3 encoder Fl Decoder; Confidence of camera 1 (image I,) ‘I-‘.“'-.E -1
Cl e RWXH R T Y

Cameral
Image Il c RWxHX3 Sha:red Information |:E|t Drigin S 2 j -
. w.-_s,-'ghts sharing Ny L -'-.II, . -:::':_- .....
3 2 F;Dintnl::?foz ‘ o ! "I 2
> M viT — Transformer Head X ER Car::era?_ - R
Patchify H encoder 2 Decoder, 2 Confidence (unknown position)
' C2 € RWXH
||
Image I, € RW*HX3

 To get correspondences, just match the points in 3D —i.e., for each
point in the left camera 3D point cloud, find the closest point in the

right camera 3D point cloud.




Recent deep network DUSt3R: A 3D foundation model

* Pretrained on huge datasets, allows many downstream 3D
reconstruction tasks

Camera calibration

~ Monocular
. Depth estimation <:
Multi-View

— DUSt3R — Pixel correspondences
Pairwise (relative)
| Camera pose estimation §
/ Multi-View
_ _ Dense 3D reconstruction
Unconstrained Corresponding Visual Localization
image collections pointmaps
(no pose, no intrinsics) (dense 2D 3D mappings)

https://github.com/naver/dust3r




Recent deep network DUSt3R: A 3D foundation model

Method

... predict pairwise point maps

Awesome demo: https://europe.naverlabs.com/research/publications/dust3r-geometric-3d-vision-made-easy/




Machine perception

ACTIVE STEREO




Structured light stereo

* |dea: project ,structured” light patterns over the object

camera

e Correspondence problem simplifies

 Canuse only a single camera I'
projector

Epipolar geometry still holds!

\




Laser scanning

Object

Direction of travel

Laser sheet

%\ CCD image plane
& Y Cylindrical lens

Laser CCD

e Optical triangulation

* Project a laser light plane

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/

* Move over an object (the motion has to be accurately measured!)

* Very precise way to scan using structured light.




Obtained models

Michelangelo’s David (Florence)

The Digital Michelangelo Project, Levoy et al.



Obtained models

The Digital Michelangelo Project, Levoy et al.




Multi-band triangulation

* Project multiple bands to speedup scanning
* But, which pixels belong to which band?

e Answer #1: Assume smooth surface

e.g. Eyetronics’ ShapeCam




Multi-band triangulation

* Project multiple bands to speedup scanning
* But, which pixels belong to which band?

* Answer #2: Project color bands (or points)

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and
Multi-pass Dynamic Programming. 3DPVT 2002




Quality control

* Automatic car inspection
* Industrial project (2016)

e Designed sensory system
and software




Accuracy and Resolution of Kinect Depth Data for Indoor

In gaming industry (2010) Mapsns ool

Kourosh Khoshelham and Sander Oude Elberink

* Project a point pattern for ultra fast triangulation!

RGB IR o

Projector



In phones (2017)

* Project a point pattern for ultra fast triangulation!

https://www.youtube.com/watch?v=0vVKnC6gGtg




References

David A. Forsyth, Jean Ponce, Computer Vision: A Modern Approach
(2nd Edition),
* Stereo: Chapter 7

e Structure from motion: Section 8.1

R. Hartley, A. Zisserman, Multiple View Geometry in Computer Vision,
2nd Edition, Cambridge University Press, 2004

e Camera model and calibration (Chapters 6 in 7)

* Epipolar geometry (Chapter 9)
* Calculating F (Chapters 11.1-11.6)

e Trym Vegard Haavardsholm: Stereo processing, Lecture 6

* Patent Primesense (Kinect): http://patentscope.wipo.int/search/en/W02007043036
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Recognition, Detection, Segmentation and beyond

-

Goal: Assign a semantic label to every pixel in the image (objects and stuff)

Semantic Segmentation

Goal: Localize (Bounding Box) and classify all objects in the image Goal: Assign a semantic and an instance label to every pixel of an object

Object Detection Instance Segmentation




Recognition / Image classification

* Assume we have tagged an object with a bounding box

2 e

Whose face is it?

AR ¥

ThenWoodab tribe guy? .
D



Recognition by classification

S
‘W 4
. &

\-f(lz)I

Lf (Io)I Lf ()

e

-»f(13)|

d(f (o), f (1))

e Select the one with minimal distance?

* Select the one(s) whose distance is sufficiently small?



Recognition by classification

e Alternative application: Is this and apple or pear?

\ f)

Hue (h)

Compactness (c)

* Quality of recognition profoundly depends on the quality of image
representation — features.




How to determine the features?

1. Natural (linear) coordinate systems:
For some applications, it is enough just to linearly transform the input

data.

2. Feature selection:
Machine learning to select optimal features from a pool of several

handcrafted transforms.

3. Handcrafted nonlinear transforms:
Nonlinear transforms improve feature robustness.

4. End-to-end learning of feature transform:
Have machine learn entire feature extraction and selection pipeline.



Machine Perception

LEARNING LINEAR COORDINATE SYSTEMS
BY SUBSPACE METHODS




Motivation

* Imagine image as a high-dimensional gray-level vector

(e.g., stack columns one on top of the other) 2 100x100 image = 10kx1 dim vector

Some images

Image from the set o)
> ©
O O
O
o©° o
A °_o
S O
. . . — 10kx1

 What is the number of values required to encode the image? ... 10k?




Motivation

 Each image in the dataset has been generated by this equation:

Y1

|:> iO_ [:0.6] E> "y,

DoF=2!!

(06)

:{‘

]

Y1

Xi =P-yi+mnu
A linear subspace! : Vi




is PCA (linear subspace)

Principal component analys

Find a low-dimensional linear subspace with orthonormal basis, such that projection of

the data onto the subspace minimally distorts the data.




Principal component analysis PCA (linear subspace)

* Find a low-dimensional linear subspace with orthonormal basis, such that projection of
the data onto the subspace minimally distorts the data.

Reconstruction error minimization
(over training set)!

— €1, U) = |Ix; - X:l1* +
X ’fi
i y

U'(x; — ) Uy; +
— = = -




A 1D subspace derivation

. . 1
* Assume N centered data points: x4, ..., Xy ; X; € RM jie., U= EZ%\lei =(

* Find a unit vector u € R™ such that projection to this vector minimizes the

fw =%, %=l

average reconstruction error

: t O,
A=W X € = 1% — xll°
%i = U - Jj
dj
Q.. ,
S AN
/1o

Uope = argmin E(u)
u

Uopt

4Y, sl

_1 T, T T
— Nzi—l-N[_xi uulx; + xxi]

1 T

= argmax z x; uu' x;
i=1:N

u =1




A 1D subspace derivation

Uopt = argmax &'(u)

u - © / 2 — a1 y
) - L o‘(u) =u 2u
E'(u) = NZ x; uu'x; el I/ N
1=1:N ol ,\1@' / \ '®)
s /u |
/ I
1 T / ] ;
— Nz uTxlxl u H ; II
1=1:N ‘P / /
|‘ II O ,,/
\ / L7
B uT [%z xlx'lr] u \\~~~ III _ a”, Z
i=1:N /A ]

Data covariance matrix X

Uopt = argmaxu’' Zu
u

e Find the unit vector that maximizes the projected data variance u'Xu !




PCA — projected variance maximization

* Task: Find u, that maximizes the following cost function (projected data variance)

') =u'Zu

Ugpy = argmaxu’' Zu
« Under constraint: ||[u||* = 1

u
- Ugpe = argmin €(u)
u

 Write a Lagrangian for constrained optimization:
L(u) =uTZu— A(uTu - 1)
0L (u)
ou

Ju=\u

0

* We have obtained a standard equation whose solutions for u are the eigenvectors of X.




PCA — projected variance maximization

* Equation Zu = Au is solved by eigenvectors & eigenvalues (u;, Aj);=1.x of Z.
* But which one maximizes the cost function £'(u) = u'Zu ?
* Plugging Zu; = Aju;into the cost gives: 8’(uj) = AjujTuj = A

* Since there are finite number of eigenvalues, the largest eigenvalue

maximizes the cost! 2 (U405, Amax)

* Since eigenvectors are orthogonal, following similar arguments, we can
show that the subspace is spanned by the eigenvectors, ordered by their

eigenvalues (from largest to smallest)




PCA — geometric interpretation

e C(Calculate eigenvectors and eigenvalues of covariance matrix X

* Eigenvectors: main directions of variance, perpendicular to each other.
U= [ul'uZ]

* Eigenvalues: variance of data in direction of eigenvectors

1. Translatetooriginbyt=pu

p2 AoU9 2. RotatebyR =U
)\1111

 PCA s actually: change of coordinate system that captures major directions of
variance in the data.



Projection and reconstruction

* We know the covariance matrix ¥ and the mean value u

* Concatenate first K eigen vectors into a rotation matrix U:

o~

U:[ul,...,uK]

p2

(0,0)

e Projection to subspace: Reconstruction error:
11T R . <. |12
y: = U" (x; — p) GZ—HXZ_X'L”
e Reconstruction:

x; = Uy; + p




Example: Object representation

g IeNIEERRaTRINEER

Q: How many of a; should you retain?




How many eigenvectors for reconstruction?

« Can show that the sum of squared differences €(m) between training images {x;};=1.x
and their reconstructions using only first m eigen vectors is given by:

Reconstruction Eigenvalues Cumulative sum of eigenvalues
Original with m eigenvectors . (largest to smallest) (explained variance)

™y 15 v T v v v v v v 100 r -J””;"____;_—-.f
| 3_,.../ - 90% of variance

e(m) = I

.

=
20 40 60 80 100 120 140 160 180
index

m eigen vectors




Build you own subspace!

e Reshape all training images into column vectors: [Xl, X2y e ,XN]

e Calculate the average image: 1= + ]ZV: X;

e Centerdata: Xg=[x1 — i, X2 — i, . .z.:,lxN — 1]

* Calculate the covariance matrix: C= é(xi — ) (xi — )T = X X7

e C(Calculate eigenvector matrix U and eigezn_value matrix S (using, e.g., svd): C = USV 7’
e Construct a matrix using only first K eigen vectors: U = [111, el U—K]

* For each test image x:

y =U"(x - p)

* Project to subspace:

* Reconstruct: -
x = Uy + u o
Note: for positive semidefinite matrix C,
eigenvalues == singular values




Important!

* Do not implement PCA as shown in the previous slide!
N

C =4 % (=i — )7 = XX}

1. Consider the size of the covariance matrix C
* The size is MxM, where M is the number of pixels in the image!
* But, we have only N training examples, typically N<<M.

— So C will have at most rank N!

2. In any case, we need only first k£ eigen vectors!




The inner-product matrix

 Foralarge M, the SVD of C becomes inefficient.
T
C=+X,X,
e For N <<M, the N X N inner product matrix C’ will be smaller:
) 1 T
* Eigenvectors and eigenvalues of matrix C are calculated from the
eigenvectors u; and eigenvalues A; of C’:

L /
Ai = )\i , This is called
Xdqu, 1=1... N “the dual PCA”

u; = /NN




A general PCA algorithm

Input: data matrix X

Output: mean value p, eigenvectors U, eigenvalues )\ .
1 N

1. Estimate the mean vector: pu = N 2wi=1 Xi

2. Center the input data around the mean: Xz — Xz — 1

3. ifM<N then

4. Estimate the covariance matrix : C = %X)’{T

5. Perform SVD on C . Obtain eigenvectors UU and eigenvalues \ .
6. else

7. Estimate the inner product matrix: C’ = %XTX

8. Perform SVD on C'. Obtain eigenvectors U’ and eigenvalues .
0. Determine the eigenvectors U : u; = X—ui, , 1=1...N
10. Determine the eigenvalues A = X’ VA

11. endif



Classification by subspace reconstruction

e |f the window contains a category for which the subspace was constructed, the
reconstruction will work well, otherwise not!

e Areal-life example

project to
subspace and back

Decent similarity
/\econstructed

project to
subspace and back

N ot
: .‘ ; \
: . 3 S
| ' l\ ; -
Not similar




Classification by subspace reconstruction

e Can exploit this property for category detection/recognition
e Assume we have used a large collection of faces to construct the subspace.

e Fact: Only faces will be well reconstructed by the subspace!

Large reconstruction Sma” FECOnStrUCtiOH
‘
EI’YF

[face]/ [face]/
[n Otfa\ce]? [not face]?




Detection by distance from subspace

e Use a subspace learned on faces to detect a face.

e Approach: slide a window over each image position and calculate the

reconstruction error.

e Repeat for all scales. Makes sense to normalize the window intensity |w|=1.

e Low reconstruction error
indicates a face.
(i.e., apply a threshold)

~ 2
Hxi —xiH <@




Home study: Textbooks on PCA

* Szeliski, R., Computer vision — algorithms and applications, 2011,

Section14.2.1 (available online)

* Forsyth, Ponce, Computer vision —a modern approach, second edition,
2012, Section 16.1.5

* Prince, S.J.D. Computer vision — modelling learning and inference, 2012,
Section 13.4 (to 13.4.3) (available online)




PCA is a linear autoencoder

-
- -
-~---- ____—’
- -
----- —————
-~ -
-~ -

- -~
---
-

" L(u, ) = ||I; —iiHZ :

u, U = argmin L(p*, U*)
u*, o




Encoder-Decoder does not have to be linear

---___ENncoder Decoder.__..--- ; i
e T | :

: _____ : I____ : GJ

= i i i S

1

i T Tl
1

[ i Pt L | ] O 1

1 neuralnetwork ___-====""" || = TTT==—a___ neural network |

: ____________ o T : ~

— Yi 4 X

" L(04,0;) = ||I; - iiHZ :
©®,,0, = argmin L(07, 03)
07,05

* Modern Autoencoders apply (convolutional/transformer) neural
networks to map into a nonlinear subspace (latent space)



Autoencoders don’t have to just reconstruct

Faultless products Reconstructions

Zavrtanik, Kristan, Skocaj, DREM — A discriminatively trained reconstruction embedding for surface anomaly detection, ICCV 2021




Autoencoders don’t have to just reconstruct

Color image Grayscale image Colorized image

| ———

Zhang et al., Colorful Image Colorization, ECCV 2016 [GIT]




Parametric subspace (PCA)

* Evenin PCA, the same object viewed under different conditions
(illumination, orientation) projects into different parts of the subspace:

* One could thus in principle generate different appearances by accessing specific

part of the su bspace ~ Subspace point (a vector)

Uy +

Generated image (a vector) - X =




Generative promptable image models

* Modern generators like StableDiffusion! proceed by first generating an
appropriate latent representation, then decode into image.

Decoder....-- 1 I.!
__________ 1 |
“ - — i )
A woman with smeared mascara, i ! o
. . . 1 ©
holding a syringe, portrait, closeup, =—|| —*> " c —
” i 0 : v
yellow background. i 2 i v
__________ neural network |
~~~~~~ 1 ~
L T ——— 1 .

* But, how to come up with the appropriate decoder? And how to find
the right latent representation?

Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models, CVPR 2022



Generative promptable image models

1. Train a (variational) autoencoder on a huge dataset = (2

—

“A cute puppy i
- — ——

sitting on grass” T. !

1

ext encoder __--—"‘"-‘

__?—-"i""'"“- [ Should be the
T - same feature
2. Train a text encoder, aligned with image features =~

from large corpus of image/text pairs.

3. Train a diffusion model that uses text prompt to
generate the latent representation of an input.

— Generator Decoder __.a
____________ (of latent image vect.) ____———""—

-
1
1
] TN

“A cute _ i —>|I b

puppy sitting i ! :' i

on grass” [ H o

Text encoder__-===""" ‘femmmcc—m——- J

-
-
—————
-
-

e~
~
~
~
~
~
o
~

-




Examples of image generation

https://flux1.ai/

Prompt: “A close-up shot of a passionate female chef in her 40s
with curly black hair tucked under a white chef's hat, wearing a
crisp white double-breasted jacket. She's intently focused on
plating a colorful dish in a sleek, modern kitchen. Her skilled
hands delicately position a vibrant red bell pepper slice on the
plate. Stainless steel appliances and hanging copper pots gleam
in the background. Steam rises from the freshly cooked food,
creating a misty effect around her. Her expression shows a mix
of concentration and pride. The scene captures the artistry and
precision of haute cuisine, styled like a high-end culinary
magazine spread with dramatic lighting emphasizing the
textures and colors of the food.”

OpenAl (DALL-E) via ChatGPT

Prompt: “a guy | met in front of Parlament pub
last night, joyful, looked like Yann Le Cun, but
younger and thinner and said he's from FDV”

https://dreamfusion3d.github.io/
Poole et al., DreamFusion: Text-to-3D using 2D Diffusion, 2022

Prompt: “A zoomed out DSLR photo of a squirrel DJing”



PCA feature construction issues

 PCA minimizes reprojection (reconstruction) error
) Task: Determine whether the
person’s wearing glasses.

* Reconstruction subspace is not necessarily optimal for discrimination

* How to learn potentially “local” discriminative features?




Time/computation criticality

* A lot of applications are time- and resources-critical
* A case study: Face detection

e Seminal work in realtime detection: Viola&Jones face detector

Viola, M. Jones, Robust Real-Time Face Detection, 1JCV, Vol. 57(2), 2004.

37



How to come up with features?

1. Natural coordinate systems:
For some applications, it is enough just to linearly transform the input

data. PCA

2. Feature selection: {1
Machine learning to select optimal features from a pool of several

handcrafted transforms.

3. Handcrafted nonlinear transforms:
Nonlinear transforms improve feature robustness.

4. End-to-end learning of feature transform:

Have machine learn entire feature extraction and selection pipeline.




Machine Perception

LEARNING FEATURES BY FEATURE SELECTION




Case study: Face detection

* Compact objects =2 sliding window
* To achieve real-time processing
1. Feature extraction should be fast

2. Classifier application should be fast



Choosing the appropriate classifier

Nearest neighbor

Al
m

106 examples

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

Support Vector Machines

Guyon, Vapnik

Heisele, Serre, Poggio,
2001,...

Neural networks

C3:1. maps 16@10x10

sssss

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998

Boosting

Viola, Jones 2001,
Torralba et al. 2004,
Opelt et al. 2006, ...

Conditional Random Fields

McCallum, Freitag, Pereira
2000; Kumar, Hebert 2003, ...




AdaBoost: Intuition

* Task: Build a classifier which is a weighted sum of many (weak) classifiers

 Weak == fast to compute (!)

s O
weight - “~ ® @0
Final (strong) classifier weak classifier ®

\ T / ° : .fl(x)
h(x) = sgn (thlétht(x)) | :

2| O
S 9 o9 o
Example of a weak classifier: ol-@® " .
7m0 0 g
_ )+ if £(x)>6 @ @
h X — T ) T
(X) {-1 otherwise f1(%)

Y. Freund and R. Schapire, A short introduction to boosting, JSAI, 1999.




AdaBoost: Intuition

2| B h) 2| hsx
= o © = ® | . Sy @
e 9 @ O @
@ 0 O @
£ (%) - i) fi(x)
* Train a sequence of weak classifiers. The final classifier is a
* Each weak classifier splits training combinatic?r.\ of many
examples with at least 50% accuracy. weak classifiers!
* Those examples that are incorrectly B T
classified by the weak classifier, get h(x) = sgn Etzlatht(x)

more weight in training the next
weak classifier.

Y. Freund and R. Schapire, A short introduction to boosting, JSAI, 1999.




Case study: Face detection

* Compact objects =2 sliding window
* To achieve real-time processing

1. Feature extraction should be fast ?

(How to calculate fast/strong features) ¢

2. Classifier application should be fast
(ensable of weak classifiers = fast evaluation)

Viola, M. Jones, Robust Real-Time Face Detection, 1JCV, Vol. 57(2), 2004




Computing features

Simple rectangular filters as feature extractors (feature defined by filter type and position)

f2(x) f3(x) fa(x)

The value of each feature is the difference between the
intensity in ,,black” and ,white” regions.
Black is weighted as -1, white as +1.

Sum=1500 Sum=2000




Computing features

Simple rectangular filters as feature extractors

Require evaluation at many displacements and multiple scales!

Possible to evaluate such a simple filter efficiently!




Efficient computation — Integral images

e Qur filters are based on sums of intensities within
rectangular regions.

* This can be done in constant time for arbitrary large

region!

* Require precomputing the integral image.

ral image Integral image

. A B
Value at (x,y) is the sum

of pixel intensities above 1 2
and left from (x,y)

C D

K,Y) 3 4

D=1+4-(2+3)
=A+(A+B+C+D)—(A+C+A+B)
=D




Efficient computation — Integral images

* Consider a more complex filter
H *

Integral image

-1 o

-1 o



Previously at MP...

e Learning features by subspace construction: PCA

'~1n: ‘rt | U *./ Uq
-[1 M -5
i : U A Uy s
* Learning features by feature selection
(A case study: Viola-Jones face detector) Fast feature extraction
| a’ = g @) -
0 h(x); :
Z ) .
%o ©le T | =T 1=
E—.-'. h(x) = sgn (thlatht(x)> ; i
Cy . "N
@ A v .l o=




Large collection of filters

Account for all possible parameters:
position, scale, type

More than 180,000
different features in a 24x24 window.

= || |
— ] —
.:- I

Apply Adaboost for

(i) selecting most informative features and

etc...

(ii) composing a classifier (weights+thresholds).

T
h(x) = sgn (thlatht(x)>

Viola, M. Jones, Robust Real-Time Face Detection, 1JCV, Vol. 57(2), 2004




Efficiency issues

Extract features at
each bounding box
and apply Adaboost
classifier.

T
AGE) = sgn (thlatht<x>>

* Filter responses can be evaluated fast.

* But each image contains a lot of windows, that we need to classify

— potentially great amount of computation!

e How to make detection efficient?




Cascade of classifiers

e Efficient: Apply first few classifiers (fast), to reject the windows
that obviously do not contain the particular category! Then re-
classify the regions that survived, with stronger classifiers.

1
.
.

h(x)=sgn(ahy (x) + azhy(x) + ashs(X)+ aghy (O)+..+ ar_jhr_1(x) + aghy(x))




Cascade of classifiers

* Chain classifiers from least complex with low true-positive rejection rate to

% False Pos
0 50

100

most complex ones

% Detection

=

' T T T Face
-
= lF F lF

non-face non-face non-face

h(x)=sgn(ah,(x) + azh,(x) + ashs()+ ashy () +..+ ap_jhr_q(x) + arhy(x))




Viola-Jones face detector

4 N

Train a cascade of
classifiers using

the Adaboost
_

= gL
snﬁiz
mwl. || =

] Selected features,
non-faces thresholds and weights.

* Train using 5k positives and 350M negatives
* Real-time detector using 38 layers in cascade
6061 features in the final layer (classifier)

P
|
Lo D] F

Postprocess detections by
non-maxima suppression.

384x288 images, detection 15 fps
on 700 MHz Intel Pentium Il
desktop (2001).

Training time = weeks!

* [OpenCV implementation:http://sourceforge.net/projects/opencvlibrary/]
T



Viola-Jones face detector
J

e The video visualizes all the

“features”, i.e., filter responses
checked in a cascade.

e (Observe the increase of cascade
once close to face.

The major two features: |

daz Com/ ﬂ H ﬂ




Becoming invisible to the computer

(2010) http://cvdazzle.com




Viola-Jones: results

'h%

.
. World's L'érges

= 'ﬁ)wered b Lumna 7§

_\r_J..‘..

Viola, Jones, “Rapid Object Detection using a Boosted Cascade of Simple Features”, CVPR2001
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Much stronger features required in general

* Require a representation/features that:
* Accounts for intra-class variation (contrast, illumination, occlusion, etc.)

* Distinguishes between different classes

lllumination Occlusion Aspect

AT
= gl W) - N 7
Wiy 9 T
& o
o g ¥
] f )
3
¢
i 3 4
%

v




How to come up with features?

1. Natural coordinate systems:
For some applications, it is enough just to linearly transform the input

data. PCA

2. Feature selection:
Machine learning to select optimal features from a pool of several
handcrafted transforms. Boosting

3. Handcrafted nonlinear transforms: <:|
Nonlinear transforms improve feature robustness.

4. End-to-end learning of feature transform:

Have machine learn entire feature extraction and selection pipeline.




Machine Perception

HANDCRAFTED NONLINEAR TRANSFORMS




Hand-crafting global features

* Problem: Color or gray-level representation is sensitive to illumination

changes or within-class color variations.

k| A

‘

r Ty

Local Histograms:

Locally unordered:
invariant to small shifts and
rotations

Contrast
normalization:
addresses non-
uniform illumination
and varying intensity.

k|
x| 2K




Gradient-based representation: HOG

Tnput Normalize Compute Weighted vote Contrast normalize Collect HOG s
imp —»| camma & [ grar:lli[:znts —» | into spatial &  [—| over overlapping  |[—| over detection |
age colour orientation cells spatial blocks window

Navneet Dalal and Bill Triggs , Histograms of Oriented Gradients for Human Detection, CVPR 2005

Calculate hogin 8 X 8
Image Sobel (gradient) blocks and normalize HOG descriptor

90
135, 45

—> 180 0
2

255 315
270

* Histogram of gradient :
orientations

 Weighted by magnitude
e Similar to SIFT




Practical approach to learning a detector

Train a person/nonperson
classifier

prghEreet M [ xtract

Extract — (S L
| BRI HOGs

HOGs




Application: Pedestrian detection

e Sliding window:

1. extract HOG at each displacement

2. classify by a linear support vector machine (SVM )

(in principle, convolution)

Crop

—— f(x) = sign(w'x+b) >0

Dalal and Triggs, Histograms of oriented gradients for human detection, CVPR2005




Pedestrian detection HoG+SVM

Navneet Dalal, Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005




Issues with sliding window object detection

e Strengths:
* Simple to implement

e Can deal with scale changes
(e.g., by pyramid implementation)

e Weaknesses:

e Adding aspect change (nonconstant
width-to-height ratio) significantly |

increases the number of bounding boxes
to test

 Feature construction for each box

[
I
[
I
] ¢
I
[
1
I
L

increases computational complexity




Region proposals

* Apply a cascade: (i) generate small set of regions (~5000), (ii) evaluate a

potentially computationally demanding classifier only on each region

Generated region proposals After verification with a “cow” classifier

Sande, et al., Seqmentation as Selective Search for Object Recognition, ICCV 2011




Selective search

* Insight: Images are intrinsically hierarchical

e Start by over-segmentation into small regions

“Efficient graph-based image segmentation” Felzenszwalb and Huttenlocher, IJCV 2004

Sande, et al., Seqmentation as Selective Search for Object Recognition, ICCV 2011




Selective search

 Merge two most similar regions based on texture similarity and region size

* Continue until a single region remains.

Sande, et al., Seqmentation as Selective Search for Object Recognition, ICCV 2011




Selective search

* From each merged region generate a bounding box

Sande, et al., Seqmentation as Selective Search for Object Recognition, ICCV 2011




Selective search

* High recall

* Object-category agnostic! |

* Has been the basis for
many state-of-the-art
computationally-heavy

detectors

e I But still learning
powerful feature
descriptors & classifiers

remained an open Q.
Sande, et al., Seqmentation as Selective Search for Object Recognition, ICCV 2011

71




References

* David A. Forsyth, Jean Ponce, Computer Vision: A Modern Approach (2nd Edition), (prva izdaja
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* Matlab wrappers:

* http://www.mathworks.com/matlabcentral/fileexchange/19912
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How to come up with features?

1. Natural coordinate systems:
For some applications, it is enough just to linearly transform the input

data. PCA

2. Feature selection:
Machine learning to select optimal features from a pool of several
handcrafted transforms. Adaboost

3. Handcrafted nonlinear transforms:
Nonlinear transforms improve feature robustness. HOG

4. End-to-end learning of feature transform: <:|
Have machine learn entire feature extraction and selection pipeline.




Machine Perception

END-TO-END FEATURE
(AND CLASSIFIER ) LEARNING




Modern representation learning

N3
.
Y

(+linear trans.)
—> “panda”?

Classifier

edges, etc. I:> (+ feat. sel.) I:> “panda”?

Classifier

HOG, SIFT, etc. " ”
edges ‘ : ‘hlstograms I:> Classifier E>panda ?
HOG, SIFT, etc. K-means “nanda”?
edges ‘ histograms |:> sparse code |:> Classifier IZ>p
|::>| FV/Vlad

end-to-end learning of features and classifiers “

panda”?
= > P ~




Recall a simple neural network

A sigmoid neuron:

A weighted sum of values
x;, transformed by a
nonlinear function g(-):

y = Q(Z WiX;)

input layer ¢

A network of neurons:

hidden layers

‘\ A'lﬁ"
SO,
QLR
0 QN

y = f(x1:X6; W)




Classification problem: training the network

* For an input image xU), predict probability of cat&dog, i.e., y) = [poqe, Pdog]

hidden layers

Cost function (cross entropy):
e(j) = CE(t(j),f(x(f);w))
output layer E(W) — ZE(])

y@ =10.7,03] tY =[1,0]
» cat dog

S IS

R XX
prave,

o s G054

Find optimal parameters:

Wope = argmin e(w)
w

Iteratively adjust the weights to de(w)
: WeWw-—«a
reduce the cost: gradient descent ow

Efficient implementation: The backpropagation algorithm




Put some structure in neural networks: CNN

Sourg
S et e @
O

* A convolutional neural network (CNN) O

output \>K<t%:> Filter/kernel

output input

OO0O0000-000000*
mput OO




Consider the image classification problem




Convolutional neural networks

224x224x3 224x224x64

Goal: Gradually decrease spatial size (WxH)
and increase the depth (feature dimension)

112 X128

56|x 56 x 256
28 X 28 x 512 TXTX512
1o ols 1x1x4096 1x1x1000

@ convolution+ReLU

@ max pooling
(7 fully connected+ReLU

@ softmax

_ The basic building blocks:
5  Convolutional layers

. conv|[RELU [pool | — [conv [retw] [pool | — . Nonl.lnearlty(RELU)
 Pooling layers

Image
}

Simonyan and Zisserman: Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR, 2015



Convolutional layer

Each filter

generates a 2D
Image N filters output .
(eg, 32X32X3) (eg, 5X5X3) Center element of the kernel is placed over the (0 X 0)

source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Source pixel

A 4

Convolve with
each filter

Convolution kernel
/ (emboss)

Output is a 32x32xN
tensor

New pixel value (destination pixel)

.
.
-




Nonlinear layer (e.g., RELU)

Rectified linear unit (RELU)

output

Implement nonlinear feature
transformations

Specific form crucial for backpropagation to
work!

Set negative
values to O

N inputs

Only non-negative values




Pooling layer

* Implements downsampling:
* Reduce spatial resolution

* Increase the receptive field (which pixels influence the neuron)

224 x224x3 224x224 X 64

112 x[112 x 128

56|x 56 X 256
28 X 28X 512 AT 5I2><7><512
e 1xX1x4096 1x1x1000

@ convolution+ReLU

@ max pooling
] fully connected+ReLU

ﬁ softmax




Pooling layer

224x224x64

A popular pooling operation: max pool 112x112x64
popular pooling op p .
. pool L% a3 T
. — ke, > -
E | 224% 2243 224224 X 64 224 downsampling e
' | 224 =
112x[112x 128
: H 5[X 56 X 250
Single depth slice o5 5 28 51) SO
1 1121 4 Lt 1l ol2 1x1x4096 _1x1x1000
max pool with
6|7 8 i 6]
> @ convolution+ReLU
3 2 1 0 3 4 @ max pooling
fj fully connected+ReLU
1 2 3 4 ff] softmax




Fully-connected layer

224x224x3 224x224x64 et

Followed by a softmax function, “® = Tr

such that all probabilities sum to 1.

pear €[0,1]  Cat
Pdog €[0,1] DOg

56|x 56 x 256 Pcow €[0,1]  Cow

28 X 28 x 512 TXTx512
14x14x 512

112 X128

1x1x4096 1x1x1000

@ convolution+ReLU

@ max pooling
(7 fully connected+ReLU

@ softmax

Pracoon €10,1] Racoon

* Maps final 1x1x4096 feature vector into the final prediction one-hot
vector of probabilities (in the above example 1000 output categories).

Heavy on parameters...
S



A conceptual CNN architecture

 Architecture contains feature extraction as well as a classifier

* Learning means:

* Learn feature extraction (convolution filter kernels)

* Learn a classifier (e.g., a multi-layer perceptron)

Input layer (S1) 4 feature maps

L

1 (Cl) 4 feature maps (S2) 6 feature maps (C2) 6 feature maps

l convolution layer I sub-sampling layer l convolution layer I sub-sampling layer l fully connected MLP |

Feature extraction Classifier




CNNs attract a significant attention in 2012

Image N filters
(e.9,32x32x3)  (e.g, 5x5x3)

* The filters and biases in CNN are the parameters to be learned. ot

* The breakthrough came with the AlexNet (50-60 million parameters)

IKrizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, NIPS2012

 Became possible due to HUGE labelled datasets (ImageNet )

i i ili 1 =
Dog, domestic dog, Canis familiaris -_—
ber of the genus Canis (probably descended from the cor istoric pictures ﬁZ’iﬁ‘id"é ‘\sgrdnf

14 million labeled images, 20K categories

F)(

Workin:

tttttttttttttt

e -y ok, caks ) Dog domestc g s b
B 7 o | 0 A D 2 T [ R
o || e T e O e 0 S e
) == BT § | e

| e ] I | e

| D e s R | o
o | IS O I

| e R | S K
P | i s |
| P O | 9 g
I ey

men | el e B PR "D
e | ) T
o | TECERE e S
bitch (1) o T P v Y Y |
‘@fsﬂﬁ-nmnnﬂﬂ'ﬂ
wof (6)

http://www.image-net.org/

Model Top-1 | Top-5

Sparse coding [2] | 47.1% | 28.2%
SIFT + FVs [24] | 45.7% | 25.7%
CNN 37.5% | 17.0%

Huge advances made in subsequent the years...




CNN architectures

80 - | Inception-v4 |
8y s ; ‘ : :
Inception-v3 ‘ ResNet-152
75 - ReSNet-50° : E VGG-16 | VGG-19
I ResNet-101 ; :
= . ResNet-34 : '
‘0—4 70' ~—
oy £ 704 ResNet-18 |
5 . gﬂ’
S ® GooglLeNet
2 65 3 ENet
:;i S 65 1 |
= 60 Fé. ° BN-NIN : : |
- S 5M- 35M----65M----95M - 125M - 155M--
2 BN-AIexNet
55 AlexNet
A 3 A6 45 o o8 V. B b '
et e S\ :
e v\\\\\ \\\ L XGG c,ex x2S AN N pot 50 - . . : : - . .
REURET Y (o e NOTNC o s\* NN 3200
QWY R Q875 ?\as\oce‘i(\ce‘? 0 5 10 15 20 25 30 35 40

Operations [G-Ops]

e Speed approximately inversely proportional with the number of parameters

* Crucial aspect for embedded-ready architectures

e Accuracy (somewhat) related to the network complexity




From image-wide to pixel-level classification/labelling

e So far we considered classifying the entire image

Assign a class
label to each pixel

)

Goal: Assign a single class label (image category) to the image Goal: Assign a semantic label to every pixel in the image (objects and stuff)




Semantic segmentation

Long, Shelhamer and Darrell: Fully convolutional networks for semantic segmentation. CVPR, 2015

. <
* Apply CNNs to encode each pixel eP®
44 » 6 S 66
tabby cat . \05&3 o (_(\e
——— 0\ 00
Zo R e S I T | | ?\650\ (\006\(\
e
\ e

convolutionalization

v

@92900

tabby cat heatmap

u()qb

Zob ok <6
e )

* Encode the pixels by applying a few conv-relu-pool blocks

* Add a final 1x1xN filter to predict the one-hot vector for each pixel




Semantic segmentation: Unet

e A general approach apply a “decoder” to gradually upsample the features.

364 64

Encoder Decoder
128 64 64 N classes
" H ” H
4R : skip” connection ol lal output
segmentation
o o o0f| ™ cO|
S S -5 map
- > s > >
oz - ERE
x| >
ol o
5] B8
¥ 16 128
256 128
“skip” connection
NO CON O
R Ll 2B S
[a¥) Y] '
¥ o6 256 . .
“skip” connection 22 %26
o [ > . ”g[l'gl'kl = conv 3x3, ReLU
S E K L g 8
ARy g S copy and crop
512 512 I¥gkin” 1024 512
el 5 e §imex pool 212
ﬁ' o o
g 3 '. e $ 35 B 4 ‘up-conv 2x2
-
Sym— % =»conv 1x1
L (3]

e Skip connections: attach encoder features to the upsampled decoder

>126k citations!
features Ronnenberg et al., U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI2015




Autonomous cars

Ground Truth | line

Top performers on the major autonomous cars benchmark Cityscapes in 2019.

Yuhui Yuan, Xilin Chen, Jingdong Wang, Object-Contextual Representations for Semantic Segmentation, Arxiv 2019



Autonomous boats

Bovcon, Kristan, WaSR -- A Water Segmentation and
Refinement Maritime Obstacle Detection Network, TCyb 2021

-0.0800

0.0660 —0.5670

Frequency weighted |OU; 83.37%
Mean pixel accuracy: 94.96%

Mean IOU: 92.49%
Code and mfo
W. Edge: 17.7px [1. 4%][&] Y §
Total TP: |10
Total FP: O
Total FN: Q
Total F1: 100.0%




Object detection

Goal: Localize (Bounding Box) and classify all objects in the image




Object detection by R-CNN

Per-image computation Per-region computation for each r; € (1)

classifier

Box regressor ]

O,

Linear ]

Selective search,
Edge Boxes,
MCQG, ...

®

Girshick et. al, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, CVPR 2014




Box regression

* Region proposal generates approximate bounding box

 The box regressor refines it

/'

Anchor box:
transformed by
box regressor

P(object) = 0.94



“Slow” R-CNN

Per-image computation Per-region computation for each r; € (1)

Linear
classifier

Box regressor J

Selective search,
Edge Boxes,
MCG, ...

Very heavy per-region computation
E.g., 2000 full network evaluations




Why is it slow?

Network @ Features

“ _ ” — Process (classify)

Features

Network ©
” . ” —— Process (classify)
Features
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“Slow” R-CNN

Per-image computation Per-region computation for each r; € (1)

Linear
classifier

Box regressor J

Selective search,
Edge Boxes,
MCG, ...

Very heavy per-region computation
E.g., 2000 full network evaluations




Generalized R-CNN = Fast R-CNN

Per-image computation

Per-region computation for each r; € (1)

T 1T T T T T T T 1
[ T T T T T T T T 1

A few CNN layers to

RolPool: Interpolates extracted
extract features

features within a proposed region
and resizes to a predefined
resolution, which is fixed for the

input of the multi-layer perceptron
(MLP) Softmax clf. ]
| ®
@[ RolPool ]—-» »[ MLP J—» (2)
A

Box regressor J

Selective search,
Edge Boxes,
MCG, ...

A classification head and box regression head
are finally applied

Girshick. Fast R-CNN. ICCV 2015.




The Problem with Fast R-CNN

Per-image computation

T T T T T T T T 1
[T T T T T T T T 1

A few CNN layers to
extract features

A 4

Per-region computation for each r; € (1)

Softmax clf. ]

-
A M
g @)
i =
—7A N\
- f P—
y \—’/
L1 1 TRl T 71T T 1
N O N | S N N N R

(om0 -

Selective search,
Edge Boxes,
MCQG, ...

Box regressor J

Region proposals have very poor recall
(ok for PASCAL VOC, major bottleneck for COCO)
Also, they can be slow




Faster R-CNN

Per-image computation

Per-region computation for each r; € (1)

T T T T T T T T 1
[T T T T T T T T 1

A few CNN layers to
extract features

[ fy=FCN(D) |

L 1 1 1 1 1 1 1 1 1

L L1 [ N 1 11 1

Softmax clf. ]

A 4

(o -

A

Box regressor J

Learned proposals

Region proposal network ] ) i
Shares computation with whole-image network

(RPN) generates bboxes by | 78
regression from CNN 7~
features Ren, He, Girshick, Sun. Faster R-CNN: Towards Real-Time Object Detection. NIPS 2015.




Region proposal network (RPN)

* Generate object proposals by so-called anchor boxes

Anchor box: transformed by

{ box regressor

ol

P(object) =0.94

4

3x3 “sliding window”’ m—
» Objectness classifier [0, 1]

» Box regressor
predicting (dx, dy, dh, dw)

A

———




Region proposal network (RPN)

* Low objectness score example

Anchor box: transformed by

Objectness score box regressor

3x3 “sliding window”
» Objectness classifier

» Box regressor
predicting (dx, dy, dh, dw)




Faster R-CNN with a Feature Pyramid Network

Per-image computation Per-region computation for each r; € (1)

Compute pyramid
CNN features

Softmax clf. ]

L

Box regressor J

The whole-image feature representation
can be improved by making it multi-scale

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017.




Mask R-CNN

Per-image computation Per-region computation for each r; € (1)

{ MLP |—>
Box regressor ]—I

Cascaded heads (inference only) I

o H

Training the mask head

Softmax clf. J

He et al. Mask R-CNN. ICCV 2017.




Mask predictor

* Per-pixel occupancy map is predicted at the regressed bounding box

28x28 soft prediction

Resized Soft prediction

Final mask

-\

Validation image with box detection shown in red



Mask R-CNN application

person1.00

dining table.95

.98 R
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Human pose estimation

—>
Rol

—>>
Rol

e

/X7 |
X256

V

14x14

1>

X256

L~

X4

1024 |/ 1024
14%x14 | 28%28
X256 X256

L

—>» class

L~

3 box

e

28x28

x17

>

keypoints

(Not shown: Head architecture is slightly different for keypoints)

* Add keypoint head (28x28x17)

Predict one “mask” for each keypoint

e Softmax over spatial locations

nose 1.00 left_eye 1.00

L Elg

nght eye 0.98 left_ear 0.98

nght ear 0 93 left_shoulder 0.97right_shoulder 1.00 left_ elbow 0.41 right_élbow 0.99

g o

:’J £

-s'®

rlght wrist 0.97

kX

left_hip 0.96

_!;

right_ankle 0.98

Ieft wrlst 0.91

‘_,'l

right_knee 0.99

'

left_ankle 0.91

XN

(encodes one keypoint per mask “prior”)

= B

Q&_‘

right_hip 0.97 left_knee 0.99

-

17 keypoint “mask”
predictions shown as
heatmaps with OKS
scores from argmax
positions




Human pose estimation

- NS o
QT I
S VO

- N

—3 -




Human “surface” estimation

Huge effort made to come
up with manual ground
truth annotations!

50K humans, over 5 million
manually annotated
correspondences.

rendered images for the specific part

TASK 1: Part Segmentation TASK 2: Marking Correspondences Surface Correspondence










TOOIbOX avalla ble ://github.com/facebookresearch/detectron2




Single-stage detectors

* Frame detection process similar to segmenation: for each pixel predict the

output e.g., [bounding-box, object class, etc.]
* Early approaches: YOLO!1, SSDI2]
* More recent FCOSB!:

/ Classification
—} sennas]p _P HxWxC
x4 L
HxWx256 / Regression
— HxWx4
— || T > — / Center-ness
x4 I / HxWxl1
Hx Wx256

[1IRedmon, You Only Look Once: Unified, Real-Time Object Detection, CVPR2016
[2]ju et al., SSD: Single Shot MultiBox Detector, ECCV2016
[31Tian et al., FCOS: A Simple and Strong Anchor-free Object Detector, TPAMI2020

Regression

Centerness




Single-stage detectors

* Faster than two-stage detectors

Method Backbone AP  APsy AP+
Two-stage methods:
Faster R-CNN+++ ResNet-101 349 557 37.4
Faster R-CNN w/ [9] ResNet-101-FPN 36.2 59.1 39.0
Faster R-CNN by G- || Inception-ResNet-v2 347 555 36.7
Faster R-CNN w/ TDM [53] Inception-ResNet-v2-TD 36.8 57.7 39.2
One-stage methods:
YOLOv2 DarkNet-19 [30] 21.6 440 192
S5D513 || ResNet-101-55D 31.2 504 33.3
YOLOv3 608 x 608 [6] Darknet-53 33.0 579 344
DSSD513 || ResNet-101-DSSD 332 533 35.2
RetinaNet |ﬁ| ResNet-101-FPN 391 59.1 423
CornerNet le Hourglass-104 405 565 431
FSAF ResNeXt-64x4d-101-FPN 429  63.8 46.3
CenterNet511 [55] Hourglass-104 449 624 481
FCOS w/ deform. conv. v2 | ResNeXt-32x8d-101-BiFPN | 50.4 68.9  55.0

* Recent sota: Transformers, e.g., DETR!2

[1Tian et al., FCOS: A Simple and Strong Anchor-free Object Detector, TPAMI2020
[2]Carion et al., End-to-End Object Detection with Transformers, ECCV2020



Panoptic segmentation

Holistic scene understanding requires for each pixel:
Stuff & instance labels

Goal: Assign a semantic label to every pixel in the image (objects and stuff)

Semantic Segmentation

R =

Goal: Assign a semantic and an instance label to every pixel of an object

Instance Segmentation Panoptic segmentation




Panoptic segmentation

* Combines object detection I, S ¥, y
and stuff segmentation

EfficientPS sets the new state-of-the-art on the Cityscapes benchmark and is ranked #1

https://www.youtube.com/watch?v=j11mvFgFmfA&t=110s
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Zust & Kristan, PanSR: An Object-Centric Mask Transformer for Panoptic Segmentation, Arxiv2024




Few-shot counting!!! ... by detection

Input: Image + N exemplars
Output: 8

g 5’ .\7‘ --’

-~y :$ e

- O

n bounding boxes

Input image
. o

P h

b ot

v
Object prototype
extraction
v

! _
Encoded n object
features prototypes

n similarity
maps

Detection stage
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: »»@»
|

Prototype
extraction

&

‘f{] /T\Upsample
M L

hjan, et al. "Learning to count everything." CVPR 2021

} cones:
F’ Verification stage
. . % k exemplars
B* |ff |B° :

= Featur.e pooling L .Co'sm'e H OO
23 & project by @ similarity ﬁ

| Affinity matrix :

——— IN. detections ¥ Clustering — Box count: 17

DAVE outputs

_>®—l
Density-based
count: 16.6

Prototype
extraction
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Response
map

bukié, Lukezi¢, Zavrtanik, Kristan. A Low-Shot Object Counting Network With Iterative Prototype Adaptation, ICCV2023

Pelhan LukeZi¢, Zavrtanik, Kristan. DAVE -- A Detect-and-Verify Paradigm for Low-Shot Counting, CVPR 2024

Pelhan, Lukezi¢, Zavrtanik, Kristan. A Novel Unified Architecture for Low-Shot Counting by Detection and Segmentation, NeurlPS2024
Pelhan, LukeZi¢, Kristan. Generalized-Scale Object Counting with Gradual Query Aggregation, Arxiv 2025
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Detection extraction




Few-shot counting!!! ... by detection
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https://huggingface.co/spaces/jerpelhan/GECO2-demo

e SAM2 extension
e Fast & reliable
 Excellent in dense regions

Pelhan, Lukezi¢, Kristan. Generalized-Scale Object Counting with Gradual Query Aggregation, AAAI 2026




Huge performance leaps

Viola-Jones (2001) vs RetinaFace (2019)

rgesfiSe iﬁ’“&@-—@ :

Vgl A
QST i
A Ea

B
e

Viola, Jones, “Rapid Object Detection using a Boosted Cascade Deng et al., RetinaFace: Single-stage Dense Face Localisation in the Wild, Arxiv2019
of Simple Features”, CVPR2001




CNNs and “human performance” fallacy

 Adding smaII (but specific!) perturbations to |mages
‘ y 'Y Ostrich!

-

e~
dog  + perturbation

* Generating , adversary” images

Over 99.6%
confidence
in decision!

Nguyen et al., Deep Neural Networks are
Easily Fooled: High Confidence Predictions
for Unrecognizable Images, CVPR 2015
king penguin lesser panda (http://www.evolvingai.org/fooling)




CNNs and “human performance” fallacy

Classifier Input - Classifier Output

| ———
banana siug snail orange

https://techcrunch.com/2018/01/02/these-psychedelic-stickers-blow-ai-minds




A look forward: Convergence of methodology

 Methodology across different computer vision subfields (object detection,
segmentation, 3D vision, tracking...) is converging

 AND, the methodology across the different disciplines (computer vision,

natural language processing, speech processing) is converging

* DALL-E [OpenAl2021] (12 10° params)

“...an armchair in the shape of an avocado...”




Look forward: Convergence of methodology

e Current mantra: larger datasets & more parameters = better performance

* Challenges:

learning from few examples, computational reduction, architectures that
reason,...

e Keep in mind the trivia:
e 15 year methodological cycles since 60’s
* The last one started ~2012
* Exponential advancements expected

* Foundation models? Cross-modal learning? Agentic processing? Architecture
paradigm shifts?



Conclusion

* This brief overview covered merely some basics in modern CV

* For recent advancements, see proceedings of the major conferences:
 Computer vision and pattern recognition (CVPR)
* Neural information processing systems (NeurlPS)
* |nternational conference on computer vision (ICCV)
* European conference on computer vision (ECCV)

* |nternational Conference on Learning Representations (ICLR)

* |nternational Conference on Machine Learning (ICML)
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Machine perception

RECOGNITION USING LOCAL FEATURES:
BAG OF WORDS MODELS




Intuition: texture recognition

 What is texture? Could say: “spatially organized repeatable images”

TeTeTeT
Selelele
eselele,;
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* Texture can be characterized in terms of textons (small ,,images”)
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Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003




Bag of words models

Object

» Bag of ,words”




Bag of visual words

(histogram) over visual words.

 Summarize an image by a distribution ﬁ |-|
— >

* Analogous to text-based information
retrieval systems — think of Google.

* Except: how to identify the “words”? /

b W




Train Recognition

/o

Detect features
& represent by descriptors

Represent images by histograms
over the dictionary terms

\\§ I )
Build category models or Category
classifiers p classification



Train

Dictionary terms

e ™ ™
e NdFel T o 0
"l FI LAl lll ™

& represent by descriptors

| Represent images by histograms

Build category models or
classifiers



1. Feature detection & representation




1.0 Feature detection & representation

e Use feature point detectors (we have studied quite a few)
 E.g.,SIFT

* Normalize each region to remove

local geometric deformation

Detect Normalize



1.1 Feature detection & representation

Calculate the

SIFT descriptor Normalize the
region

[Lowe’99]

Detect regions
[Mikojaczyk and Schmid ’02]
[Matas et al. '02]
[Sivic et al. '03]




1.2 Feature detection & representation

Collect descriptors from all key-points
from all training images.




Train

2.

Dictionary terms
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Detect features
& represent by descriptors

| Represent images by histograms

m

over Dictionary terms

Build category models or
classifiers

__Training images SIFT descriptors

E%ng

B

Dictionary: 8

How to create
word“ l[abels from the extracted SIFT
descriptors?

SIFTs corresponding to the same
visual word® should be similar.

Similar SIFTs form clusters!



2.1 Clustering by vector quantization

e A standard approach to learning the visual codebook

* Apply K-means clustering to the detected SIFT descriptors

e Each cluster center is a visual word (for the dictionary)

* |Important: Learn the code-book on separate training data (!!! This is learning stage!)

Training images

Apply clustering

S @ Keep only

o cluster centers

)

% All detected SIFTs a

EEEE-

Visual dictionary




2.1 Clustering by vector quantization

e How to assign visual words to the detected SIFTs?

* For each detected keypoint, assign the word ID closest to the extracted SIFT.

* Codebook = visual dictionary (vocabulary)

p \/_\ Visual dictionary
_ ®
ID = wq W W
ID of word? 3




2.2 Visual dictionary — example

Airplanes || >

Motorbikes [&%

Faces

Wild Cats [ e =

Leaves

People

Bikes




2.2 Visual dictionary — issues

e How to choose dictionary size?
* Too small: visual words not expressive enough to describe all possible patches.

* Too large: visual words too similar to discriminate well

e Computational efficiency in matching
(need to compare many keypoints to

many visual words in dictionary)

* Vocabulary trees
D. Nistér and H. Stewénius, “Scalable recognition
with a vocabulary tree,” in Proc. CVPR, 2006




Train

Dictionary terms
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3. Image representation

1. Detect regions

SRS

3. Compute how many times
each word was detected...

I il |
%(precomputed) f 'r‘a!-L: _E‘h‘ sesee

frequency

Visual dictionary visual words

. 2. Classify the regions:
Get ID of each detected SIFT by
comparing to the (prelearned)
visual dictionary...

 Each imageis represented by a 1000-4000 dimensional histogram, which is then

normalized (L1/L2 norm)




4. Build a classifier

e Using the training set, we have first built a visual vocabulary.
e The vocabulary can be now used to encode any image with the histogram

e As the final stage of learning, we need to train a classifier that will classify

images based on the extracted bag of word histograms.




4.1 Build a classifier by SVM

Train a classifier
4 _ e.g., SVM

Extract
BOWSs

Extracts
BOWs| =1

-




Train Recognition

/o

1 o Detect features
& represent by descriptors

| Represent images by histograms
over the dictionary terms
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Build category models or Category
classifiers p classification



5. Recognition

 How to classify a new image?

* Encode the image with the dictionary learned in the training stage

* Feed to a classifier trained at training stage

New image

Pre-learned Encode by Bow Apply a
dictionary o pre-trained SVM

T O P ™ e ™ e ™
L P | T Wt O |
a "HaaP o] INE IN —
didl EAR" s ™. SNMY
R I=NATFP [ACwF L
Lm~d_ A o=Tia-M
PLNEAL, EduS B
dARIIR 1IN FETIER'

| ) e ! )

Classified as:
motorbike




6. BoW application in practice

* Performs very well in image classification despite the background
clutter...

cars




6.1 Examples of false classification

L2

Cr classified as 'ildings and phones
D



6.2 Bags of words: Summary

e Strengths:

* Fixed descriptor length.

* Robust to object position

and orientation

e Weaknesses:

* Does not account for spatial relations among visual words.

* Does not localize objects in the image.

#2. & B
&5 e




Machine perception

OBJECT DETECTION BY FEATURE
CONSTELLATIONS




Detection as a recognition problem

* How to detect an object in arbitrary pose and estimate

that pose?

* Brute force sliding windows with exhaustive testing of all

deformation parameters is not always a good option*.

scale rotation



Detection as a recognition problem

 Represent the target model in terms of small “parts” that can be detected
even under an affine deformation (Keypoints!)

 Detection: (i) Detect “parts” in image ; (ii) Verify consistency of geometric

configurations

2 )
\A:,;' Pao—
¥l

B

-y

_’vm\ Test image

Local-descriptors,e.g:, SIFT




Detection by fitting an affine deformation

* Affine model approximates perspective transform of planar objects.

* Apply RANSAC to get a globally-valid correspondence.




Detection by Generalized Hough Transform

 Assume features are invariant to scale and rotation

 Then each detected feature becomes a hypothesis of fitting (translation,
rotation, scale)

* Each feature casts a vote into the Hough translation/rotation/scale space




Detection by Generalized Hough Transform

 Assume features are invariant to scale and rotation

 Then each detected feature becomes a hypothesis of fitting (translation,
rotation, scale)

* Each feature casts a vote into the Hough translation/rotation/scale space




Detection by GHT — summary

1. Index descriptors

* Distinctive descriptors reduce the search space

2. Apply a generalized Hough transform (GHT) to obtain
approximate detections

* Key-points associated with local transformation,
relative to coordinate frame of the object.

3. Refine each detection by fitting affine transform
between the points on the object and the detected
points from HGT

* Fit and verify using features, which vote for the
same cell in the Hough space (at least 3 votes)




Detection results

Background subtraction Detected objects Detection despite
to remove background clutter partial occlusion
in training phase

Lowe, "Distinctive image features from scale-invariant keypoints.” [JCV 2004.




Applications: retrieval systems

Query Results (http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/index.html)

Interesting work in retrieval: Radenovic, Tolias, and Chum: CNN Image Retrieval Learns from BoW: "
Unsupervised Fine-Tuning with Hard Examples , ECCV 2016




Applications: specific object recognition

AIBO?® Entertainment Robot
o SO ny A| bo Official U.S. Resources and Online Destinations

(Evolution Robotics)

e Application of SIFT

* Recognition of the " . .
charging station ‘ /;D / MR g

| 4 AIBOne

. r/é C‘|'r.ll., .E- 3 [.l

* Comunication using AIBO Cards (15)

WLAN Manager CD

vattery & AC Adapter

visual cards

re-order Naow!




Applications: Highway vignette verification

_ Highway checkpoint

Matej Kristan (200g),
Machine Vision Group, University of Ljubljana




Applications: Augmented reality

 Match keypoints to template, estimate camera pose, project 3D object




References

* David A. Forsyth, Jean Ponce, Computer Vision: A Modern Approach (2nd Edition), (prva izdaja
dostopna na spletu)

e LiFei-Fei (Stanford), Rob Fergus (NYU), Antonio Torralba (MIT), Recognizing and Learning Object
Categories, (na spletu)

e Cordelia Schmid, Bag-of-features for category classification, lecture

* Lazebnik, Schmid, Ponce, Beyond Bags of Features: Spatial Pyramid Matching for Recognizing
Natural Scene Categories, CVPR, 2006

* Lowe, "Distinctive image features from scale-invariant keypoints.” [JCV 2004




Machine perception

SUMMARY AND OUTLOOK




What did we learn?

(1,2) Basic image processing
* Thresholding, Morphology, Region descriptors

* Linear/nonlinear filter — convolution, Image pyramids.

(3) Edge detection and image gradients
* Image derivatives, Canny edge detector
* (4) Fitting models

* Least-squares fitting (iterative, robust), Normal equations, Homogenous
systems, RANSAC, Hough transform

e (5) Key-points and correspondences between images

* Key-point detection in scale-space, local descriptors, SIFT



What did we learn?

* (6,7) Cameras and stereo systems

* Pinhole camera model, Calibration, Epipolar geometry, Dense correspondence,
Triangulation, Active stereo
e (8a-d) Feature learning for recognition and detection:
e Natural linear coordinate systems: PCA(face recognition)
* Feature selection: Adaboost+integral images (face detection)
* Nonlinear hand-crafted transforms: HoG+SVM (pedestrian detection)

* End-to-end feature & classifier learning: Convolutional neural nets (CNNs)
* (9) Key-point-based recognition
e Bag-of-words models.

* Detection/recognition by RANSAC and Generalized Hough transform.
eeeeeeeGTGTGTGEGEEEESSSSSSSSSS——



The Next Big Thing on Your List...

 The written exam (see Studis for dates)

e Approx. two hours -- Covers the entire course

* Theoretical as well as analytical assignments (see the lab exercises for examples of analytical parts)

* Oral exam potentially required for low scores (X = ~“50%-60% )
 Need to know all that you got wrong on written exam

* +~2random questions

* |f >X% do not have to come to oral

e Can if you would like to increase/decrease grade by 1 (or fail?)

* Please fill-out the poll at Studis

* Constructive suggestions towards improving the course



Writing a Computer Vision thesis

* ViCoS lab offers a number of topics: segmentation, detection, tracking,

industrial inspection, fundamental deep learning topics, climate prediction
f ‘ J - ind wind 7 A ;
- e < ol 0 " |

* | will be accepting candidates after the last MPP exam in this semester (6.2)
* 1 week to collect your applications, then will let you know

* Will announce the call for applications on the eclassroom

e Caution: CV theses are typically challenging (~180 hours)

* See CVPR/ECCV/ICCV/NeurlPS for potential topics (your own ideas also welcome)




Other Computer-vision-related courses at FRI

e Bachelor’s level:
 Multimedia Systems (Luka Cehovin, Vicos)

* Development of Intelligent Systems (Danijel Skocaj, Vicos)

* Master’s level

Advanced computer vision methods (Matej Kristan, Vicos)

Deep learning (Danijel Sko¢aj, Vicos)

Image-based biometry (Peter Peer)

Biomedical Signal and image Processing (Franc Jager)

Potentially another course on 3D perception (prepared by Vicos)




Other courses on the web

e Check out similar courses at other Universities:

* Aachen: https://www.vision.rwth-aachen.de/course/6/

* Stanford: http://vision.stanford.edu/teaching/cs131 fall1617/schedule.html

* lllinois: http://slazebni.cs.illinois.edu/spring18/

e ... many more can be found on the net

e Slovene terminology (see translations here):
https://terminoloski.slovenscina.eu/




Thanks!

Good luck with the exam(s)!




