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About the lecturer

• Name: Matej Kristan

• Where to find me: 2nd floor, ViCoS

(not in office, in the lab most of time)

• Online contacts and resources: 

• www.vicos.fri.uni-lj.si/matejk

• ResearchGate

• Google Scholar

• eclassroom (https://ucilnica.fri.uni-lj.si/)

• mail:matej.kristan@fri.uni-lj.si

1. Industrial vision

3. Robotic vision

2. Deep structured models

4. Visual object tracking



Practicum (2-week long guided projects)

• Guided by: 

• mag. Jon Natanel Muhovič (jon.muhovic@fri.uni-lj.si)

• mag. Jer Pelhan (jer.pelhan@fri.uni-lj.si)

• dr. Josip Šarić (Josip.saric@fri.uni-lj.si) [eng only] 

• Schedule 5 cycles, assistants will send you

options to enroll

• Practicum starts next week (13.10. - 17.10.)

Start planned:
3rd week Details at the lab.



Practicum (2-week long guided projects)

• Practice the theory covered in lectures 

• Implementation-oriented

• Result is a working source code (Python)

• Two-week assignments:

• 1 week consultation (bug the assistants!!)

• 1 week defense (have to defend in your assigned slot!)

• Attend ANY cycle for consultations (except first week),

but you can defend only IN YOUR OWN cycle.

Start planned:
3rd week Details at the lab.



Requirements of the course

1. Practicum (programming assignments) > 50% each assignment

evaluated during the semester (watch out for deadlines!)

2. Written exam > 50% 

Cannot access the written exam without passing the practicum/lab.

Content: practicum assignments + lectures 

3. Oral exam:

Not necessary if written >X%

(Will depend on class attendance and progress at assignments)



What is machine perception about?

• Building machines that perceive their environment

• Digitalize environment through sensors

• Image of light, ultrasound, force field, etc.

• Perception through images: Computer vision

?!



Development of Computer Vision

• Origins: 1950-1965 as side project at MIT:

”...building perceiving machines would take about a decade...”

• Development paced by hardware development (numerical maths)

Image digitization

Russel A.Kirsch,
SEAC 1957

First multipurpose comps 
(UNIVAC ~1951)

Embedded computers
(ARM ~2001)

Face detection

~50 years ~15 years

Graphic processing units 
(GPU ~2016)

Instance segmentation



Human vs. Computer vision

• Much harder than it looks…

• Neuroscience: >50% brain dedicated to vision*
*Prof. Cornelia Fermueller ,University of Maryland in College Park

~70%



Human vs. Computer vision

• Much harder than it looks…

• Neuroscience: >50% brain dedicated to vision

• Humans apply experience (prior knowledge)
What do you see?What do you see?

The CV “tools”:
Algebra, Analysis
Statistics
Signal processing
Machine learning
Algorithms
…



Modern industrial applications

http://www.cognex.com

Solar panel inspection

Smart cameras http://www.matrox.comIndustrial applications CONTROL
THE SETUP.

Car damage inspection

Vicos (http://www.vicos.si)



Modern autonomous vehicles applications
Boats: 
(www.vicos.si/Projects/Viamaro)

Cars: (https://youtu.be/rPj4T1__gZ4; https://youtu.be/VG68SKoG7vE)



Modern visual query / AR applications

IKEA AR

MS Hololens

https://youtu.be/ZDWRl9A1p6s

https://youtu.be/ihKUoZxNClA



Topics covered in this course

1. Image processing 1

2. Image processing 2

3. Edge detection

4. Fitting parametric models

5. Local features

6. Camera geometry

7. Multiple-view geometry

8. Recognition & Detection

Might change a bit…



Literature

• The topics covered in lectures can be found in the following textbooks:

David A. Forsyth, Jean Ponce, Computer Vision: 
A Modern Approach (2nd Edition)

(first edition available online)

Simon J.D. Prince, Computer Vision:  Models, 
Learning, and Inference, 2010
Available online: 
http://www.computervisionmodels.com/

R. Szeliski,Computer Vision: Algorithms and 
Applications, 2010
Available online: 
http://szeliski.org/Book/

http://homepages.inf.ed.ac.uk/rbf/CVonline/books.htm
Considerable book collection:



Literature

• Use the books for studying and solving the practicum assignments

• Lecture slides will be made available from the e-classroom

• Hopefully a few days before the next lecture

• Slides are not books! 

• You will need to make your own notes to properly follow the course

Crucial: be proactive

• Attend the lectures and make notes!

• Ask questions (in class and especially at the practicum – come prepared)!

• For translation of terms, see: https://terminoloski.slovenscina.eu/
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IMAGE FORMATION
Machine perception
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Let’s design a camera!

• Idea 1:  put an object in front of a film...

• Do we get a good image of the object?

Object Film

3



Let’s design a camera!

• Add a punctured barrier that blocks most of the rays 

• Significantly reduces blurring

• The „hole“ is known as aperture

Object FilmBarrier

4



A pinhole camera

• Earliest and remarkably correct written description: 

~500 BC Mohist canon [founder Mo-ti]

(ancient Chinese texts)

• A simple standard camera model

• A box with a small aperture

• Works in practice

aperture image planevirtual image3D object

5
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Field of view
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• Field of view (FOV)                  is an angular measure of space perceived by the 

camera.
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Field of view

• Small f results in wide-angle  image 

(Large field of view) 

• More 3D points project to the  sensor.

• Large f results in a telescopic image

(small FOV)

• Smaller portion of 3D scene is 

projected to the sensor.

7



Field of view and focal length

Large FOV, small f 

Camera close to the car

Small FOV, large f

Camera far away from the car

Sources: A. Efros, F. Durand 8



Effects of the aperture size

• Too large – multiple directions averaging, 

resulting in a blurred image.

• Too small – light starts diffracting, 

causing blurred image.

• In general, small number of rays hit the 

film, which results in a dark image.

• How do we deal with this?

9



Let’s add a lens...

• The lens focuses light to film

• The rays that travel through the center do not refract.

10Slide credit:: Steve Seitz



Let’s add a lens...

• The lens focuses light to film

• The rays that travel through the center do not refract.

• Points at a particular distance remain in-focus.

• Points at other distances are blurred.

The bluring

disk

11Slide credit:: Steve Seitz



• Thin lens: Points at different depths get focused on different depths of 

image plane. 
(Real-world lens have a greater depth of field)

• Depth of field: distance between image planes at which the blurring 

effect is sufficiently small..

Focus and the depth-of-field

Sharp

Blured

Would be sharp

here.

12Slide credit:: Steve Seitz



• Effects of aperture on the depth-of-field

• Small aperture increases the depth-of-field.

• But due to reduced illumination we have to increase the exposure time.

At f/32, the background is distracting.

At f/5.6, the flowers are isolated from the background.

Focus and the depth-of-field

Slide credit:: Steve Seitz 13



Chromatic aberration

• Different wave-lengths refract at different angle and focus at slightly 

different distances:

• The more oblique angle, the greater the 

effect (consider off-axis, edge points)

• On-axis angles are less oblique + symmetry 

has a cancelling effect Close to image center Close to image edge

14



Spherical aberration

• Spherical lenses do not focus the light perfectly.

• Rays close to lens edge focus closer than those at the center.

http://www.dofpro.com/sagallery.htm

http://photographylife.com/what-is-spherical-aberration

Without 
aberration

With 
aberration

15



Vignetting

16



Radial distortion

• Due to lens imperfections or fisheye.

• Most apparent at the edge of the image.

Without distortion Barrel distortion

17



Digital image

• Instead of film, use matrix (array) of sensors.

• Discretize image into pixels. 

• Quantize light into intensity levels.

18



Sensor: Camera

Near-infrared light

Visible light

Far-infrared light

Terahertz light

http://userweb.elec.gla.ac.uk/d/dpaul/terahertz.html

Electromagnetic spectrum

19



Visible light cams: CCD vs CMOS

• In both: Photons cause charge on each sensor „cell“.

• CCD reads out the charge (FIFO) serially and digitizes.

• CMOS performs digitization on each cell separately.

• CCD used to deliver better images, but CMOS technology has progressed.

• CMOS is cheaper to produce and is thus wide-spread.

Charge coupled device (CCD) Complementary metal–oxide–semiconductor (CMOS)

20



Color sensing in digital cameras

Vir: Steve Seitz

Bayer sensor
In classical design, we cannot read out R, 
G and B channel at a single pixel.

Why twice as many greens compared
to blue and red?

Luminance is mostly determined by
the green values.

Human visual system much more 
sensitive to changes in intensity than in 
chroma (color).

21



Color sensing in digital cameras

De-mosaicking: The missing 
color channels at a pixel 
need to be interpolated!

What you see Your camera sees

http://www.cambridgeincolour.com/tutorials/camera-sensors.htm

Missing green!

22

See further info on methods: Wei & Sun, JIG2022; Malvar et al., ICASSP2024



Color sensing : Foveon X3

Vir: M. Pollefeys

http://en.wikipedia.org/wiki/Foveon_X3_sensorhttp://www.foveon.com/article.php?a=67

• CMOS-based sensor.

• Based on the fact, that red, green and blue color penetrate the silicon at different depths.

Better image quality

Foveon X3Bayer-like

23



From camera to perception

• How does a human perceive the bottles, plates, forks,..., 

using only brightness?

• How do we perceive depth?

• Can a computer program do that?

matrix of „numbers“

3D

Lens Sensor

2D

24



IMAGE PROCESSING 1
Machine perception

25



Images as functions: RGB to grayscale

• Consider a color image I(x,y,c) as a 3D matrix

• At each coordinate,  𝑥, 𝑦 we have 3 gray-scale (scalar) values

26

𝐼(x,y,1)+I(x,y,2)+I(x,y,3)

3

𝑥 = 1 ∶ 𝑊

y=
1
∶
𝐻



Images as functions: Grayscale images

• Consider a grayscale image I(x,y) as a matrix of just gray-scale values

• At each coordinate,  𝑥, 𝑦 we have a gray-scale value (e.g., 0-255)

27

𝑥 = 1 ∶ 𝑊

y=
1
∶
𝐻

𝐼 𝑥, 𝑦 ∈ [0,255]



Binary images

• Only two possible gray levels

• Foreground vs. background

Slide credit: Kristen Grauman 28



Usage: Machine vision, OCR, etc.

R. Nagarajan et al. “A real time marking inspection scheme for semiconductor industries“, 2006

Source: Bastian Leibe

OCR on documents

Hand written numbers

29



Use case: Count the “round” cells

Generate hypotheses Classify each region
into a “round” and

“not round”

…

…

…

Keep “round” regions

Localize, Describe, Classify

30



The “Localize” block: Sequence of processing steps

• Convert gray image to a binary image

• Thresholding

• Clean binary image

• Morphologic filtering

• Extract individual regions

• Connected components

… then describe each localized region and classify

31



IMAGE THRESHOLDING
Machine perception

32



Thresholding

• Transform an image into a Binary Mask

• Various approaches

• Apply a single threshold

• Apply two thresholds

• A general view: apply a classifier

𝐹𝑇 𝑖, 𝑗 = ቊ
1, if 𝐹 𝑖, 𝑗 ≤ 𝑇
0, otherwise

 
 



 

=
otherwise  ,0

, if   ,1
,

21 TjiFT
jiFT

 
 



 

=
otherwise  ,0

, if   ,1
,

ZjiF
jiFT

Object/background separation

Source: Bastian Leibe33



A simple example: Bimodal histogram

Ideal case:
bright object on 
dark background.

A more realistic noisy 
image.

fr
eq

u
en

cy

Grey level0 255

34



A not so simple example...

• What to do here?

• Generally thresholding is a difficult problem

• Domain knowledge helps a great deal.

• E.g., the portion on letters on a page.

• E.g., size of the structure we want to detect...

Source: Shapiro & Stockman

Multiple modesSeparate modes Overlapping modes

35



Global binarization [Otsu ’79]

• Find a threshold T, that minimizes  intensity variances within classes separated by T:

• This equals to maximization of between class variance between:

Source: Bastian Leibe

Otsu, N (1979), "A threshold selection method from gray-level histograms", IEEE SMC 

T

36

𝜇1 𝑇 …𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 1
𝜇2 𝑇 …𝑚𝑒𝑎𝑛 𝑣𝑎𝑙𝑢𝑒 2

𝜇1 𝑇 𝜇2 𝑇



Otsu’s Algorithm

For threshold value T

1. Separate the pixels into two groups by intensity threshold T

2. For each group get an average  intensity and calculate                according to 

the equation on the previous slide.

Select the T*, that maximizes the variance: ][maxarg 2 (T)σT betweenT=

37

Used in several thousand modern algorithms in particular in medical imaging



State-of-the-art: Generalization of Otsu (CVPR2020)

• “Recently”, Otsu’s method revisited:

• Formulate the problem as fitting 2 Gaussians

to the histogram with priors on mixture 

weights and variances (Bayesian view)

• Efficiently computed by a single pass

through the histogram (like Otsu)

• Outperforms all single-pass algorithms 

and all deep learning algorithms on the 

text binarization benchmark

38

Barron, J.T., A Generalization of Otsu’s Method and Minimum Error Thresholding, CVPR2020 ; link to video



Local binarization [Niblack’86]

• Estimate a local threshold in neighborhood W:

with k [-1,1] set by user.

• Calculate the threshold separately for each pixel.

WWW kT  +=

TW

Effect:

W
W

......

......

Source: Bastian Leibe

Niblack, W (1986), An introduction to Digital Image Processing, Prentice-Hall

39



Examples of thresholding

Original Local (Niblack)Global (Otsu)

40



Additional improvements

• The shade in documents is often smooth...

Try to model it by a polynomial!

Original

Binarized resultShadow compensation

Fitted surface

41Vir: S. Lu & C. Tan, ICDAR’07

DO TU.



Comparison of results

Original image Global (Otsu)

Polynomial
+ global

Local (Sauvola)

Vir: S. Lu & C. Tan, ICDAR’07 44



CLEANING THE IMAGE
Machine perception

45



Cleaning the binary image

• Thresholded image still includes noise

• Require post-processing to remove artefacts

• Morphological operators

• Remove isolated points and small structures

• Fill holes

Source: Bastian Leibe46



Dilation: A sneak peak preview

• Dilate the regions of „white“ pixels

• Increases the size of the structures

• Fills holes in regions

Before dilation After dilation

47



Erosion: A sneak peak preview

• Erode the  regions of „white“ pixels

• Reduce the size of structures

• Remove bridges, branches, noise

Before erosion After erosion

48



Central to morphology: Structuring element (SE)

• Can be any shape and content:

• Fit: All “1” pixels in SE cover “1”

pixels in the image.

• Hit: At least one of “1” pixels in 

SE cover “1” pixels in the image.

Origin of the SE SE placed on image at (2,2)
0     1     2      3     4      5     6 …

0
     1

     2
      3

     4
      5

    …

49Slide curtesy: Brian Mac Namee



Fitting & Hitting

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 0 1 1 1 1 1 0 0 1 0 0

0 1 1 1 1 1 1 1 0 0 0 0

0 1 1 1 1 1 1 1 0 0 0 0

0 0 1 1 1 1 1 1 0 0 0 0

0 0 1 1 1 1 1 1 1 0 0 0

0 0 1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0

B C

A

0 1 0

1 1 1

0 1 0

Structuring 

Element 

Fit / Hit?
A: F=1, H=1
B: F=1, H=1
C: F=0, H=1

Slide curtesy: Brian Mac Namee

Fit : All “1” elements in SE cover 1
Hit: Any “1” element in SE cover 1

50



Erosion

• Erosion of image 𝑓 by structuring element 𝑠 is given by g = 𝑓𝑠.

• The structuring element s is positioned with its origin at (𝑥, 𝑦) and the 

new pixel value is determined using the rule:

fits1 if  
( , )

0 otherwis

 

e

s f
g x y


= 


Fit: All “1” pixels in SE cover “1”
pixels in the image.

SE placed on image at (2,2)
0        1       2        3       4       5       6 …

0
       1

       2
       3

       4
       5

    …

0 1 0

1 1 1

0 1 0

𝑠

51



Erosion Example

Original Image Processed Image With Eroded Pixels

Fit :All 1 in SE covered in image
Structuring Element

52Slide curtesy: Brian Mac Namee



Erosion Example

Structuring Element

Processed Image With Eroded Pixels

Fit :All 1 in SE covered in image

Original Image

Eroded away
(pixels removed)

53Slide curtesy: Brian Mac Namee



Dilation

• Dilation of image 𝑓 by structuring element 𝑠 is given by g = 𝑓 ⊕ 𝑠.

• The structuring element s is positioned with its origin at (𝑥, 𝑦) and the 

new pixel value is determined using the rule:

hits1 if  
( , )

0 otherwis

 

e

s f
g x y


= 


0 1 0

1 1 1

0 1 0

𝑠
SE placed on image at (2,2)

0        1       2        3       4       5       6 …

0
       1

       2
       3

       4
       5

    …

Hit: Any “1” pixels in SE cover “1”
pixels in the image.

54



Dilation Example

Original Image Processed Image

Structuring Element
Hit: Any 1 in SE covered in image 

55



Dilation Example

Structuring Element

Processed ImageOriginal Image

Dilated region
(pixels added)

Hit: Any 1 in SE covered in image 
56



Effects of erosion and dilation

Original

Dilation by a round 
structuring element.

Erosion by a round
structuring element.

Source of images: http://homepages.inf.ed.ac.uk/rbf/HIPR2/

57



Combined operations: Opening

• Definition

• Apply erosion then dilation

• Effect:

 Removes small objects,

preserves rough shape.

Image Source: R.C. Gonzales & R.E. Woods 58



Effects of opening

• Can filter out structures by selecting

the size of structuring element.

Original

Opening by a small
structuring element

Thresholded Opening by a large
structuring element

Source of images: http://homepages.inf.ed.ac.uk/rbf/HIPR2/ 59



Effects of opening

• Choose the structure in image by choosing the shape of the structuring 

element.

Opening by a round

structuring element
Original image

60Source of images: http://homepages.inf.ed.ac.uk/rbf/HIPR2/



Combined operations: Closing

• Definition

• Apply dilation then erosion

• Effect

 Fill holes, preserves

the original shape.
Image Source: R.C. Gonzales & R.E. Woods 61



Effects of closing

• Fill holes in thresholded image

(eg., reflections)

Original Thresholded Closing by a round
structuring element

The size of structuring 
element determines the 
maximal size of  holes 
that will be  filled.

62Source of images: http://homepages.inf.ed.ac.uk/rbf/HIPR2/



Example: opening + closing

Original image Opening Closing

DilatedErode

Structuring
element

Image Source: R.C. Gonzales & R.E. Woods 63



Morphological operators in OpenCV

• Main operations

• Dilation (OpenCV: cv2.dilate)

• Erosion (OpenCV: cv2.erode)

• Several important combinations

• Opening (OpenCV: cv2.morphologyEx(img,cv2.MORPH_OPEN, kernel) )

• Closing (OpenCV: cv2.morphologyEx(img,cv2.MORPH_CLOSE, kernel))

• Boundary extraction

• Much more available

(see help)

Examples of structuring elements:

64



LABELLING REGIONS
Machine perception

65



Connected components for labeling

• Goal: find separate connected regions

Sources: Shapiro & Stockman, Chandra

Binary image connected components

66



Examples of connected components

Source: Pinar Duygulu 67



Connectivity

• Determines which pixels are considered neighbors.

4-neighborhood 8-neighborhood

Source: Chaitanya Chandra 68



• Process image from left to right, from top to bottom:
1.) If the current pixel value is 1

i.)  If only one neighbor (left or top) is 1,

copy its label.

ii.)  If both neighbors are 1 and have same label,

copy that label.

iii.) If they have different labels

− Copy label from the left.

− Update the table of equivalent labels.

iv.) Otherwise form a new label.

• Relabel with the smallest equivalent labels.

Slide credit: J. Neira

Sequential connected components

69



Example SCC: 8-connectivity

70



Example SCC: 8-connectivity

(Update equivalency table {2,5})

71



Example SCC: 8-connectivity

Equivalency table
First pass: label

Second pass: apply equivalences

I==2

72



REGION DESCRIPTORS
Machine perception

Classify each region

…

73



Simple region descriptors

• A region can be detected using the connected components.

• How to describe it?

• Some examples:

cv2: connectedComponentsWithStats 

(Easy to come up with your own)
74



Require a level of invariance (App dependent)

• Ideal descriptor will map:

• Two images of the same object close-by in feature space.

• Two images of different objects to points far between each other.

75



Task: Detect round cells

Classify each region

…

Trained classifier

round

not round

76



Summary: Binarization

• Pros

• Fast, simple to store

• Simple techniques

• Works in constrained setups

• Cons

• Difficult to get „clean“ shapes

• Many real-world scenarios contain noise

• Often too coarse representation

• Not robust in 3D view changes

Slide credit: Kristen Grauman 77
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FILTERING
Machine perception

2



Can be applied for…

• Noise reduction and image restoration

• Structure extraction/enhancement (later in the course)

noisy Less noisy

Filtering

Filtering

3



Types of image noise

• Salt and pepper (sol in poper)

• Random black and white dots.

• Impulse noise (Impulzni šum)

• Random occurrence of white dots.

• Gaussian noise (Gausov šum)

• The intensity variation sampled

from a Gaussian (Normal) 

distribution.

Vir: Steve Seitz 4



Gaussian noise

Matlab:

>> im = imread(“peppers.jpg”);

>> noise = randn(size(im)).*5;

>> output = im + noise;

5

?



How to remove a Gaussian noise?

• 𝐵 = 𝐴 + 𝐺𝑛𝑜𝑖𝑠𝑒 = 𝐴 = 150

• Solution: just compute the average value!

• Might it really be this simple?

6

A = ones(100,100)*150 B = A + randn(size(A))*20 C = B*0 + mean(B(:))

149.97 -> 150



Let’s try to remove the noise...

• Assumption: 

• Pixels are similar to their neighboring pixels

• The noise is independent among pixels (“i.i.d. = independent, identically distributed”)

• So let’s compute an improved estimate of pixel’s intensity by replacing it 

with an average of pixel intensities in its immediate neighborhood...

7



A moving average 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

8Vir: Steve Seitz



A moving average 2D

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0
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A moving average 2D
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A moving average 2D
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A moving average 2D
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12Vir: Steve Seitz



A moving average 2D

• Assume the averaging window size is 2k+1 x 2k+1:

• Now let’s generalize this by making a weight depend on relative position from the 

central element.

A loop over all pixels  within the
neighbourhood of F[i,j].

Equal weights for
all pixels.

Nonuniform weights

13



Correlation filtering

• This is called cross-correlation and abbreviate as:

• Image filtering

• Replace image intensity with a weighted

sum of a window centered at that pixel.

• The weights in the linear combination

are prescribed by the filter’s kernel.

F

(0,0)

(N,N)

H
4

1 2

3

14



Convolution as correlation

• Compute convolution by cross-correlation: 

• Flip the filter in both dimensions (horizontal + vertical)

• Apply cross-correlation

convolution

operator

F

(0,0)

(N,N)

H
4

1 2

3

H
4

12

3
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Convolution vs. Correlation

• Correlation

• Convolution

• Comment:

• For a symmetric filter, H[-u,-v] = H[u,v], correlation  convolution.

Notice the difference?

(we will also use “*” to denote convolution,
i.e., 𝐺 = 𝐻 ∗ 𝐹.)

16



Properties of convolution

• Shift-invariant: 

The filter weights remain the same, regardless the position.

• Linear (superposition & scaling): ℎ ∗ 𝛼1𝑓1 + 𝛼2𝑓2 = 𝛼1 ℎ ∗ 𝑓1 + 𝛼2(ℎ ∗ 𝑓2)

• Commutative: 𝑓 ∗ 𝑔 = 𝑔 ∗ 𝑓

• Associative: 𝑓 ∗ 𝑔 ∗ ℎ = 𝑓 ∗ (𝑔 ∗ ℎ)

• As result, application of multiple filters is equal to application of a single filter : 

𝑓 ∗ 𝑏1 ∗ 𝑏2 ∗ 𝑏3 = 𝑓 ∗ (𝑏1 ∗ 𝑏2 ∗ 𝑏3)

• Identity: 𝑓 ∗ 𝑒 = 𝑓 , where 𝑒= […, 0, 0, 1, 0, 0, …] a unit impulse.

• Derivative:
𝜕

𝜕𝑥
𝑓 ∗ 𝑔 =

𝜕

𝜕𝑥
𝑔 ∗ 𝑓 =

𝜕

𝜕𝑥
𝑓 ∗ 𝑔

17



Filtering: Boundary conditions

• What to do at the image boundaries?

• The kernel exceeds image boundaries at the edge

• Need for extrapolation

• Methods (assumptions):

• Crop (black)

• Bend image around

• Replicate edges

• Mirror image

Slide credit: S. Marschner 18



Filtering: Boundary conditions

• What to do at the image boundaries?

• The kernel exceeds image boundaries at the edge

• Need for extrapolation

• Methods (Python): cv2.filter2D( … BorderTypes= )

19

https://docs.opencv.org/master/d2/de8/group__core__array.h
tml#ga209f2f4869e304c82d07739337eae7c5

Caution: the method performs 
correlation, not convolution



Filtering kernels: A Gaussian kernel

Original Filtered

20



Filtering kernels: A Gaussian kernel

• Instead of using uniform weights, pixels closer

to the center should have higher weight.

• A kernel with such property: A Gaussian

• Rotation symmetric, bell-shaped

21



Filtering kernels: A Gaussian kernel

• How about parameters?

• Variance 2 determines the extent

of smoothing...

Slide credit: Kristen Grauman

σ = 2 by kernel
3030

σ = 5 by kernel 
3030

22



Filtering kernels: A Gaussian kernel

• How about parameters?

• Kernel size!

• Infinite support, but discretization makes it finite.

• Rule of thumb: set half size of the kernel to 3σ

σ = 5 with 1010 

kernel
σ = 5 with 3030 

kernel

23



Effects of smoothing

Increasing the noise extent→

In
creasin

g th
e kern

el size →

24



Efficient implementation

• In case a filter is separable, we can rewrite it as a convolution of two 1D filters:

• Recall: Convolution is linear, associative + commutative

• Apply convolution at each row separately using a 1D kernel:

• Next apply a 1D convolution at each column:

• Both, Uniform as well as Gaussian kernels are separable!

Slide credit: Bernt Schiele

I

g(x)

I’

I
G =

g(x)* g(y)

=

I’
g(y)

I’’

25

𝐺 = 𝑔𝑥 ∗ 𝑔𝑦

𝐼 ∗ 𝐺 = 𝐼 ∗ 𝑔𝑥 ∗ 𝑔𝑦 = (𝐼 ∗ 𝑔𝑥) ∗ 𝑔𝑦



Original 

Filtered

Strange artefacts in convolution results…

Gaussian

Uniform

*

*

26



Convolution and spectrum

• Convolution of two functions in image space is equivalent

to the product of their corresponding Fourier transforms (spectra).

• Convolution manipulates the image spectrum

• Enhancing/suppressing frequency bands in image.

Fourier transforms
of 𝑓 and 𝑔.

Image 𝑓
and filter 𝑔

𝓕 𝑓 ∗ 𝑔 = 𝓕(𝑓)⨀𝓕(𝑔)

27



Recall the Fourier transform

Images from: https://en.wikipedia.org/wiki/Fourier_transform

A signal is represented as a sum of sines/cosines of various frequencies

𝑓 𝑥 =෍

𝑛

𝑎𝑛 cos 𝑛𝑥 + 𝑏𝑛sin(𝑛𝑥)

28



Convolution: removing noise

• Noise corresponds to adding high 

frequencies. To remove these, we apply a 

low-band pass filter.

• The spatial box filter transforms to a sinc in 

frequency space, causing artefacts (side 

lobes).

• A Gaussian maintains a compact support in 

both image and frequency space. Hence, it’s 

more appropriate as a low-band-pass filter.

¨

¨

¨

signal Frequency spectrum 
(eg., FFT)

See Forsyth, Ponce: Computer vision, a modern approach.

𝓕 𝑓 ∗ 𝑔 = 𝓕(𝑓)⨀𝓕(𝑔)

29



Original 

Filtered

Strange artefacts in convolution results…

Gaussian

Uniform

*

*

Filter does not 
introduce high 
frequencies

Filter introduces 
high frequencies

30



Linear filters in practice

Original

111
111
111

000
020
000

-

Sharpening filter:
Enhances differences by local averaging.
To explain this, think about what happens in te frequency domain.

*(                                            )=  

Source: D. Lowe 31



Sharpening filter

To explain this, think about what happens in frequency domain.

before after

32



Previously at MP…

• Basic image processing techniques

• Linear filters: convolution, correlation

Thresholding Morphology Region labeling Region descriptors

33

Convolution <->Correlation = Dot product



Filtering as template matching

Template

Slide credit: Kristen Grauman

Where’s waldo?

35



Apply correlation with template

Input image Correlation map

Template

∑ = 

36

Convolution <->Correlation = Dot product = Measure of similarity



• But the object may be bigger/smaller in the image!

• Well, we could carry out correlation for different scales of the 

template...

Start with this small one

Issues with template matching over scales

Then with this one

etc. …

37



• But rather than template, we scale the input image

Template matching in scale space

Start with this small one

Keep the same size

Keep the same size

Reduce the image size

Reduce the image size

38



Efficient resizing: Image pyramids

High resolution

Low resolution

Reduce (resample) the image!

39



How do we reduce an image?

• Naive: 

• Remove every second pixel...

• Problem: the structures in image change!

• This effect is called Aliasing.

• Look into frequency domain to explain this (Forsyth-Ponce Book)

original image subsampled

40



Avoiding aliasing

• Nyquist theorem: 

• If we want to reconstruct all frequencies up to f, we have to sample the signal by 

at least a frequency equal to 2f.

• Meaning: we cannot reconstruct some of

the high frequencies when subsampling!

41

original image

(incorrectly)
subsampled

Image source link



Avoiding aliasing

• Nyquist theorem: 

• If we want to reconstruct all frequencies up to f, we have to sample the signal by 

at least a frequency equal to 2f.

• Meaning: we cannot reconstruct some of

the high frequencies when subsampling!

• Solution: 

• Remove the high frequencies that cannot  be reconstructed, then subsample.

• How to remove? Blur the image.

42

original image subsampled



Gaussian pyramid

High resolution

Low resolution

2)*( 23 = gaussianGG

1G

Image=0G

2)*( 01 = gaussianGG

2)*( 12 = gaussianGG

2)*( 34 = gaussianGG

smooth

smooth

smooth

smooth

Source: Irani & Basri 43



Summary: Gaussian pyramid

Slide credit: David Lowe

• Construction: get a new level directly from the previous

• Smooth by a small filter and resample

• Reasons for Gaussian smoothing...

• Convolution Gauss*Gauss = new Gauss 

• 𝐺 𝜎1
2 ∗ 𝐺(𝜎2

2)= 𝐺(𝜎1
2 + 𝜎2

2)

• Reason for size reduction...

• Gaussian is a low-band-pass filter, so we get a redundant representation of a 

smoothed image.

 No need to store a smoothed image in full resolution.

44



Image/Feature Pyramids widely applicable

• Enables efficient implementation of many (even) modern methods

• Multi-scale object detection ...

• Multi-scale edge detection ...

• Multi-scale feature point detection ...

• Manipulation of selected frequency bands ...

45

Suleiman and Sze, JSPS2026



Nonlinear filters: Median filter

• Basic idea

• Replace the pixel intensity by a median of intensities within a small patch.

• Properties

• Does not add new gray-levels into the image.

• Removes outliers: appropriate for impulse noise and salt&pepper noise 

removal.
Slide credit: Kristen Grauman 46



The Median filter

Salt&pepper
noise

After median 
filtering

Plot of a line in the image

47Slide credit: Kristen Grauman



Median vs. Gaussian
3x3 5x5 7x7

Gaussian
filter

Median
filter

Slide credit: Svetlana Lazebnik 48



COLOR
Machine perception

49



Sensor: Camera

Near-infrared light

Far-infrared light

Terahertz light

http://userweb.elec.gla.ac.uk/d/dpaul/terahertz.html

Electromagnetic spectrum Visible light

50



Light

• Light is an electromagnetic radiation composed of several frequencies

• Properties are described by its spectrum (i.e., how much of each frequency is present)

Energy radiated in a unit of time w.r.t. wavelength

• E.g., laser light contains only a narrow band of wavelengths (frequencies)

• Visible light contains radiation with 

wavelengths in interval 400-700nm

wave length

intensity

51



Human color perception

• Human eye (retina) contains specialized cells that react to different 

wavelengths differently.

• Three types of cells called “cones”: R, G, B

• A type of cells called “rods”: intensity only

Yellow

52

Source:link



Additive mixture model

• What color do we get if we shine a red and green light

to a white sheet of paper?
colors mix by summation of 

their spectra.

colors added to black.

perceive

perceive

perceive

53



Systems using the additive model

http://www.tech-faq.com/how-lcd-projectors-work.html

Monitors LCD projector

54



Subtractive models

• What color do we get if we paint some

cyan and yellow pigment to white paper?

colors mix by spectra

intersection.

Pigments remove

the color from the 

incident white light.
Vir: W. Freeman

perceive

perceive

perceive

55



• Printing on paper

• Crayons

• Photographic film

• See this nice app and play with setups:
https://graphics.stanford.edu/courses/cs178/applets/colormixing.html

Systems using a subtractive model

56



Color spaces

• Role of color space: Unique color specification (e.g., for reproduction)

• Specifying a color in a color space allows accurate color reproduction on various 

media like photo, print and monitor.

• Defined by the choice of primary colors (primaries)

• A new color is a weighted sum of primaries

• Mixing weights r,g,b to get any color were estimated on human subjects

By mixing the colours, we get any colour that 
lies within the triangle of primaries.

Recall: The human eye is equipped with sensory cells for the perception of the three primary colors (RGB)

r

g

b

57



Linear color space example: CIE XYZ

• International Commission on Illumination 

(Commission international d’eclairage -- CIE), 1931

• Representation by chromaticity only [x,y]:

Artificial primaries

58



Linear color space example: RGB

• Single wave-length primaries

• Appropriate for use in imaging 

devices (e.g., monitors), but 

not for human perception

Cyan

MagentaYellow

White

Black

59



HSV colorspace

• Hue (barvnost), Saturation (nasičenje), 

Value (intenziteta)

• Nonlinear – hue coded by angle

• Python: cv2.cvtColor(I, Type)

Type:

• cv2.COLOR_RGB2HSV

• cv2.COLOR_HSV2RGB

60



Distances in colourspaces

• Do distances between points in the colourspace make sense 

perceptually?

Slide credit:Kristen Grauman 61



Distances in color spaces

• Not necessarily: CIE XYZ is nonuniform colorspace – Euclidean distance between 

coordinates of colors in colorspace is not a good indicator of color similarity (in 

terms of human perception).

McAdam ellipses: 
Just (human) noticeable differences in color

62Slide credit:Kristen Grauman



Uniform color spaces

• Transforms such that ellipses are mapped 

into circles 

→ distances better replicate the human 

perception of color similarity.

• Examples of uniform colour spaces:

• CIE u‘v‘

• CIE Lab (1976)

CIE XYZ

CIE u’v’

Nonuniform colour space

Uniform colour space

63



Computing color similarity between objects

• How to summarize the color?

• Idea1: just compute the average (r,g,b)

64

Color of the (r,g,b) at i-th pixel

μ𝑟𝑔𝑏

μ𝑟𝑔𝑏 Issue: a single value does not 
sufficiently capture the color
distribution



Describe the color by a Gaussian

• Summarize the color by parameters of a Gaussian distribution

65

But often a more flexible model of color distribution is required!



COLOR DESCRIPTION BY USING HISTOGRAMS
Machine perception

66



What is a histogram?

• Image histogram records the frequency of intensity levels

• Example:

Intensity value

16 intensity levels

256 intensity levels

67



Color histogram

• Color statistic

• Example of a 3D RGB histogram 𝐻 𝑅, 𝐺, 𝐵 visualization

• Each pixel color is a point in 3D space (RGB)

• Calculate the 3D color histogram 

• H(R,G,B) = number of pixels with color [R,G,B] 

[Swain & Ballard, 1991]

68



Color histogram

• Robust representation of images

• Translation, scale, partial occlusion

69

[Swain & Ballard, 1991]



Intensity normalization

• Intensity is contained in each color channel

• Multiplying a color by a scalar changes the intensity but not the hue („true“ color).

• This means that we can normalize a color by its intensity.

• Intensity is defined as:  I = R + G + B:

• Chromatic representation:

• We can now use only a 2D space (rg), since it holds that

Slide credit:Bastian Leibe 70



Color comparison via histograms

• Compare images indirectly – compare only their descriptors 

(histograms)

Test image

Known objects

A measure of distance/similarity 
between the histograms is required!

71Slide credit:Bastian Leibe



• Definition (=L2 norm)

• Explanation

• Looks for differences in histogram cells.

• Interpretation: Distance in feature space.

• Range of output values: [0,1]

• All cells receive equal weight.

• Susceptible to noise!

Q
V

Popular distances: Euclidean distance

72Slide credit:Bastian Leibe



• Similarity between two probability density functions 

• Chi-squared (slo., hi-kvadrat):

• Kullback-Leibler divergence:

• Hellinger distance:

WATCH OUT FOR qi=vi=0!!

Not a proper metric (not symmetric)

Symmetric version (Jeferey’s divergence):

Proper metric, constrained to interval [0,1]

Popular distances: pdf similarity

73



References

• David A. Forsyth, Jean Ponce, Computer Vision: A Modern Approach (2nd Edition), (prva izdaja

dostopna na spletu)

(Ozadje linearnih filtrov in povezavo s Fourierjevim transformom najdete v Poglavjih 7 in 8)

• R. Szeliski,Computer Vision: Algorithms and Applications, 2010

• Kristen Grauman, „Computer Vision“, lectures
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Appendix: Fun with hybrid images...

Gaussian filter

Laplacian filter:

A. Oliva, A. Torralba, P.G. Schyns, “Hybrid Images,” SIGGRAPH 2006

GaussUnit impulse Laplacian of Gaussian

slide credit: Kristen Grauman 75



Previously at MP…

• Correlation, Gaussian pyramids

• Color – perception, color spaces and color histograms as image descriptors

1



Machine perception
Derivatives and edge detection

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme,
Fakulteta za računalništvo in informatiko,

Univerza v Ljubljani



Edge detection

• Goal: map image from 2D grayscale intensity pixel array into a set of 

binary curves and lines.

• Why?

3

Measurement

Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV2023

Abstraction



What constitutes an edge?

Discontinuity of depth: 
object borders

Changes in 3D normal 
orientation caused by
shape changes

Local texture:

Shadows

Anything that appears
as an edge…

4



What constitutes an edge?

Edge presence is strongly
correlated with the local
intensity changes.

Anything that appears
as an edge…

5

Operator that measures 
a local intensity change:
Derivative 



IMAGE DERIVATIVES
Machine perception

6



1D derivative: Intuition

First order derivative
𝑑
𝑑𝑥 𝑓(𝑥)

7



Derivatives and convolution

• A partial derivative of a continuous 2D function f(x,y) :

• For a discrete case, approximate by using finite differences:

• Question: If implemented by convolution, what would the convolution kernel for 

derivative look like? (Next slide)







),(),(
lim

),(

0

yxfyxf

x

yxf −+
=





→

1

),(),1(),( yxfyxf

x

yxf −+





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*                         =

Partial derivatives: Implementation

Horizontal derivative

Vertical derivative

*                         =-1     
1

9
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• Image gradient:

• Gradient points in direction of greatest intensity change:

• Gradient direction (orientation of edge normal):

• Gradient strength is defined by its magnitude:

Partial derivatives: Image gradient 

10

Gradient magnitude



Discrete world is noisy...

• Take a single line in the image:

• Plot intensities w.r.t. pixels:

So where did the edge go!? Noise gets amplified by derivation...
Slide credit: Steve Seitz 11



Solution: Smooth the image first

Where’s the edge? Find maxima in map

12Slide credit: Steve Seitz



• Derivatives:

Remember convolution properties

13Slide credit: Steve Seitz



2D partial derivatives – naiive approach

1. Smooth the image by a 2D Gaussian filter

2. Take derivative w.r.t. x

*

=* -11

=

Image Gaussian
kernel

Blurred image

Blurred image Derivative
kernel

Derivative image

1 Blurring

2 Differentiating
w.r.t. x

14



2D partial derivatives – smarter approach

• Recall the convolution property:

( ) ( )
x

I
x

G I G =









**-11 ( )

* -11 *( )
Precompute!

15



Smarter way

• Recall the convolution property:

( ) ( )
x

I
x

G I G =









**-11 ( )

*( )
Can precompute

analytically and discretize!
16



2D partial derivatives – smarter approach

• Recall the convolution property: ( ) ( )
x

I
x

G I G =









*

**-11 ( ) =

=

Naiive:

Smarter:

17



Gaussian partial derivatives

w.r.t. x w.r.t. y

𝑥𝑦 𝑥𝑦

𝑥

𝑦

𝑥

𝑦

• Convolution kernels for taking partial derivatives 

w.r.t. x and y:

18



Some other popular kernels

>> My = fspecial(‘sobel’);

>> outim = imfilter(double(im), My); 

>> imagesc(outim);

>> colormap gray;

19



Depends on what we’re looking for... 

Thin edges or thick edges (leaves, branches, trunks,…)

Edges exist at different scales

20



Parameter σ is the “scale”/“width” of  a Gaussian kernel that determines 
the extent of smoothing, i.e., determines which edges will be removed.

…

Tuning the filter to the right scale

21



The enhanced/detected structures depend on the Gaussian kernel size.

Large kernels: emphasize edges on a larger scale.
Small kernels: emphasize edges on a smaller scale.

σ = 1 pixel σ = 3 pixels

How does σ affect the derivative?

Tuning the filter to the right scale

22



FROM DERIVATIVES TO EDGE DETECTION
Machine perception

23



Recall: The task of edge detection

• Goal: map image from 2D grayscale intensity pixel array into a set of 

binary curves and lines.

abstraction Robust, compact representation

24

Measurement

Derivative enhances the edges, but these are not binary curves.



The task of edge detection

• Basic approach: 

find strong gradients + post process

25



Designing an edge detector...

• Criteria of “optimal” edge detector:

1. Good detection:  optimal detector minimizes probability of false positives
(edges caused by noise), and false negatives (missing true edges)

2. Good localization: detected edges should be close to the location of the true 
edges.

3. Specificity: detector should return only a single point per true edge; minimize 
number of local maxima around true edge.

Source: Li Fei-Fei 26



The Canny edge detector [Canny, IEEETPAMI 1986]

• Most popular edge detector in computer vision.

• Theoretical model of the edge: 

A step function + Gaussian noise. 

• Canny showed that first derivative of a Gaussian well approximates an

operator that optimizes a tradeoff between signal-to-noise ratio and 

localization on the specified theoretical edge model.

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986. 

Python:   
>> cv2.Canny(image, Th_lo, Th_hi,…)

27

MATLAB:   
>> edge(image, ‘canny’);

>> help edge



Canny edge detector

1. Filter image by a derivative of a Gaussian (smooth and enhance)

2. Calculate the gradient magnitude and orientation

3. Thin potential edges to a single pixel thickness

4. Select sequences of connected pixels that are likely an edge

*

*

𝑚 > Θ

28



Canny: enhancing the potential edge pixels 

Original image (Lena) Gradient magnitude

29



Canny: enhancing the potential edge pixels 

Original image (Lena) „Thresholding“: Set magnitudes lower 

than a prescribed threshold to 0.

30



Canny: thinning the edges

How to convert 
these thick lines 
into thinner 
curves?

Not by thresholding…

31



• For each pixel check if it is a local maximum along its gradient direction. 

• Advanced: Actually, for q, we should check interpolated pixel values at p and r.

• Only local maxima should remain.

Thinning by non-maxima suppression

32



Canny: thinning the edges

Thinning

(non-maximum suppression)

33



Canny: thinning the edges

Problem: pixels along this 
edge did not „survive“ 
thresholding.

Thinning

(non-maximum suppression)

34



How to select a threshold?

Low threshold High threshold

Gradient magnitude

Threshold + ThinningThreshold + Thinning

35



• Trace each contour separately 

(e.g., using 4-connectedness).

• Apply two thresholds khigh and klow

• Start tracing a line only at pixels that 

exceed a high threshold khigh.

• Continue tracing if the pixels exceed a lower

threshold klow.

• Typical threshold ratio: khigh / klow = 2

Canny edge detector: Hysteresis thresholding

36



Hysteresis thresholding

Original

High threshold
(strong edges)

Low threshold
(weak edges)

Hysteresis thresholding

Source: L. Fei-Fei 37



The Canny edge detector in a nutshell

1. Convolve the image by a derivative of a Gaussian. 

2. Calculate the gradient magnitude and orientation

3. Non-maxima suppression (NMS)

• Set low gradient magnitudes to zero to reduce the number of candidates in NMS

• Thin edges to one-pixel width.

4. Trace the edges by hysteresis thresholding

• Apply a high threshold on the magnitude to initialize a contours and continue 

tracing the contour until the magnitude falls below a low threshold.

38



Canny edge detector in “action”

gradient magnitude gradient angle

thinned Thresholded by hysteresis

Input image

39



Canny edge detector in “action” ... with ControlNet

40

Thresholded by hysteresis

Zhang et al., Adding Conditional Control to Text-to-Image Diffusion Models, ICCV2023

Generated by ControlNet

“hyperrealistic dramatic sky of a dragon”

Original image

https://huggingface.co/lllyasviel/sd-controlnet-canny



Beyond Canny edge detector

• Since Canny’s publication, lots of new approaches for edge detection by 

machine learning.

• Essentially, look at patches and learn what an edge is by inferring the 

structure from intensities.

Sketch Tokens, CVPR 2013. Joseph Lim, C. Zitnick, and P. Dollár

41



Beyond Canny edge detector

• CNNs trained for edge detection

Kung and Fowlkes, Recurrent Pixel Embedding for Instance Grouping, CVPR2018

42



EDGE DETECTION BY PARAMETRIC MODELS
Machine perception

43



Example: line fitting

• Why should we fit lines?  

Many scenes are composed of straight lines

44



Challenges of line fitting

• Noisy edges, multiple models:

• Which points correspond to

which line, if at all?

• Some parts of lines are not detected:

• How to find a line that connects the missing 

points?

• Noisy orientation:

• How do we determine the unknown parameters 

of true lines?

45

𝑦 = 1.6𝑥 + 21.5



• Given a set of points, find the lines.

• How many lines?

• Which points correspond to which lines?

• Hough Transform is a voting technique that 

answers these questions.

• Main idea: 

1. For each edge point compute parameters of 

all possible lines passing through that point

2. For each set of parameters cast a vote

3. Select the lines (parameter combinations) that 

receive enough votes.

Line fitting by voting for parameters

46Slide credit: Kristen Grauman



Hough space: straight lines

• Connection between spatial (x,y) and 

Hough space (m,b):

• A line in image corresponds to a point in the Hough space.

x

y

m

b

m0

b0

Image space Hough (parametric) space

Slide credit: Steve Seitz 47



Hough space: straight lines

• Connection between spatial (x,y) and 

Hough space (m,b):

• A line in image corresponds to a point in the Hough space.

• Mapping from image to Hough space:

• For a point (x,y), find all (m,b) for which this holds : y = mx + b

x

y

m

b

Image space Hough (parametric) space

x0

y0

48Slide credit: Steve Seitz



Hough space: straight lines

• Connection between spatial (x,y) and 

Hough space (m,b):

• A line in image corresponds to a point in the Hough space.

• Mapping from image to Hough space:

• For a point (x,y), find all (m,b) for which this holds : y = mx + b

x

y

m

b

Image space Hough (parametric) space

b = –x1m + y1

(x0, y0)

(x1, y1)

𝑚𝑜𝑝𝑡

𝑏𝑜𝑝𝑡

49Slide credit: Steve Seitz



Hough space: straight lines

• Connection between spatial (x,y) and 

Hough space (m,b):

• A line in image corresponds to a point in the Hough space.

• Mapping from image to Hough space:

• For a point (x,y), find all (m,b) for which this holds : y = mx + b

x

y

m

b

Image space Hough (parametric) space

𝑚𝑜𝑝𝑡

𝑏𝑜𝑝𝑡

Discretize the
parameter
space… 

50Slide credit: Steve Seitz



Encode the line in polar coordinates

• Issue with Cartesian (m,b): infinite values for vertical lines!

• Point in image  sinusoid in Hough space

dyx =−  sincos

[0,0]

d



x

y

: perpendicular distance 
from the origin

: angle of perpendicular line 
with x axis

d



51



Algorithm: Straight lines

Using polar representation:

Basic Hough transform:

1. Initialize H[d,] = 0.

2. For each edge point (x,y) in image

For  = 0 to 180 // over quantized values!!

H[d, ] += 1

3. Find local maxima 𝑑𝑜𝑝𝑡
𝑖 , 𝜃𝑜𝑝𝑡

𝑖
𝑖=1:𝑁

in accumulator array H[d,].

4. Detected line is defined by:

 sincos yxd −=

dyx =−  sincos

H: accumulator array (votes)

d



Hough line demo

𝑑𝑜𝑝𝑡
𝑖 = 𝑥𝑐𝑜𝑠𝜃𝑜𝑝𝑡

𝑖 − 𝑠𝑖𝑛𝜃𝑜𝑝𝑡
𝑖

52



Hough transform in action

Only the longest segments along each detected line are 
shown here.

Slide credit: Kristen Grauman 53



Hough transform: Noise – binning 

Coordinates of
edge points in image

Votes
x

y d

Are there any significant problems with the noise?
Slide credit: David Lowe 54



Hough transform: Noise – amplitude of votes

Random points still form some local maxima in the accumulator array!

Coordinates of
edge points in image

Votes

55Slide credit: David Lowe



Hough transform: Extensions

Extension 1: Use the gradient direction!

1. same as standard HT

2. For each edge point [x,y]

 = gradient direction at (x,y)

H[d,] += 1

3. same as standard HT

4. same as standard HT

Reduces the number of degrees of freedom (dof)!

 sincos yxd −=

Θ(𝑥, 𝑦)
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Hough transform: Extensions

Extension 1: Use the gradient direction!

1. same as standard HT

2. For each edge point [x,y]

 = gradient direction at (x,y)

H[d,] += 1

3. same as standard HT

4. same as standard HT

Extension 2:

• Assign higher weight in votes  to points with large edge magnitude. 

Instead H[d,] += 1, use H[d,] += m(x,y).

• These extensions can be applied in general: 

line, circles, squares, general shapes...

Slide credit: Kristen Grauman

 sincos yxd −=

Θ(𝑥, 𝑦)

m(𝑥, 𝑦)

57



Hough transform for circles

• Circle parameters: center (a,b) and radius r

• Example of center detection at  known radius r

222 )()( rbyax ii =−+−

Image space Hough space a

b

58Slide credit: Kristen Grauman



Hough transform for circles

• Circle parameters: center (a,b) and radius r

• Example of center detection at  known radius r

222 )()( rbyax ii =−+−

Image space Hough space

Intersection: 
Most points 
vote for this 
center.

59Slide credit: Kristen Grauman



• Circle parameters: center (a,b) and radius r

• Unknown radius r – How many dimensions in Hough Space?

Hough transform for circles

Hough spaceImage space

b

a

r

222 )()( rbyax ii =−+−

60Slide credit: Kristen Grauman



• Circle parameters: center (a,b) and radius r

• Unknown radius r

Hough transform for circles

Hough spaceImage space

b

r

a

222 )()( rbyax ii =−+−

61Slide credit: Kristen Grauman



• Circle parameters: center (a,b) and radius r

• Unknown radius rk n

Hough transform for circles

Hough spaceImage space

θ

x

222 )()( rbyax ii =−+−

But assume we know the 
gradient direction!

62Slide credit: Kristen Grauman



Hough transform for circles

For each edge pixel (x,y) : 

For each radius value r:

For each gradient direction θ: 

// or use the estimated direction only

a = x – r cos(θ)

b = y + r sin(θ)

H[a,b,r] += 1(or the magnitude)

63Slide credit: Kristen Grauman



Hough circle detection in action!

Original Edges (e.g., Canny) Votes for penny

Comment: here we use a separate HT for each coin size.

Images from: Vivek Kwatra

222 )()( rbyax ii =−+−

Given a known radius:

𝑟 = 50 𝑝𝑖𝑥𝑒𝑙𝑠,

what are the center
coordinates, i.e.,

𝑎 =? 𝑝𝑖𝑥𝑒𝑙𝑠,
𝑏 =? 𝑝𝑖𝑥𝑒𝑙𝑠 .

𝑎

𝑏

64



Hough circle detection in action!

Original Edges (e.g., Canny) Votes for 25cent

Comment: here we use a separate HT for each coin size.

222 )()( rbyax ii =−+−

Given a known radius:

𝑟 = 80 𝑝𝑖𝑥𝑒𝑙𝑠,

what are the center
coordinates, i.e.,

𝑎 =? 𝑝𝑖𝑥𝑒𝑙𝑠,
𝑏 =? 𝑝𝑖𝑥𝑒𝑙𝑠 .

𝑎

𝑏

65Images from: Vivek Kwatra



Hough circle detection in action!

Votes for 25centCombined detections

Comment: here we use a separate HT for each coin size.

222 )()( rbyax ii =−+−

Given a known radius:

𝑟 = 50 𝑜𝑟 80 𝑝𝑖𝑥𝑒𝑙𝑠,

what are the center
coordinates, i.e.,

𝑎 =? 𝑝𝑖𝑥𝑒𝑙𝑠,
𝑏 =? 𝑝𝑖𝑥𝑒𝑙𝑠 .

𝑎

𝑏

66Images from: Vivek Kwatra

Votes for penny

𝑎

𝑏



Building a model to detect objects by GHT – intuition:

• Assume we know how to detect parts (recognize+localize), i.e., eyes 

and beak of an howl. Task: create an howl head detector.

• Encode parts by displacements to the neck center.

The owl head model:
Given a part, where is the neck center?

eye beak

Image from: http://www.exposureguide.com/

Generalized Hough transform (GHT)

68



• Detection – intuition

Image from: http://pugetsoundbirds.org/projects/owl-project/

Generalized Hough transform (GHT)

69



• Detection – intuition

Generalized Hough transform (GHT)

70Image from: http://pugetsoundbirds.org/projects/owl-project/



GHT for shape-based models

• Define the shape model by edge points and a reference point.

x a

p1

θ

p2

θ

For each edge point 

calculate the 

displacement vector to 

the reference point: 

r = a – pi.

Collect displacements 

in table, indexed by 

gradient direction θ.

Model learning:Model shape

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980] Slide credit: Kristen Grauman

θ

θ

…

…

…

Edge/gradient 
direction Voting  vector

71



GHT for shape-based models

p1

θ
θ

For each edge point:

• Use its gradient orientation θ to 
index into the table.

• Use the displacement vectors r
to cast a vote for the center.

Detection: 

Assumption: the only transformation is the translation (orientation+scaling are fixed)

x

θ
θ

New image

θ

θ

…

…

…

θ

xx

xx

72Slide credit: Kristen Grauman



GHT in practice

• Approach: Use a simulated 3D model of an object (automatically annotated) 

and train a neural network that predicts the 3D object center for each point

73

Csaba Beleznai, et al., Automated pallet handling via occlusion-robust recognition 
learned from synthetic data, CAI2023



Hough transform line detection: Practical advices

• First minimize irrelevant responses

(use only edges with significant magnitude of gradient)

• Appropriately discretize the parametric space

• Too coarse: votes from different lines fall into the same accumulator

• Too fine: losing lines – due to noise, collinear points cast votes into nearby (BUT DIFFERENT) 

accumulators.

• Vote for neighboring cells as well

• Correct: cast a vote by a Gaussian or a bilinear interpolation

• Approximate: convolve the voting array by a Gaussian

• Use the gradient direction to reduce the number of free parameters

74



Hough transform: +/-

Pros

• Each point is processed independently:

• robustness to partial occlusion,

• highly parallelizable.

• Robustness to noise: noise will unlikely contribute consistently to a single cell

• Can detect multiple instances of a single model in one pass.

Cons

• Time complexity increases exponentially with the number of free parameters. 

• Spurious shapes may generate false local maxima in the parametric space.

• Quantization: Not trivial to choose a proper accumulator cell size – Application 
dependent!

75



References

• David A. Forsyth, Jean Ponce, Computer Vision: A Modern Approach (2nd Edition), 

(prva izdaja dostopna na spletu)

• R. Szeliski,Computer Vision: Algorithms and Applications, 2010
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Machine perception
Fitting parametric models
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Parametric models: Forward application

• Transformation parameterized by (many) parameters

• Example: transform 𝒙𝑖 into 𝒙𝑖
′ by a function 𝑓(𝒙; 𝒑)

3

𝒙𝑖
′ = 𝐑𝒙𝑖 + 𝑻



Parametric models: Use cases

• Inverse problem: ``Given a set of correspondences, what are the 
parameters of the transformation?’’

• Assuming the transformation can be well approximated by 𝑓(𝒙; 𝒑), what 
are the best parameter values for 𝒑?

𝑓(𝒙; 𝒑)

Source keypoint Destination keypoint

4



Parametric models: Use cases

• Best parameter values: those that minimize the projection error

𝑓(𝒙; ෥𝒑)

Stitched images:
Coordinates of all pixels in the left-hand
image transformed by 𝑓(𝑥; 𝑝𝑜𝑝𝑡)

5

𝐸 𝑝 = ∑𝑑𝑖



Least squares: Line fitting

• Data: { 𝑥1, 𝑦1 , … , (𝑥𝑁 , 𝑦𝑁)}

• Line equation:
𝑦 = 𝑓(𝑥; 𝒑) = 𝑥𝑝1 + 𝑝2

• Parameters:
𝒑 = 𝑝1, 𝑝2

𝑇

• Projection error at 𝑖-th correspondence:
𝜀𝑖 = 𝑓 𝑥𝑖; 𝒑 − 𝑦𝑖

• The cost function (goodness of fit):

• Best parameters: 

(𝑥𝑖 , 𝑦𝑖)
𝜀𝑖

Problem formulation

𝑦

𝑥

6

𝒑𝑜𝑝𝑡



A 1D minimization

7

How do you minimize a 1D continuous error function?
(with respect to one parameter)
(with respect to N parameters)



Least squares: Line fitting

Strategy:

1. Rewrite the cost function 𝐸(𝒑) into a vector-matrix form

2. Take derivative w.r.t. 𝒑, set to zero, solve for 𝒑.

(𝑥𝑖 , 𝑦𝑖)

𝜀𝑖

𝑦

𝑥

𝑓(𝑥; 𝒑) = 𝑥𝑝1 + 𝑝2

𝒑 = 𝑝1, 𝑝2
𝑇

𝜀𝑖 = 𝑓 𝑥𝑖; 𝒑 − 𝑦𝑖

8



A cookbook for normal equations:

1. Define the set of corresponding points
𝒙𝑖 𝑖=1:𝑁 , 𝒙𝑖

′
𝑖=1:𝑁

2. Define the linear transformation
𝑓 𝒙; 𝒑 : 𝒙 → 𝒙′

3. Define the per-point error and stack all errors into a single vector 𝜺:

𝜺𝑖 = 𝑓 𝒙𝑖; 𝒑 − 𝒙𝑖’

4. Rewrite the error into a form 𝜺 = 𝑨𝒑 − 𝒃

5. Solve by pseudoinverse: 𝒑 = 𝑨†b

Matlab:  p = A \ b

12



• Task: Align two images based on correspondences

• Assume a similarity transform (scale, rotation, translation)

• The similarity transform is parameterized by (See Szeliski, Section 2.1.2):

𝒙′ = 𝑓(𝒙; 𝒑)

Least squares: A simple image alignment

13



• Data: { 𝑥1, 𝑦1 , … , (𝑥𝑁 , 𝑦𝑁)}

• All points are not equally 
accurately measured!

• Weight at each point: 𝑤𝑖

• Projection error at 𝑖-th
correspondence:
𝜀𝑖 = 𝑓 𝑥𝑖; 𝒑 − 𝑦𝑖

• A weighted cost:

• Best parameters: 

Problem formulation
(𝑥𝑖 , 𝑦𝑖)

𝜀𝑖

𝑦

𝑥

Weighted least squares: Line fitting

15

𝒑𝑜𝑝𝑡



Weighted least squares: Line fitting

Strategy:

• Rewrite the cost function 𝐸(𝒑) into a vector-matrix form

• Take derivative w.r.t. 𝒑, set to zero, solve for 𝒑.

𝑓(𝑥; 𝒑) = 𝑥𝑝1 + 𝑝2

𝒑 = 𝑝1, 𝑝2
𝑇

𝜀𝑖 = 𝑓 𝑥𝑖; 𝒑 − 𝑦𝑖

(𝑥𝑖 , 𝑦𝑖)

𝜀𝑖

𝑦

𝑥

16



1. Define a weighted set of corresponding points
𝒙𝑖 𝑖=1:𝑁 , 𝒙𝑖

′
𝑖=1:𝑁, 𝑤𝑖 𝑖=1:𝑁

2. Define the linear transformation
𝑓 𝒙; 𝒑 : 𝒙 → 𝒙′

3. Rewrite the error into a form 𝜺 = 𝑨𝒑 − 𝒃

4. Create a weight matrix 𝑾 as
𝑊 = 𝑑𝑖𝑎𝑔([𝒘1

𝑇 , … ,𝒘𝑁
𝑇 ])

with 𝒘𝑖
𝑇 = 𝑤𝑖 1, . . , 1 1×𝑑

5. Solve by :

Note: 𝒙′ ∈ ℝ𝑑 , 𝑤 ∈ ℝ1

Note: think about why 

are 𝒘𝑖
𝑇 vectors of same 

dimensionality as the 
points 𝒙′.

A cookbook for weighted least squares:

19



NOTE

• Weighted least squares can be used for 
NONLINEAR/ROBUST least-squares problems as well!

• Robust least squares, for example can be implemented 
by iterative algorithm that applies a weighted least 
squares solver

• See the slides on e-classroom if you’re interested 

20
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Robust least squares

• Quadratic cost function behaves poorly with outliers:

• To see where the problem lies, we will have to rewrite our cost function 

into a general form.

• The cost can be generally written as:

• For ordinary least squares we had:  ℎ 𝜺𝑖 = ||𝜺𝑖||
2

Ideal fit Corrupted fit

21



Robust least squares

R. Hartley, Robust Optimization Techniques in Computer Vision, Session 3,ECCV2014 tutorials

1Aftab, K. and Hartley, R., Convergence of Iteratively Re-weighted Least Squares to Robust M-estimators, WACV 2015 

22
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• For a cost function with robust error function ℎ(𝜀𝑖)

• It is possible to find an equivalent weighted 𝐿2 cost

with                       and                              .

• Problems: 

1. Weights depend on the errors incurred by the optimal parameters of our model.

2. But the parameters are unknown and so are the weights.

• Solution: Can apply an iterative approach

that will converge as long as ℎ 𝜖 is concave1. 



Iterative reweighted least squares

1. Set all the weights to 𝑤𝑖
𝑡−1 = 1.

2. Solve for 𝒑𝑡 by the weighted least squares problem.

3. Using the estimated parameters 𝒑𝑡 re-calculate per-point 

projection errors 𝜺𝑖
𝑡.

4. Using the projection errors re-calculate new weights 𝑤𝑖
𝑡 from:

5. Go back to step 2 and continue until the change in parameters is 
negligibly small (convergence).

For an instructive discussion on parameters of the Huber cost function from data, please see:
J. Fox, Robust Regression--Appendix to An R and S-PLUS Companion to Applied Regression, 2002, ”1.1 Objective Functions”.

Note: (⋅)𝑡 indicates a step of iteration in the iterative reweighted least squares.

23
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Constrained least squares

• Often we will seek parameters 𝒑 that satisfy constraints.

• Reconsider line-fitting example, but this time we’ll minimize 
perpendicular distances!

• Re-parameterize:
𝒑 = 𝑝1, 𝑝2, 𝑝3

𝑇

• Distance of a point to line:
||𝜺𝒊||

𝟐 = (𝑥𝑖𝑝1 + 𝑦𝑖𝑝2 − 𝑝3)
2

• Let’s minimize:

𝑝3

𝑛 = [𝑝1, 𝑝2]

24



Back to line fitting example…

28

• Distance of a point to line:
||𝜺𝒊||

𝟐 = (𝑥𝑖𝑝1 + 𝑦𝑖𝑝2 − 𝑝3)
2

• Let’s minimize:

Do Tu



Constrained least squares

• The solution:

• Trivial solution: 𝒑 = 𝟎

• A nontrivial solution is obtained by constraint 𝒑
2
= 1

• Taking the derivative of a Langrangian and setting to 0:

• The solution is the eigenvector of (𝑨𝑇𝑨) corresponding to the smallest 
eigenvalue.

• Actually, it can be shown that this is also the eigenvector corresponding to 
the smallest eigenvalue of 𝑨. (see notes on “Avoid computing ATA”)

Homogenous equation!

29

In case you are not confident with Lagrange 
multipliers, see this excellent tutorial!



Previously at MP…

• Least squares fitting

30

𝒙′ = 𝑫𝒙 + 𝒄
𝒑 = {𝑫, 𝒄} = ?

𝒙𝒊 𝒙′𝒊

Unconstrained least squares:
• Ordinary least squares
• Weighed least squares

Constrained least squares:
• Requires a constraint on

the admissible solution



• Problems that can be written as systems of equations 
(normal equations):
𝑨𝒑 = 𝒃

(if you have weights on equations, then 𝐖𝑨𝒑 = 𝐖𝒃)

can be solved by ordinary LS or IRWLS

• Problems that result in a homogenous system:
𝑨𝒑 = 𝟎

can be solved by putting the constraint 𝒑
2
= 1, the solution is the 

eigenvector corresponding to the smallest eigenvalue. 
(If required, rescale the solution for 𝒑)

Matlab:  p = A \ b ;

Matlab:  [U,S,V] =svd(A) ; p = V(:,end) ; 

Recognizing the hammer for your nail!
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• Often nonlinear & nonquadratic error functions are used, which cannot 
be minimized analytically in a closed form.

• Popular approaches:

• Gradient descend

• Newton‘s method

• Gauss-Newton method

• Levenberg-Marquardt (very popular in, e.g., camera geometry in CV)

• Alternate direction method of multipliers (ADMM) [!very powerful & simple]

• More about these: 
• Fua and Lepetit: Computer Vision Fundamentals: Robust Non-Linear Least-Squares and their Applications

• Griva et al., Linear and Nonlinear Optimization (See appendix on Matrix Algebra)

• The Matrix Coockbook (List of common vector/matrix solutions)

• Forsyth, Ponce, „Computer Vision – A modern approach“, (Appendix in 2nd ed.)

For nonlinear cost functions
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• Large disagreements in only a few points (outliers) cause failure of the 
least-squares-based methods.

• The detection, localization and recognition in CV must work in 
significantly noisy data.

• In some cases >½ data is expected to be outliers.

• Standard methods for robust estimation can rarely deal with such a 
large proportion of outliers.

Need to deal even better with outliers

34



RANSAC

• The RANSAC [1] algorithm (random sample consensus).

• Very popular due to its generality and simplicity.

• Can deal with large portions of outliers.

• Published in 1981 (Fischler in Bolles)

• One of the most cited papers in Computer Vision

• Many improvements proposed since!

[1] M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image 
Analysis and Automated Cartography. Comm. of the ACM, Vol 24, pp. 381-395, 1981.
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RANSAC: Intuition by line fitting

• A good estimate of our model should have a strong support in data: 
“recognize a good model when you see it”

• How to find a model with a strong support?

• By randomly sampling potential models.

Allowed errorAllowed error

10 point support this line! 4 point support this line!

36



RANSAC: Intuition by line fitting

• Task: Robustly estimate the most likely line

Slide credit: Jinxiang Chai37



RANSAC: Intuition by line fitting

• Task: Robustly estimate the most likely line

Randomly choose a pair of points
(Note: the smallest number of points to fit a 
line is two)

Slide credit: Jinxiang Chai38



RANSAC: Intuition by line fitting

• Task: Robustly estimate the most likely line

Fit the line to the selected points.

Slide credit: Jinxiang Chai39



RANSAC: Intuition by line fitting

• Task: Robustly estimate the most likely line

The inliers are all points whose 

error 𝜀𝑖 is lower than some 
prescribed value t𝜀.

𝜀𝑖 = |𝑓 𝑥𝑖; 𝒑 − 𝑦𝑖|

Slide credit: Jinxiang Chai

Count the number of inliers!
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RANSAC: Intuition by line fitting

• Task: Robustly estimate the most likely line

Repeat N-iterations, or, until the support 
(i.e., number of inliers) becomes strong 
enough 
(actually this is an oversimplification).

Slide credit: Jinxiang Chai41



RANSAC: line fitting

• Another example

42



A general setting

1. Define the set of “potentially” corresponding points:
𝒙𝑖 𝑖=1:𝑁 , 𝒙𝑖

′
𝑖=1:𝑁

2. Define the transformation model: 𝑓 𝒙; 𝒑 : 𝒙 → 𝒙′

In this example, let 𝑓 𝒙; 𝒑 be a simple translation + scaling.

43

Important: Some correspondences are correct and some are NOT!

𝒙𝒊
𝒙′𝒊



A simple RANSAC loop

1. Randomly select the smallest group of correspondences, from which we 
can estimate the parameters of our model.

2. Fit the parametric model      to the selected correspondences (e.g., by LS). 

𝑓 𝒙; 𝒑 : 𝒙 → 𝒙′

𝒙𝑖 𝑖=1:𝑁 , 𝒙𝑖
′
𝑖=1:𝑁

෤𝑝

In this example, let 𝑓 𝒙; 𝒑
be a simple translation + 
scaling.
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A simple RANSAC loop

1. Randomly select the smallest group of correspondences, from which we 
can estimate the parameters of our model.

2. Fit the parametric model      to the selected correspondences (e.g., by LS).

3. Project all other points and count how many of all correspondences are in 
agreement with the fitted model – number of inliers.

• Remember the model parameters ෤𝑝𝑜𝑝𝑡 that maximize the number of 

inliers.

𝑓 𝒙; 𝒑 : 𝒙 → 𝒙′

𝒙𝑖 𝑖=1:𝑁 , 𝒙𝑖
′
𝑖=1:𝑁

෤𝑝

In this example, let 𝑓 𝒙; 𝒑
be a simple translation + 
scaling.
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The choice of parameters

• How many correspondences ′′𝑠′′ are required?

• Typically the smallest number that allows estimating the model parameters, i.e., 
as many as the model parameters.

• Threshold distance t for identifying the inliers

• Choose t, such, that the probability that an inlier falls below the threshold is 
equal to pw. For example (pw=0.95)

• Assuming a Gaussian noise on the measurements.  

The noise standard dev. σ: t=2σ

• Number of sampling iterations N

• Chose N such, that the probability
p of drawing a sample with all 
inliers at least once is high enough.

46



The choice of parameters: N

• Setting the number of sampling iterations N:

• Assume we know the proportion e of outliers (probability of selecting an outlier at random).

• Choose N such, that the probability of drawing a sample set with 
all inliers at least once in N draws is p,(e.g.,  p=0.99).

• Derive the probability of drawing a bad sample in N trials, 1 − p = 𝑝𝑏𝑎𝑑
𝑁, and expose N

• Probability of choosing a single inlier: 
• Probability of an all-inlier sample:
→ s-times sample an inlier:   

• Probability, of a bad sample:
→ at least one of s not an inlier: 

• Probability of always drawing a bad sample in N trials:

1 - e

(1 – e)s

[1- (1 – e)s]
(1- (1 – e)s)N 
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The choice of parameters: N

Number of iterations N required to sample an inlying model with 𝑠
parameters at least once with probability 𝑝 if the proportion of outliers is 𝑒:

portion of outliers: e

s 5% 10% 20% 25% 30% 40% 50%

2 2 3 5 6 7 11 17

3 3 4 7 9 11 19 35

4 3 5 9 13 17 34 72

5 4 6 12 17 26 57 146

6 4 7 16 24 37 97 293

7 4 8 20 33 54 163 588

8 5 9 26 44 78 272 1177

Tabulated values of N for 𝑝 = 0.99

s

N

e=0.5

e=0.3
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After RANSAC: Refit by LS

• RANSAC splits the data into inliers and outliers, and calculates the 
model parameters using a minimal number of correspondences.

• Improve the model parameters by applying least squares to the inliers.

49



Beyond the simple RANSAC

• A great deal of research was invested by many researchers into improving 
RANSAC

• Finding the right solution faster & with better resiliency to outliers

• See an excellent tutorial: https://danini.github.io/ransac-2025-tutorial/

• Further reading:

• PROSAC (state of the art, better chooses the order of samples)

• MAGSAC++ (best among hand-crafted methods)

• Excellent tutorial in recent RANSAC developments and toolboxes: 
RANSAC in 2020: A CVPR Tutorial, CVPR 2020 (Video presentations available!)

• Generalized differentiable RANSAC (ICCV2023): paper, code

• ∇-RANSAC (learns the entire estimation pipeline)

• Currently the top performer among all variants
50



RANSAC: Summary

• Pros

• Very simple and general 

• Applicable to many real-life problems

• Often used in practice

• Cons

• Requires setting some parameters (modern methods make it simpler)

• Potentially many iterations required to find the optimum.

• Fails at very small number of inliers.

• In some cases more accurate procedures, that do not require brute-force 
sampling, can be found.
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Fitting: Challenges

• If we know the inliers how to estimate the parameters?
• Least squares

• What if our data includes outliers?
• Robust least squares, RANSAC

• What if we have multiple instances of our model (e.g., multiple lines)?
• Apply voting: sequential RANSAC, Hough transform

• What if we have multiple models (e.g., unknown degree of a polynomial)?
• Apply model selection (e.g., MDL, BIC, AIC)

• Complicated nonparametric models
• Generalized Hough (GHT)

• Iterative Closest Point, (ICP) == iterative local least squares
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Further reading

• A simple and interesting way to iteratively fit a complicated model to data:
Iterative Closest Point method
Matlab implementation: ICP

• A very nice and accessible tutorial on nonlinear optimization in computer 
vision: http://cvlabwww.epfl.ch/~fua/courses/lsq/Intro.htm

• Excellent tutorial in recent RANSAC developments and toolboxes: 
RANSAC in 2020: A CVPR Tutorial
RANSAC in 2025: An ICCV Tutorial

53



References

• R. Szeliski,Computer Vision: Algorithms and Applications, 2010

• David A. Forsyth, Jean Ponce, Computer Vision: A Modern Approach (2nd Edition), (second edition!)

• See appendix on Normal equations  and Homogeneous systems

• Igor Griva, Stephen G. Nash, Ariela Sofer ,Linear and Nonlinear Optimization

• See appendix on Matrix Algebra

• The Matrix Cookbook

• List of common vector/matrix solutions

54



Machine Perception
Key-points and matching

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme,
Fakulteta za računalništvo in informatiko,

Univerza v Ljubljani



Recall the panorama creation process

Identification of the 
corresponding 
“key points” required!

2



Slide credit: Steve Seitz

Manual selection often nontrivial

NASA Mars Rover images
(Figure by Noah Snavely)

Corresponding key points selection

3



NASA Mars Rover images
with SIFT feature matches
(Figure by Noah Snavely)

Corresponding key points selection
Manual selection often nontrivial

4Slide credit: Steve Seitz



A case study: Automatic panorama creator

5



• Standard procedure:

• Detect interest points (key-points) in both images

A case study: Automatic panorama creator
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• Standard procedure:

• Detect interest points (key-points) in both images

• Find pairs of corresponding points

A case study: Automatic panorama creator

7



• Standard procedure:

• Detect interest points (key-points) in both images

• Find pairs of corresponding points

• Use these pairs for image registration

A case study: Automatic panorama creator

(e.g., RANSAC/least-squares 
transformation model estimation)

8



Efficient keypoint detector requirements

• Requirement 1:

• Detect the same structure independently in each image.

Bad idea: By random sampling in each image, 
we will not likely detect the same points.

A detector with a high detection repeatability is required!

Try random sampling?

9



Efficient keypoint detector requirements

• Requirement 1:

• Detect the same structure independently in each image.

• Requirement 2:

• For each point find a corresponding point in the other image.

?

A reliable and distinctive descriptor is required!

10



Outline of this lecture

1. Keypoint DETECTION

2. Keypoint DESCRIPTION

3. Keypoint MATCHING

11



SINGLE SCALE KEY-POINT DETECTION
Machine Perception

12



Corners as keypoints

• Distinctive and repeatedly occurring on the same structures even if the 

structure changes pose in 3D

13

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“ Proceedings of the 
4th Alvey Vision Conference, 1988.



Require a corner response function – CRF

• An operator that gives a strong response on the corner structure

14

Corner: High value
No corner: Low value

Corner response function (CRF)



• A good corner detector criteria: Self similarity
• Observe a small window 𝑅 around a potential corner (locality).

• A small shift in window in any direction results in a large intensity change 
(good localization)

“Edge”:
No change when shifting 
along the edge, otherwise 
there is a change.

“Corner”:
A shift in any direction 
significantly changes the 
local intesity.

“Flat” region: 
A small shift in any 
direction does not cause 
an intensity change.

Corner response function: Intuition

15



Harris corner detector

• The intensity change for a shift [u,v]:
(weighted self-similarity function)

Intensity
afer the shift

Intensity before 
the shift

Weight
function

Weight function w(x,y) =

Gaussian kernel 𝐺(𝜎)

The 𝜎 specifies the region 𝑅 size!

16

𝐸𝑅(𝑢, 𝑣) should quickly 
drop for a small 
displacement (u,v)

𝜎

(𝑢, 𝑣)

𝐸𝑅

𝐸𝑅 𝑢, 𝑣 = ෍

𝑥,𝑦∈𝑅

𝑤 𝑥, 𝑦 𝐼 𝑥, 𝑦 − 𝐼 𝑥 + 𝑢, 𝑥 + 𝑣
2



Harris corner detector

• The function 𝐸𝑅 is minimal at (u=0,v=0), i.e., 

𝐸𝑅 0,0 = 0, and increases as we move away.

• We are interested in analyzing the shape, i.e., 

how fast the difference increases.

• Approach:

• Approximate 𝐸𝑅 at (u=0,v=0) by a 

quadratic function and analyze its shape.

17

𝐸𝑅 𝑢, 𝑣 = ෍

𝑥,𝑦∈𝑅

𝑤 𝑥, 𝑦 𝐼 𝑥, 𝑦 − 𝐼 𝑥 + 𝑢, 𝑥 + 𝑣
2

u

𝐸𝑅 u

u

𝐸𝑅 u



Harris corner detector

• Linearize the image values I(x, y) for small shifts (𝑢, 𝑣):

I 𝑥 + 𝑢, 𝑦 + 𝑣 ≈ 𝐼 𝑥, 𝑦 + 𝐼𝑥 𝑥, 𝑦 , 𝐼𝑦(𝑥, 𝑦)
𝑢
𝑣

• Plug into the weighted self-similarity:

18

𝐼𝑥 𝑥, 𝑦 =
𝜕𝐼(𝑥, 𝑦)

𝜕𝑥
, 𝐼𝑦 𝑥, 𝑦 =

𝜕𝐼(𝑥, 𝑦)

𝜕𝑦

𝐸R 𝑢, 𝑣 ≈ σ 𝑥,𝑦 ∈𝑅𝑤 𝑥, 𝑦, 𝐼𝑥 𝑥, 𝑦 , 𝐼𝑦 𝑥, 𝑦
𝑢
𝑣

2

𝐸𝑅 𝑢, 𝑣 = ෍

𝑥,𝑦∈𝑅

𝑤 𝑥, 𝑦 𝐼 𝑥, 𝑦 − 𝐼 𝑥 + 𝑢, 𝑥 + 𝑣
2



• For small shifts (𝑢, 𝑣) E can be linearly approximated by:

with M 2x2 matrix of image derivatives:

Harris corner detector

Construction of 𝑀 can be made more efficient!
19

R

ER 𝑢, 𝑣 ≈ 𝑢, 𝑣 𝑀
𝑢
𝑣

𝐸𝑅 𝑢, 𝑣 = ෍

𝑥,𝑦∈𝑅

𝑤 𝑥, 𝑦 𝐼 𝑥, 𝑦 − 𝐼 𝑥 + 𝑢, 𝑥 + 𝑣
2

A weighted sum over the region R in which we are verifying a corner
(centered at red dot in the sketch above – the red dot is thus treated 
as the origin of coordinate system)



Construction of M (for all locations   )
Ix

Image I

IxIy

Iy

𝐺 𝜎 ∗ 𝐼𝑥
2

𝐺 𝜎 ∗ 𝐼𝑦
2

𝐺 𝜎 ∗ 𝐼𝑥𝐼𝑦

Note, M is different for each location

20
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Harris corner detection

• We have approximated the autocorrelation function 

locally by a quadratic form

• Matrix M is the covariance matrix of region gradients:

• Quadratic function “peakiness“ can be quantified by 

analyzing the matrix M

21

ER 𝑢, 𝑣 ≈ 𝑢, 𝑣 𝑀
𝑢
𝑣

Ix

Image I

IxIy

Iy



• Visualize the covariance matrix as an ellipse...

• Decompose into eigenvectors and eigenvalues:

Direction of 
a fast change 

(large gradient)

Direction of a slow change 
(smal gradient)

The Covariance matrix analysis

M
(min)

1/2

(max)
1/2

eigen values (ellipse SCALING)

eigen vectors
(ellipse ROTATION)

22



The Covariance matrix analysis

• Visualize the covariance matrix as an ellipse...

• Decompose into eigenvectors and eigenvalues:

• A corner has a strong gradient in both major directions!

• A corner is present when both eigenvalues are large.

Direction of 
a fast change 

(large gradient)

Direction of a slow change 
(smal gradient)

M

23



Eigen values: Interpretation

• Corner detection by eigenvalues of M:

“corner”
1 and 2 are large,  1 ~ 2;

E increases/decreases in all 
directions approximately equally.

1 and 2 small;

E almost constant in all
directions.

“edge” 
1 >> 2

“edge” 
2 >> 1

“homogenous” 
region

2

1

Direction of a fast change (large 
gradient)

Direction of a slow change (smal gradient)

(min)
1/2

(max)
1/2

24



The Harris corner response function

• Problem: Calculating the eigenvalues at each pixel is computationally intensive!

• Solution: 

• Possible to compute functions of eigenvalues: 

• We are actually not interested necessarily in the individual eigenvalues, but a corner 

response function that will be large when eigenvalues are comparable and large

25

(for r = 1, α = 1/4)

c = |M| − αtrace(M)2
Harris corner response function (with α set to small value):



The Harris corner response function

• In practice, a small 𝛼 (0.04-0.06) is applied

26

c = |M| − αtrace(M)2



The Harris corner response function

• In practice, fix 𝛼 (0.04-0.06) and check if corner response function exceeds a threshold

• We can calculate the Determinant and Trace directly:

27



Harris corner detector: Summary

• Calculate the covariance matrix

(by virtue of autocorrelation)

1. Image
derivatives

Ix Iy

2. Squared
derivatives

Ix
2 Iy

2 IxIy

3. Gaussian
filtered squared 
derivatives g(sI) g(Ix

2) g(Iy
2) g(IxIy)

c(I)

2 2 2 2 2 2( ) ( ) [ ( )] [ ( ) ( )]x y x y x yg I g I g I I g I g I= − − +

c(I) = det[𝑀] − 𝛼[trace2(𝑀)]

4. Corner response function:

5. Apply a non-maxima suppression

0.    The source image

28



Harris corner detector: Summary

29



Harris corner detector: Summary

• The Corner response function:
30



Harris corner detector: Summary

• Set values lower than a threshold to zero: c(c < threshold) = 0
31



Harris corner detector: Summary

• Find the local maxima in c(I)
32



Harris corner detector: Summary

• Detected Harris corners
33



Harris detector

34



Harris corner detector: Motivation

35

How about fitting the 
quadratic function to the 
intensity values locally?

Intensity values extracted along the image row

In 2D image:
x

I(x,y=100)

y=100

Response function:
Curvature of the fitted function



• Curvature measure = Determinant of a Hessian

Ixx

IyyIxy

Intuition: Find strong gradients in two orthogonal directions

The Hessian corner detector

36

Note: these are second order 
derivatives!

(Recall what Hessian means
→ a measure of local curvature)



• Curvature measure = Determinant of a Hessian

Ixx

IyyIxy

Slide credit: Krystian Mikolajczyk

Note: these are second order 
derivatives!

(Recall what Hessian means
→ a measure of local curvature)

The Hessian corner detector

37

. ( ).^ 2xx yy xyI I I −In Matlab:

In Python: 𝐼𝑥𝑥 ∗ 𝐼𝑦𝑦 − 𝐼𝑥𝑦**2



Result: responses on corners and blobs.

The Hessian corner detector

38



A number of keypoint detectors exist

• Hessian & Harris [Beaudet ‘78], [Harris ‘88]

• Laplacian, DoG [Lindeberg ‘98], [Lowe 1999]

• Harris-/Hessian-Laplace       [Mikolajczyk & Schmid ‘01]

• Harris-/Hessian-Affine [Mikolajczyk & Schmid ‘04]

• MSER [Matas ‘02]

• FAST , and lots of others

• A very good tutorial ECCV 2012. 

• Learning-based detectors gaining traction.

• These detector have become building blocks of numerous computer vision 

applications!

39



Previously at MP...

• Automatic image stitching

• Keypoints detection

• Keypoint description

• Keypoint matching

• Key-point detection

• Analysis of gradient distribution

• Harris, Hessian

40



• Is it rotation invariant?

Ellipse rotates, but its shape (e.g., eigenvalues) 
remains unchanged!

The corner response function is rotation invariant!

Harris/Hessian detector: properties

Slide credit: Kristen Grauman 41



• Rotation invariance

• Is it invariant to scale change?

NOT invariant to scale change!

scale the curve

None of the points 
classified as a potential 

corners!

corner

Harris/Hessian detector: properties

42Slide credit: Kristen Grauman



SCALE SELECTION
Machine Perception

43



Automatic scale selection

• Requirement: Select the “characteristic” scale independently for each keypoint

• Define a signature function 𝑓(𝜎) that reaches maximum at the optimal scale

44

𝜎 (i.e., region size)Si
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𝜎

𝑓(𝜎)

𝑓(𝜎) max

𝜎𝑜𝑝𝑡



Automatic scale selection

• Scale evaluated independently at each point and each image

Slide credit: Krystian Mikolajczyk 45



Automatic scale selection

• Scale evaluated independently at each point and each image

46Slide credit: Krystian Mikolajczyk



Automatic scale selection

• Scale evaluated independently at each point and each image

47Slide credit: Krystian Mikolajczyk



Automatic scale selection

• Scale evaluated independently at each point and each image

48Slide credit: Krystian Mikolajczyk



Automatic scale selection

• Scale evaluated independently at each point and each image

49Slide credit: Krystian Mikolajczyk



Automatic scale selection

• Scale evaluated independently at each point and each image

50Slide credit: Krystian Mikolajczyk

𝜎𝑜𝑝𝑡 = argmax
𝜎

𝑓(𝜎)

𝜎𝑜𝑝𝑡 = argmax
𝜎

𝑓(𝜎)



• Natural images abundantly contain blob-like features

• Blob detection – find regions that locally look like “spots”

• Laplacian of Gaussian:

• But, for larger scale parameter (larger σ), max response of 

LoG is reduced – Response is NOT SCALE INVARIANT

• Differential operators must be normalized by 𝜎n, where 𝑛 is the 

derivative factor [1]: → second-order gives 𝜎2

• Scale-normalized Laplacian of a Gaussian (LoG*): 

What is a useful scale signature function?

51[1] T. Lindeberg "Feature detection with automatic scale selection." International Journal of Computer Vision 30 (2), 1998. 

*We’ll use LoG to refer to a normalized Laplacian of a Gaussian from here on

LoG = σ2(∇2G)



filter „diameter“

Detecting characteristic scale

• The characteristic scale is the scale at which the LoG filter yields a 

maximum response.

T. Lindeberg "Feature detection with automatic scale selection." International Journal of Computer Vision 30 (2), 1998. 

x

characteristic scale

52
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Detecting keypoints & scales in LoG scale space

• Key-points: 

• Local maxima in scale space of 

the LoG filter.

σ1

σ2

σ3

σ4

σ5

Slide adapted from Krystian Mikolajczyk

Scale-normalized laplacian pyramid
53

σ2(∇2G)

σk < σk+1



Laplacian pyramid implementation

Compare LoG at each point to its 8+9 × 2 neighbors (same scale + upper/lower scale.)

• Key-points: 

• Local maxima in scale space of 

the LoG filter.

54Slide adapted from Krystian Mikolajczyk

σ1

σ2

σ3

σ4

σ5

σ2(∇2G)

σk < σk+1



Laplacian pyramid implementation

Compare LoG at each point to its 8+9 × 2 neighbors (same scale + upper/lower scale.)

• Key-points: 

• Local maxima in scale space of 

the LoG filter.

55Slide adapted from Krystian Mikolajczyk
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Laplacian pyramid implementation

 List (x, y, σ)

Let’s look at
an example…

Compare LoG at each point to its 8+9 × 2 neighbors (same scale + upper/lower scale.)

• Key-points: 

• Local maxima in scale space of 

the LoG filter.

56Slide adapted from Krystian Mikolajczyk
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LoG detector in action

Slide credit: Svetlana Lazebnik

Input image
57

LoG = σ2(∇2G) = σ2
𝜕2G

𝜕x2
+
𝜕2G

𝜕y2



LoG detector in action

LoG filtered image (varying sigma)
58Slide credit: Svetlana Lazebnik

LoG = σ2(∇2G) = σ2
𝜕2G

𝜕x2
+
𝜕2G

𝜕y2



LoG detector in action

Local maxima across scales
59Slide credit: Svetlana Lazebnik



LoG approximation by difference of Gaussians

• The LoG can be well approximated with a difference of Gaussians at 

different values of 𝜎.

(normalized Laplacian of Gaussian)

(Difference of Gaussians)

60

Voodoo?! 

- =



Not voodoo…

• Let’s Taylor-expand                      around 𝑘, with k = 1 + ϵ :

• Then, since                          , we have:

• Recalling that ϵ = k − 1, we have: 

61

=

DoG(x, y, σ) ∝ σ2∇2G(x, y, σ)



Difference of Gaussians (DoG)

• Difference of Gaussians is an approximation of the LoG

• Advantages

• Results of Gaussian filtering already calculated during

calculation of image resizing (Gaussian Pyramid! – see next slide).

- =

Slide credit:B. Leibe63



LoG pyramid approximation

Gaussian pyramid DoG pyramid

0G

1G

2G
nG

- =

0L

- =
1L

- = 2L

nn GL =

1( )i i iL G upscale G += −

1( )i i iG L upscale G += +
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• Calculated from a Gaussian pyramid (sequential octaves equivalent to filtering with                              )

• In each octave, apply filtering s times, with ks = 2 , so that σnext = 2σprev (e.g., s=4 in example below)

Reference image

Subsample by 2

Slide adapted from Krystian Mikolajczyk

David G. Lowe, IJCV 2004

s+
1

 f
ilt

re
ri

n
gs

DoG pyramid– Efficient calculation
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Key-point localization using DoG

• Find local maxima of DoG in the scale-space.

• Check 8+2*9=26 neighbors

• Remove the low contrast points 

(threshold dependent)

• If local change in response is small compared to 

neighbors.

• Remove points detected at the edges

• Test using the Hessian matrix.

Blur 

Resample

Subtract

Key-point candidates: 
List of triplets (x,y,σ)

Fit a quadratic function to each key-
point and its neighbors to improve 
localization of the maxima (x,y ,σ).

Slide credit: David Lowe 66



(a) 233x189 image

(b) 832 extremes in DoG

(c) 729 remain after 
contrast verification

(d) 536 remain after 
verification of the Hessian 
matrices.

David G. Lowe, "Distinctive image features from scale-invariant keypoints," International Journal of Computer Vision, 2004

Local extremes

Contrast verified Hessian verified

Results: Lowe’s DoG-based detector

67Slide credit: David Lowe



Results: Lowe’s DoG-based detector

68



• Input: Image of some scene taken at unknown scale.

• Goal: Find key-points and their scales independently in each image.

• Solution:
Find local maxima of specialized functions in scale-space and image 
coordinates.

• Two strategies
• (normalized) Laplacian of Gaussian (LoG)

• Difference of Gaussians (DoG) as an efficient approximation

Summary: scale-invariant key-point detection
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LOCAL DESCRIPTORS
Machine Perception

70



Local descriptors

• Now we know how to detect the key-points

• Next question:

How to describe them?

?

Key-point descriptors should be:
1. Distinctive (be different for keypoints on different structures)
2. Invariant to ambiental changes

71



Invariance of descriptor

• Geometric transformations

• Photometric transformations

• Often modeled by

intensity scaling and translation

72



Normalizing region scale (already covered)

• For comparing regions, normalize: Rescale to a predefined size

)),((
1

xIf
mii 

)),((
1

xIf
mii 

Slide credit: Krystian Mikolajczyk

Important: the region location and size (scale) is determined independently 
in each image for each key-point!

73



Normalizing region rotation

• Need to automatically determine the inherent orientation

of every patch independently of all others!

74

Per-pixel comparison
will not produce a good match!

Rotation estimation
required!

Slide credit: Krystian Mikolajczyk



• Calculate gradients in the image patch and look at 

gradient directions/ pixel orientations

• Calculate the histogram of orientations

• 36 bins by angle, each point contributes proportionally 

to its gradient magnitude and distance from the center.

• Determine the dominant orientation from histogram

• Normalize: rotate the image into a rectified orientation

45

0 2

Gradient orientation histogram

The considered reigion:

Normalizing region rotation
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• Several directions may hold non-negligible strength.

• Find all orientations in histogram, whose amplitude is, e.g., 80% of the strongest bin.

• Output each detected oriented region as a separate keypoint.

0 2

45 80

Gradient orientation histogram

Normalizing region rotation

76

The considered reigion:



Normalizing affine transformation: Affine adaptation

• We have addressed invariance to 

• Translation

• Scale

• Rotation

• But that’s not enough for very large changes in viewpoint

• We require an affine adaptation!

77



Affine adaptation

Iterative approach:

• In circular window calculate a gradient covariance matrix (similar to Harris)

• Estimate an ellipse from the covariance matrix

• Using the new window calculate the new covariance matrix and iterate.

K. Mikolajczyk and C. Schmid, Scale and affine invariant interest point detectors, IJCV 60(1):63-86, 2004. 
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Affine adaptation: Example

Detect blobs accross scales

Slide credit: Svetlana Lazebnik 79



Affine adaptation: Example

Affine-adapted regions

80Slide credit: Svetlana Lazebnik



Affine patch normalization

• Transform the patch such that the ellipse becomes as circle.

• Rotate the region such that the ellipse rotates into a horizontal position

• Scale the region such that the ellipse transforms into a circle

Note: Rotation + Scaling computed from the (ellipse, Σ) eigen vectors and eigen values

Rotate Scale

81

Σ = 𝑈𝑆𝑈𝑇

R = 𝑈−1 𝑆−1/2



Local descriptors / Region descriptors

• The simplest descriptor: a vector of region intensities.

• Small shifts due to noise may cause a large change in the descriptor.

• Sensitive to photometric changes.

82

Intensity & Spatial shifts

Region A Region B



Descriptor: SIFT

• Scale Invariant Feature Transform:

• Split region into 4x4 sub-regions: 16 cells

• Calculate gradients on each pixel and smooth over a few neighbors.

• In each cell calculate a histogram of gradient orientations (8 directions)

• Each point contributes with a weight proportional to its gradient magnitude

• The contribution is weighted by a Gaussian centered at the region center

• Descriptor (Stack histograms into a vector and normalize): 4x4x8 = 128 dim

Actually, there are a few important suttle details:
David G. Lowe. "Distinctive image features from scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004. 

SIFT

83

Note: for computational efficiency, 
[Lowe2004] implements region 
rotation implicitly in the computation 
of individual sub-region histograms 
(i.e., for each pixel, compute the sub-
regions it might contribute to after 
rotation, rotate the gradient
appropriately and thus calculate the 
sub-region histogram bin). Thus, 
classical implementations give 
rotation-invariant SIFT descriptor, and 
do not require per-region geometric 
rotation prior to SIFT construction.



Summary: SIFT

• Detect keypoints and their scale/orientation/affine frames and normalize the patches

• Encode by a SIFT descriptor

• A surprisingly robust key-point descriptor

• Allows ~60 degrees of out-of-plane rotation ; Robust to significant intensity changes

• Fast (lots of real-time implementations)

Slide credit: Steve Seitzhttp://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT 84



Correspondences using keypoints

• Compare keypoints by calculating the Euclidean distance (𝐿2 distance) between 

descriptors.

• Strategy 1: For each keypoint in the left image identify the most similar keypoint in 

the right image.

• Result: potential (putative) matches/correspondences 

left image right image

85



Correspondences using keypoints

• Strategy 2: Keep only symmetric matches

Definition of a symmetric match:

• “Let point A be a point in the left image and point B its match in the right image. If B is most similar to A 

among all points in the right image and vice versa, they form a symmetric match.”

left image right image

86



Correspondences using keypoints

• Strategy 3: Calculate the distance between A and the second-most similar keypoint

DESCRIPTOR and the most similar keypoint DESCRIPTOR in the other image.

• Ratio 𝑅 of these two distances will be low for distinctive key-points and high for 

non-distinctive ones.

• Threshold ~0.8 on R gives good results with SIFT.

David G. Lowe. "Distinctive image features from 
scale-invariant keypoints.” IJCV 60 (2), pp. 91-110, 2004. 
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𝑑first
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𝑑first



Finally stitching can be fully automated

• Detect key-points independently in each image

• Determine potential correspondences 

• Reject improbable correspondences by strategy 1,2, or 3

• Perform RANSAC to find the inliers and fit the model
All correspondences + filtering by strategy 1,2,3 +RANSAC:

88



Trainable keypoint detection (modern approaches)

• SuperPoint – a convolutional neural network trained to “fire” on a key point

• Keypoints trained on simulated data, adapted to real data, re-trained for 

joint extraction of keypoints and descriptors

89

DeTone et al., SuperPoint: Self-Supervised Interest Point Detection and Description, CVPR2018 



Recent work on keypoint detection

90

DeTone et al., SuperPoint: Self-Supervised Interest Point Detection and Description, CVPR2018 



“Recent” work on correspondences matching

91

Sarlin et al. SuperGlue: Learning Feature Matching with Graph Neural Networks, CVPR2020 (video)

Quote: “The estimated correspondences are so 
good that a robust estimator is not required…”



MaSt3r

• Grounding Image Matching in 3D with MASt3R

• Built upon a 3D foundation model

• Considers keypoints+descriptors+3D jointy

• Remarkable matching capabilities!

92

https://github.com/naver/mast3r?tab=readme-ov-file

Leroy et al., Grounding Image Matching in 3D with MASt3R, ECCV 2024



Numerous detectors/descriptors exist

• We have only considered the most popular descriptor (SIFT, Lowe2004)

• Note that Lowe proposed DoG for keypoint detection and SIFT for descriptor –

don’t mix these!

• Many efficient and really fast descriptors have been presented since.

• Significant research currently invested into end-to-end learning the 

keypoint detection, description and matching process by neural nets.

See Image Matching Challenge (link to the CVPR2023 workshop)
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Back to the panorama stitching

• Keypoints: Detection, Description, Matching

• RANSAC: Robust estimation of transformation model parameters

• But ... What should “the transformation model” be?

94

The camera model...
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Extracting 3D information from a 2D image?

• Shading, Texture, Focus, Perspective, …

• Humans learn how 3D

structure looks in a  2D image

• In computer vision, we require

a model of 3D-to-2D transform

to measure the 3D content

2



Recall the pinhole camera

• Earliest and remarkably correct written description: 

~500 BC Mohist canon [founder Mo-ti]

(ancient Chinese texts)

• A simple standard camera model

• A box with a small aperture

• Image forms on the back

• Virtual vs actual image

plane

aperture image planevirtual image plane
3D object

3



Single-view geometry

• Points in a world 3D 

coordinate system (c.s.)

• Project to image plane, i.e.,

into 2D pixels

Projection decomposed into two kinds:

1. “Extrinsic” projection

3D World → 3D Camera

2. “Intrinsic” projection

3D Camera → 2D Image 
World 3D 
coordinate system

Camera 3D c.s.

4



• A point written in camera 3D coordinate system (meters)

• Projected to camera image plane (meters)

• Projected to discretized image (pixels)

• Let’s derive transformations for a pinhole camera!

Point in 3D

Point in imagec

Recall the image formation process:

Consider “Intrinsic” projection first

5



Homogeneous coordinates

• Euclidean geometry uses Cartesian coordinate system

• But for a projective geometry, homogenous coordinates are much more 

appropriate

• E.g., can easily encode a point in infinity (try that in Euclidean...)

• From homogeneous system to Euclidian:

Simply divide by the last coordinate to make it 1.

Cartesian
form

Homogeneous
form

Multiplying by a scalar (≠ 0) value
does not change a point!

6

Do tu.



Camera coordinate system (meters)

• Principal axis: 

A line from camera center perpendicular to image plane.

• Principal point (p): A point where the principal axis punctures the image plane.

• Normalized (camera) coordinate system: 2D system with origin at the principal point.

8



A pinhole camera revisited

   , , / , /
T T

X Y Z f X Z f Y Z

0x P X=

Images from Hartley & Zisserman

Rewrite in homogeneous coordinates

“Sideways” view

• Projection as vector-matrix multiplication:

𝑷0

In 3D camera c.s.

In 2D image 
plane c.s.

3D point in world c.s. 2D projection to image plane

0

0

1 0
1

X
f X f

Y
f Y f

Z
Z

 
     
     =     
        

 

9



From image plane to image pixels

• Change of coordinate system to image corner

• Normalized camera coordinate system: 

Origin in principal point 𝒑 = 𝒑𝑥 , 𝒑𝑦
𝑇

.

• Image coordinate system: 

Origin in the corner of the image sensor.

10



• Change the c.s. origin by the principal point 𝒑:

• Write the transformation:

• Rewrite in vector-matrix multiplication:

)/,/(),,( yx pZYfpZXfZYX ++

0x P X=

𝑷0

From image plane to image pixels (1/3)
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0 0

0 0

0 0 1 0
1

x x

x y

X
f X Z p f p

Y
f Y Z p f p

Z
Z

 
+     

     + =     
        

 

𝑝𝑦



• Projection to a sensor of size 𝑊𝑆 × 𝐻𝑆 (in meters).

• Pixels are arranged into a rectangular

𝑀𝑥 ×𝑀𝑦 pixels matrix.

• Let 𝑚𝑥 = 𝑀𝑥/𝑊𝑆 and 𝑚𝑦 = 𝑀𝑦/𝐻𝑆.

• Construct projection to pixels:

0

0

0 0

0 0

0 0 1 0
1

x

y

X
x x

Y
y y

Z
z





 
     
     =     
        

 

Abbreviated form:

0 0 0 0

0 0 0 0

0 0 1 0 0 1 0
1

x x

y y

X
x m f p

Y
y m f p

Z
z

 
       
       =       
            

 

Just multiply by another matrix:

pixel/m m

From image plane to image pixels (2/3)
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• In general difficult to guarantee a rectangular sensor.

Rectangular Skewed

0

0

0 0

0 0

0 0 1 0
1

x

y

X
x x

Y
y y

Z
z





 
     
     =     
        

 

Rectangular

0

0

0

0 0

0 0 1 0
1

x

y

X
x s x

Y
y y

Z
z





 
     
     =     
        

 

Skewed

Projection matrix 𝑃0 Projection matrix 𝑃0

From image plane to image pixels (3/3)
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Calibration matrix

• Expand the projection matrix 𝑷0

• Calibration matrix 𝑲:

“Prescribes projection of 3D point in camera c.s. into pixles!”

0

0

1 0 0 0

0 0 1 0 0

0 0 1 0 0 1 0
1

x

y

X
x s x

Y
y y

Z
z





 
       
       =       
            

 

 0P K I | 0=

0

00

0 0 1

x

y

s x

y





 
 

=
 
  

K
Q: What is the meaning of each
element of the calibration matrix?
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Single-view geometry

• Points in a world 3D 

coordinate system (c.s.)

• Project to image plane

into 2D pixels

Two kinds of projection:

1. “Extrinsic” projection

3D World → 3D Camera

2. “Intrinsic” projection

3D Camera → 2D Image 

?
World 3D 
coordinate system

Camera 3D c.s.

15



From world c.s. to 3D camera c.s.

• The 3D camera coordinate system (c.s.) is related to 3D world c.s. by a 

rotation matrix 𝑹 and translation ෤𝒕 = ෩𝑪.

𝑹 ... How to rotate the world c.s. 
about its own origin to align
it with the camera c.s.

෩𝑪 ... Camera origin in world c.s.
෩𝑿 ... Point in 3D world c.s.
෩𝑿𝑐𝑎𝑚 ... Same point ෩𝑿, but   

written in 3D camera c.s.

X

C

World c.s. ( )C
~

-X
~

RX
~

cam =

World-to-camera c.s. transformation:

(Euclidean)
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From world c.s. to 3D camera c.s.

• Euclidean form:

• Rewrite by using homogeneous coordinates:

( )C
~

-X
~

RX
~

cam =

X
X=

1

 
 
 



cam

X XR RC R RC
X X

1 10 1 0 1

cam
      − −

= = =      
      



X
X =

1

cam

cam

 
 
 


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Putting it all together

• Camera parameters are specified by a calibration matrix 𝑲, the 

projection center in world c.s. ෩𝑪 and rotation matrix 𝑹.

• A 3D point in world coordinates (homogeneous) 𝑿,

is projected into pixels 𝒙 by the following relation:

  camx K I | 0 X K R | RC X=PX = = − 


 P K R | t ,= C
~

Rt −=

Note the structure of the projection matrix!

Q: What needs to be known to construct the projection matrix?
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Lens adds a nasty nonlinearity (and other issues)

Straight lines are no longer straight!

Nonlinearity should be removed

to apply a pinhole model!

http://vipbase.net/doc/img_trans_radial.htm

radial distortion removedradially distorted image

19



Lens adds a nonlinearity to the camera model

• Lens distortion assumed radially symmetric

• Radially expand an image to un-distort

• In this transformation, only the radius of transformed point changes, but 

the angle remains unchanged.

distorted undistorted

( ) ( ), ,   → 

20
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Lens adds a nasty nonlinearity

• What kind of analytic function to use for transforming ρ?

• Typically, a polynomial is used (low degree used in practice):

• Parameters estimated by adjusting them until straight lines become straight. 
[in Matlab use fminsearch (Python, fmin) for optimization method]
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• Intrinsic parameters:

• Principal point coordinates

• Focal length

• Pixel scaling factor (rectangular pixels)

• Shear (non-rectangular sensor array)

• Radial distortion

• Extrinsic parameters

• Rotation R

• Translation t

• Camera projection matrix

 A pinhole camera: 9 DoF

 Camera with rectangular pixels: 10 DoF

 General camera (skewed sensor): 11 DoF

0

0

1

x

y

s x

K y





 
 

=
 
  

2

1

1

1

DoF

0

0

1

x

y

x

K y





 
 

=
 
  1

x

y

f p

K f p

 
 

=
 
  

 P K R | t=

3

3

Summary: camera parameters

Slide credit: Bastan Leibe 22
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Looking at flat objects

• A camera looking at the some planar object

• How would it look if the camera changed position?

• A plane-to-plane projection is called a Homography

23



Apps: Panoramas, Augmented reality, etc.
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Homography estimation from correspondences

• Example of four corresponding points

• The elements of 𝑯 can be estimated by applying 

a direct linear transform (DLT)!

11 12 13

21 22 23

31 32 331

x' H H H x

w y' H H H y

H H H 1

    
    

=     
        

𝒙′ 𝒙

𝑤𝒙′ = 𝑯𝒙
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Matrix form of a vector product

• Before we continue…

0

0

0

z y x

z x y

y x z

a a b

a a b

a a b

 −  
   

 −   
   −   

x x
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   
   
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   
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c b

 
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0

z y

z x
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a a
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a a



 −
 

 − 
 − 

a   =a b a b
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'i iw =x Hx

' 0i i =x Hx
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Homography estimation by DLT

 
1 1 1

2 2 2

3 3 3

0 1 '

' ' 1 0 '

' ' 0

T T T

i i i i

T T T

i i i i i i

T T T

i i i i i

y

x

y x



     − 
      

 = = −      
      −      
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Change the vector product into vector-matrix:
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3

T

i

T

i

T

i

 
 

=  
 
 

x h

x h

x h
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Homography estimation by DLT

1 2 3

2 1 3

3 1 2

0 1 ' '

' 1 0 ' '
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i i i i i
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y
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 −  
   

 = − =   
   −   

x x h

x Hx x x h

x x h

A single point contains three coordinates, but gives only two linearly independent equations

x' Hx 0i i =

Multiply in the matrix terms…

Expose the homography terms 𝒉1, 𝒉2, 𝒉3into a single vector:
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Homography estimation by DLT

Minimizes the mean squared error.𝐡 =
𝑣19, ⋯ , 𝑣99

𝑇

𝑣99

11 11 19

99 91 99

T

T

d v v

d v v

   
   

= =
   
      

A UDV U


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

SVD

1 1 1
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n n n

y

x

y

x

 
 

−   
   =    
  

 − 

x x

hx x

h

hx x

x x



The n points yields a 
system of equations:

=Ah 0

Homogeneous system!

1 1
' x x



n Correspondences...

2 2' x x

Reshape h into H.
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Preconditioning

• DLT works well if the corresponding points are normalized separately in 

each view!

• Transformation 𝑇𝑝𝑟𝑒:

• Subtract the average

• Scale to average distance 1.

• Set [a,b,c,d] such that the mean of the points ෥𝒙𝑖 is zero and their variance is 1.

pre

0

T 0

0 0 1

a c

b d

 
 

=
 
  

x=T xpre


𝒙
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Homography estimation

1. Apply preconditioning (i.e., multiply by the transform matrices) to 

points in each image separately:

2. Apply DLT to estimate the homography ෩𝐻:

3. Transform back the solution to remove preconditioning:

''= 'prex T x = prex T x

' 1

pre pre

−=H T HT

'=Hx x
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Secret knowledge

Zoom-in of the floor

Compute a 
homography

to this rectangle

Flagellation of Christ (Piero della Francesca, ~1460)

32

Check out : Secret Knowledge by David Hockney, 2002



Marker-based Augmented Reality

33

model

H

P=𝑲 𝒓1, 𝒓2, 𝒓3, 𝒕

𝒙 = 𝑲 𝒓1, 𝒓2, 𝒓3, 𝒕 𝒙
(𝑤) = 𝑲 𝒓1, 𝒓2, 𝒕 𝒙

(𝑤)′

𝒙 = 𝑯𝒙(𝑤)′World c.s.

x=P 𝒙(𝑤)

Note, 𝒙(𝑤)′ are only (x,y) coordinates of 𝒙(𝑤) without z=0! 

e.g., 𝒙𝟒
(𝑤)′

= 𝟎, 𝟏, 𝟏 𝑻 (the last 1 is due to homogeneus coordinates) 

x4
(𝑤)

= 0,1,0,1 𝑇

x1
(𝑤)

= 0,0,0,1 𝑇

x2
(𝑤)

= 1,0,0,1 𝑇

x3
(𝑤)

= 1,1,0,1 𝑇



Vanishing points

• What happens with projection of parallel lines?

• Sets of 3D parallel lines intersect at a vanishing point!

Vanishing point!

34



Vanishing points

• Where in image do sets of 3D parallel lines projections intersect?

• Note that this image shows a special case with lines parallel with 

principal axis. 

• But our derivation of VP will be general.

Perspective projection:

A 3D point:

𝑿
Ground plane𝒙

Parallel lines

Camera 
projection
center

Vanishing point (VP)!

35
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Vanishing point: calculation (1/2)

• Consider a point on one of parallel lines

A 3D point A and vector D:

A

A

A

X

Y

Z

 
 

=
 
  

A

D

D

D

X

D Y

Z

 
 

=
 
  

( ) = +X A D

A point on a line:

Perspective projection:

Ground plane

𝒙(𝝀)

Camera 
projection
center

Vanishing point!

𝑿(𝝀)𝑨 𝑫
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Vanishing point: calculation (2/2)

• Now push the point far away from the camera…

(lim li) m

A D

A D

A D

A D

X X
f
Z Z

Y Y
f
Z Z

x
 










→ →

+

+

 
 
 
 


+


=



=

+

v

As the point is pushed towards
infinity, the projection approaches
the vanishing point 𝒗!

/

/

D D

D D

Z

fY Z

fX 
 


=


v

Vanishing point!

𝒙(𝝀)

Camera 
projection
center

Vanishing point!

𝑿(𝝀) ∞𝑨 𝑫

Projection of a point at infinity, i.e., 𝑿(∞):

D

D

D

X

D Y

Z

 
 

=
 
  
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Vanishing points

• VP depends on direction 𝑫, not on point 𝑨.

• A different set of parallel lines correspond to a

different VP!

• Horizon is formed by connecting 

the vanishing points of a plane

𝒙(𝝀)

𝑿(𝝀)𝑨 𝑫

/

/

D D

D D

Z

fY Z

fX 
 


=


v

38

z

x

y



Vanishing points

• Horizon is a collection of all the vanishing points corresponding to a

set of parallel planes.

• Sets of 3D parallel lines intersect at a vanishing point!

Vanishing point!

horizon

39

Do tu.



Example: Use IMU to estimate horizon projection

+IMU Camera tilt estimated from IMU,
horizon projected into image

Bovcon, Perš, Mandeljc, Kristan, Stereo Obstacle Detection for Unmanned 
Surface Vehicles by IMU-assisted Semantic Segmentation, RAS 2018

40



Example: Use IMU for obstacle detection

41

Bovcon, Kristan, A water-obstacle separation and refinement network for unmanned surface vehicles, IEEE TCyb 2021

WaSR: Water 
Separation and 
Refinement NetworkDo tu



Previously at MP…

Single-view geometry:

42

 x=PX

Homography:

𝑤𝒙′ = 𝑯𝒙

Vanishing points:

DLT for 𝑯 estimation.



Camera calibration

• Assume a fixed camera in 3D that you want to use for measuring

43

https://vizworld.com/2017/04/watsons-cognitive-
visual-inspection-in-lean-manufacturing-processes/

What is this distance in 𝑚𝑚?

“World c.s.”

“Camera c.s.”𝑥1

𝑥2

x XP =

1 1 2

1

2

1x , xX P X P− −= =

1 2|| ||d X X= −

In principle (not really that easy…):

x K R | RC X = − 


What is required to form 𝑃?



• Camera calibration: estimate projection matrix 𝑷 from a known 

calibration object.

• Corner structures on calibration object for easy and accurate detection

• Coordinates (meters) in 3D known

• Coordinates (pixels) in 2D projection detected

World c.s.

Camera calibration

44

World c.s.

𝑿𝑖

𝒙𝑖



• Proper calibration requires measuring the points at sub-pixel accuracy.

• Highly depends on the calibration pattern.

• How many point correspondences are required?

• A rule of thumb:

• Number of constraints exceeds the number of unknowns by a factor 5.

•  For 11 parameters in P, use at least 28 points (2 eqs. per point pair).

Gives better results

Camera calibration: point detection
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ii PXx =

0PXx = ii
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Camera calibration by DLT

• Standard approach for parameter estimation (DLT)

? P

Xi

xi

1

2

3

0 X X

X 0 X 0

X X 0

T T T

i i i

T T T

i i i

T T T

i i i i

y P

x P

y x P

 −  
   

− =   
   −   

Same approach as with Homography:
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• P has 11 DoF (12 parameters, but the scale is arbitrary).

• A single 2D-3D correspondence gives two linearly independent equations.

• Homogeneous system is solved by SVD of A.

• Solution requires at least 5 ½ correspondences.

• Caution: coplanar points yield degenerate solutions.

• Apply preconditioning as with Homography estimation.

Slide adapted from Svetlana Lazebnik
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Camera calibration by DLT
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• The DLT implementation is pretty simple, but it is an algebraic solution.

• In reality we would like to minimize a  re-projection error:

• The re-projection error:

Camera calibration: practical advices

1
E( )=

T

i i i

N

= ε εp

( )
xi

i i i

yi





 
= = − 
 

xε PX
iXix

Measured projection of 
a point 𝑿𝑖

(rep)

i i=x PX
Re-projected 3D point by
the estimated 𝑷.

P
𝛆𝑖

Reprojection error
for the i-th point.
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• Nonlinear optimization required (Hartley&Zisserman, Chapter 7.2)

• In practice, initialize by (preconditioned) DLT.

• For practical applications you will need to first remove the radial 

distortion (H&Z sec. 7.4, or F&P sec. 3.3.).

• Fast and accurate approaches for 𝑃 matrix estimation still an active 

research topic

Camera calibration: practical advices

49



Camera calibration: P decomposition

• Once the projection matrix P is estimated, we need to figure out the 

camera external and internal parameters, i.e., P=PintPext=K[R|t].

• This is a matrix decomposition problem.

• Intrinsic and extrinsic matrix have a particular form, that makes such a 

decomposition possible.

• Solution can be found in Forsyth&Ponce, Chapter 3.2, 3.3. for those 

who are interested to learn more about camera calibration.

50



Standard method: Multiplane camera calibration

• Widely-used approach

• Requires only many

images of a single plane

• Does not require knowing

positions/orientations

• Solid implementations available online!

– OpenCV library:  http://www.intel.com/research/mrl/research/opencv/

– Matlab version by Jean-Yves Bouget:  http://www.vision.caltech.edu/bouguetj/calib_doc/index.html

– Zhengyou Zhang’s web site:  http://research.microsoft.com/~zhang/Calib/

list_images

Images courtesy Jean-Yves Bouguet, Intel Corp. 51



Thanks.
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Machine perception
Multiple-view Geometry

Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme,
Fakulteta za računalništvo in informatiko,

Univerza v Ljubljani



Single-view geometry

• Depth of a point cannot be calculated from a single 2D image

(without a scene model or other kind of prior information, such as known object sizes)

2



• All points along a ray that passes through a camera center are projected 

into the same point in the image plane.

• Impossible to calculate a 3D point from a single 2D point
(without prior on the scene structure, that is)

𝒙 𝑿?
𝑿?

The reason behind depth ambiguity

3

ii PXx =



Taking advantage of ambiguity

• Anamorphosis (earlier than 15th century)

Author: Julian Beever

4



Take two images = Stereo!

Photos by: Jim Gasperini 5

• Much easier using a pair of views...



STEREO GEOMETRY AND SCENE RECONSTRUCTION
Machine perception

6



Depth estimation by triangulation

• The basic principle is triangulation

• Reconstruction calculated by intersection of two rays

• Assume:

• Known camera position in 3D (calibration)

• Correspondence between points is known

Left camera Right camera

?

7



Triangulation by intersection

• Intersect a pair of visual rays, corresponding to 𝑥1and 𝑥2. 

• But because of numerical errors and noise, the rays will not intersect in practice!

O1
O2

x1
x2

X?

8



• Find the shortest segment connecting the two rays and take the value 𝑋

in the middle.

• Not very principled…

O1
O2

x1
x2

X

Slide credit: Svetlana Lazebnik

Triangulation: Geometric approach

9



𝐚 × 𝐛 =

0 −𝑎𝑧 𝑎𝑦
𝑎𝑧 0 −𝑎𝑥
−𝑎𝑦 𝑎𝑥 0

𝑏𝑥
𝑏𝑦
𝑏𝑧

= [𝐚×]𝐛

Recall: Vector product written in matrix form:

Triangulation: A linear algebraic approach

𝑷1 𝑷2

10

𝜆1x1 = P1X
𝜆2x2 = P2X

x1 × P1X = 0
x2 × P2X = 0

[x1×]P1X = 0
[x2×]P2X = 0



Two independent equations each, 3 unknowns in X.

• Write a homogeneous system.

𝑨𝑿 = 𝟎

• Solve by SVD. Solution for 𝑿 is the 

eigenvector corresponding to the smallest 

eigenvalue.

• Better than geometric approach, since it 

easily generalizes to multiple cameras.

Triangulation: Linear algebraic approach

𝑷1 𝑷2

11

𝜆1x1 = P1X
𝜆2x2 = P2X

x1 × P1X = 0
x2 × P2X = 0

[x1×]P1X = 0
[x2×]P2X = 0



• Find X that minimizes a sum of reprojection errors!

O1
O2

x1
x2

X?

x’1

x’2

Image credit: Svetlana Lazebnik

𝑑2(𝑥1, 𝑃1𝑋) + 𝑑2(𝑥2, 𝑃2𝑋)

Triangulation: Nonlinear refinement

12



• Find X that minimizes a sum of reprojection errors!

• Most accurate, but does not have a closed-form solution.

• Requires iterative algorithm (bundle adjustment)

• Initialize by DLT.

• Optimize by Gradient descent or Gauss-Newton or Levenberg-Marquardt 

(see F&P Chapter. 3.1.2 or H&Z Appendix 6).

Slide credit: Bastian Leibe 13

Triangulation: Nonlinear refinement

𝑑2(𝑥1, 𝑃1𝑋) + 𝑑2(𝑥2, 𝑃2𝑋)



But in general correspondences are unknown

• Correspondences across images are usually not known in advance.

• Assume we know the location of the right camera with respect to the 

left camera.

• Given a point 𝒑 in the left image, can we constrain 

the search region of the corresponding point 

in the right image?

14

Right cameraLeft camera

?
𝑙′

𝑝



But in general correspondences are unknown

• Correspondences across images are usually not known in advance.

• Assume we know the location of the right camera with respect to the 

left camera.

• Potential matches for p necessarily lie on the

corresponding epipolar line 𝒍′.

15

Right cameraLeft camera

𝑙′

𝑝

http://www.ai.sri.com/~luong/research/
Meta3DViewer/EpipolarGeo.html



Example

16



Derivation of the epipolar constraint

• The epipolar constraints, for a general stereo system:

“Given a point 𝒙 in the left image what is the equation of the epipolar

line in the right image?”

• Will look at two cases:

• Calibrated cameras (known calibration matrices K, K’)

• Noncalibrated cameras (unknown calibration matrices K, K’)

𝒙
𝒍 =?

17

Left image Right image



Epipolar constraint: A calibrated system

𝐗 = 𝐑𝐗′ + 𝐓

𝐓 × 𝐗 = 𝐓 × 𝐑𝐗′ + 𝐓 × 𝐓

= 𝐓 × 𝐑𝐗′

𝐗𝑇 𝐓 × 𝐗 = 0

𝐗𝑇 𝐓 × 𝐑𝐗′ = 0

Note: X‘ is written in c.s. of O‘, while T and X are written in c.s. of O!
Write transformation of 𝑋′ to 𝑋.

𝑿′𝑿

18Slide credit: Kristen Grauman



• Points on image plane defined as 𝒙 = 𝜆1𝑿 and 𝒙′ = 𝜆2𝑿
′, where 𝜆1and 𝜆2 are 

scalars. 

• Then this holds: 𝒙𝑇𝑬𝒙′ = 𝟎

• Matrix 𝑬 is called an essential matrix, that relates the corresponding image points 

[Longuet-Higgins 1981]

Epipolar constraint: A calibrated system

𝐗𝑇 𝐓 × 𝐑𝐗′ = 0

𝐗𝑇 [𝐓×]𝐑𝐗
′ = 0

Let  𝐄 = [𝐓×]𝐑 , then 𝐗𝑇𝐄𝐗′ = 0

19

A 3D point written in the left 
and the right c.s., respectively.

p =
𝒙
𝑓

p′ =
𝒙′
𝑓′



• A 3D point is mapped to points x and x’ which are related by 

𝒙𝑇𝑬𝒙′ = 𝟎.

𝒍′ = 𝒙𝑇𝑬 𝑇 the epipolar line vector 𝒍′, defined in Π′, containing 𝒙′.

𝒍 = 𝑬𝒙′ the epipolar line vector 𝒍, defined in Π, containing 𝒙.

Epipolar constraint: Essential matrix

20

https://brilliant.org/wiki/dot-product-
distance-between-point-and-a-line/

Distance d of point x to line h:
𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0
𝒉 = 𝑎, 𝑏, 𝑐 𝑇

𝒙 = 𝑥0, 𝑦0, 1
𝑇

𝑑 = 𝒉𝑇𝒙/ 𝑎2 + 𝑏2



• Relates images of corresponding points (meters) in both cameras at a 

given rotation and translation.

• Can be calculated from known extrinsic parameters:

𝐄 = [𝐓×]𝐑

Translation and rotation of 
the second camera with 
respect (w.r.t.) the first.

Epipolar constraint: Essential matrix

21



• Now consider image points in pixels!

• 𝑥′ & 𝑥 … image plane coordinates 

(meters)

• ො𝑥′ & ො𝑥… image sensor coordinates 

(pixels)

• Epipolar constraint for a calibrated system:

𝑥𝑇𝐸​𝑥′ = 0

• Coordinates related by camera calibration matrix 𝑲:

• Camera calibration matrices K and K’ unknown→ derive the epipolar constraint for 
the points in pixels

(meters)(pixels)
ො𝑥 = 𝐾𝑥​ ො𝑥′ = 𝐾′𝑥′

(meters)(pixels)

Epipolar constraint: A noncalibrated system

22



X

x x’

ො𝑥 = 𝐾​𝑥
ො𝑥′ = 𝐾′𝑥′

ො𝑥, ො𝑥′ in image pixels ; 𝑥, 𝑥′ in meters 

Epipolar constraint: A noncalibrated system

23

(meters)(pixels)

Epipolar constraint: 𝑥𝑇𝐸​𝑥′ = 0
(meters)(meters)

𝑥 = 𝐾−1 ො𝑥

𝑥′ = 𝐾′−1 ො𝑥′
(meters) (pixels)

ො𝑥𝑇𝐾−𝑇𝐸𝐾′−1 ො𝑥′ = 0

𝐹 = 𝐾−𝑇𝐸𝐾′−1

Fundamental matrix
(Faugeras and Luong, 1992)

ො𝑥𝑇𝐹 ො𝑥′ = 0



• 𝑭ෝ𝒙′ is epipolar line passing through ෝ𝒙, i.e., (𝒍 = 𝑭ෝ𝒙′ )

• 𝑭Tෝ𝒙 is epipolar line passing through 𝒙, i.e.,  (𝒍′ = 𝑭Tෝ𝒙 )
• 𝑭𝒆′ = 𝟎 ;  𝑭T𝒆 = 𝟎

X

x x’

ො𝑥𝑇Fො𝑥′ = 0 with 𝐹 = 𝐾−𝑇𝐸𝐾′−1

Epipolar geometry: Fundamental matrix

24

𝑥𝑇E𝑥′ = 0 ; ො𝑥′ = 𝐾​𝑥′ ; ො𝑥 = 𝐾​𝑥



Epipolar geometry: crucial terms

• Baseline: a line connecting the camera centers.

• Epipole: point where the baseline punctures the image plane.

• Epipolar plane: plane connecting two epipoles and a 3D point.

• Epipolar line: intersection of epipolar plane and image plane.

• All epipolar lines of a single image intersect at the camera epipole.

25



Epipolar matrix vs Fundamental matrix

26

Epipolar matrix (calibrated case):
E= 𝐓× 𝐑

Note: in 𝐓× , one column is a linear 
combination of the other two.

rank( 𝐓× ) = 2→ 𝐓× =0, thus
E =0 & rank(E)=2

E = U
σ 0 0
0 σ 0
0 0 0

VT

DoF: 9 – 1 – 1 – 2 = 5  

Fundamental matrix (noncalibrated case): 
F= K−TEK′−1

F =0 , rank(F)=2

F = U
σ1 0 0
0 σ2 0
0 0 0

VT

DoF: 9 – 1 – 1 = 7  



Special case: Geometry of a simple stereo

• Now consider a calibrated stereo system with parallel optical axes.

• This will simplify the search problem

significantly… 

𝑂𝑟

𝑂𝑙

?

27

𝒙Τ𝐄𝒙′ = 0

𝐄 = 𝐓×𝐑

𝒍′ = 𝒙𝑇𝑬 𝑇 [𝑥, 𝑦]

[𝑥′, 𝑦′]
Given [𝑥, 𝑦] in the left 
image, where will the 
corresponding 𝑥′, 𝑦′ be in 
the right image?



Special case: Geometry of a simple stereo

28

𝒙Τ𝐄𝒙′ = 0

𝐄 = 𝐓×𝐑

𝒍′ =?

𝐚 × 𝐛 =

0 −𝑎𝑧 𝑎𝑦
𝑎𝑧 0 −𝑎𝑥
−𝑎𝑦 𝑎𝑥 0

𝑏𝑥
𝑏𝑦
𝑏𝑧

= [𝐚×]𝐛



Geometry of a simple stereo

• Parallel optical axes with aligned image lines

• A 3D point written in the coordinate 

system of the left camera: 𝐿𝑃.

• Baseline 𝑏𝑥: displacement of the right

camera along 𝑥𝐿.

• Focal length 𝑓: distance of image

planes (in both cameras) from

their projection centers.

29Images credit: Trym Vegard Haavardsholm

𝑓
Depth estimation simplifies…

𝐿𝑃 =
𝑋
𝑌
𝑍



Geometry of a simple stereo

• The corresponding points lie on the same line 

of pixels (epipolar line).

30

𝐿𝑃 =
𝑋
𝑌
𝑍

𝑓

Images credit: Trym Vegard Haavardsholm



Geometry of a simple stereo

• The corresponding points lie on the same line 

of pixels (epipolar line)

• Align the right projection onto the left

image (displace coordinates

of the right projection by “−𝑏𝑥”). 

• Depth from disparity:

𝑍​= 𝑓
𝑏𝑥
𝑑

• 3D from disparity

31Images credit: Trym Vegard Haavardsholm

𝑓
𝑋​= 𝑥𝐿

𝑏𝑥
𝑑

𝑌​= 𝑦𝐿
𝑏𝑥
𝑑

𝑍​= 𝑓
𝑏𝑥
𝑑

, ,

𝐿𝑃 =
𝑋
𝑌
𝑍



Stereo image rectification

• It is convenient if the lines for searching the 

matches correspond to the epipolar lines – as 

simple as in parallel cameras system

• Reproject image planes into a common

plane, parallel to the baseline.

• Two homographies (3x3) – matrix transformation 

for reprojection of left and right image planes.

C. Loop & Z. Zhang, Computing Rectifying Homographies for Stereo Vision. CVPR’99

Slide adapted from Li Zhang 32



Stereo image rectification

33

Do tu.



Previously at MP… 

34

• A system of two or more cameras: triangulation & epipolar geometry

• A system of perfectly aligned cameras:

Disparity 𝒅: the difference in 𝑥
position of a point in the left and he 
right camera 

𝑋​= 𝑥𝐿
𝑏𝑥

𝑑
, 𝑌​= 𝑦𝐿

𝑏𝑥

𝑑
, 𝑍​= 𝑓

𝑏𝑥

𝑑



Disparity and depth

35

xL-d

(xL, yL)

xL

• We’ll assume a perfectly rectified stereo system: d = xL- xR ; d ≥ 0

• Disparity at point is inversely proportional to its depth:

• Relates coordinates of points in left and right image

𝑍​=
1

𝑑
⋅ 𝑓𝑏𝑥

(xL, yL)

xL

Left camera image Right camera imageDisparity at each point in left image

xL

d(xL, yL)



Disparity estimation

36

• We’ll assume a perfectly rectified stereo system: d = xL- xR ; d ≥ 0

• Disparity at point is inversely proportional to its depth:

• How do we compute the disparity for all points in the left image?

𝑍​=
1

𝑑
⋅ 𝑓𝑏𝑥

Left camera image Right camera imageDisparity at each point in left image

?



Disparity estimation

• For a patch centered at a pixel in the left image

• Compare to all patches in the right image

along the epipolar line (same line)

37Images credit: Trym Vegard Haavardsholm

NCC( , ) = 0.01

0 640

x1 x1

X coordinates



Disparity estimation

• For a patch centered at a pixel in the left image

• Compare to all patches in the right image

along the epipolar line (same line)

• Select the patch with greatest similarity.

• Difference in position of left patch and right patch is the disparity.
38Images credit: Trym Vegard Haavardsholm

0 640

x2x1 x1

d

d = x1 − x2

X coordinates



Disparity estimation

• In practice the disparity values are restricted

to a reasonable range of viable disparities.

• E.g.: disparity for an object very far away from the target is 0.

𝑑𝑚𝑎𝑥 is specified by the minimum distance of an object from the camera 

(see geometrical model of a simple stereo system) 
39Images credit: Trym Vegard Haavardsholm

x1

x1- dmax x1- 0



Disparity: influence of the window size

• Small window size 𝑊: 

• Details potentially better estimated

• Noisy disparity

• Fast(er) computation

40

• Large window size 𝑊: 

• Details potentially lost

• (over)Smooth disparity

• Slow(er) computation

Small 𝑊 Large 𝑊Left image

Images credit: Trym Vegard Haavardsholm



Disparity quality

41

Well-defined
strong response

Weak response due to occlusion

Ambiguous
response

Images credit: Trym Vegard Haavardsholm



Global disparity optimization

• Consider a single line (𝑁 pixels)

• Similarity scores* for different

disparities for each pixel.

• Global cost of selecting 

disparities 𝑑 = (𝑑1: 𝑑𝑁) :

42http://lunokhod.org/?p=1356

𝑑 = 0

𝑑𝑚𝑎𝑥

𝐸 𝑑𝑖 = 𝐸𝑑𝑎𝑡𝑎 𝑑𝑖

𝐸𝑑𝑎𝑡𝑎 𝑑𝑖 = 𝑒−𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑑𝑖)

“Energy” output w.r.t. location

𝑥 = 0 𝑥 = 𝑁
𝐸 𝑑 = ෍

𝑖

𝐸𝑑𝑎𝑡𝑎 𝑑𝑖

∗
Similarity 0 means “no match”, 1 means “perfect match”



Global disparity optimization

43

𝑑 = 0

𝑑𝑚𝑎𝑥

𝐸 𝑑𝑖 = 𝐸𝑑𝑎𝑡𝑎 𝑑𝑖

𝐸𝑑𝑎𝑡𝑎 𝑑𝑖 = 𝑒−𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑑𝑖)

“Energy” output w.r.t. location

𝑥 = 0 𝑥 = 𝑁

• Disparity calculated independently at each pixel.
• Additional constraints can be imposed on the set of 

viable disparity estimates.

http://lunokhod.org/?p=1356



Disparity constraints Constraints:  

• Order: Points on a single 

surface appear in the same 

order in both views.

• Slow local depth change: 

smooth surfaces should result 

in smooth disparity.

Order of points constraint violated

44

depth



Global disparity optimization

• Consider a single line (𝑁 pixels)

• Similarity scores for different

disparities for each pixel.

• Global cost of selecting 

disparities 𝑑 = (𝑑1: 𝑑𝑁) :

45

𝑑 = 0

𝑑𝑚𝑎𝑥

𝐸 𝑑𝑖 = 𝐸𝑑𝑎𝑡𝑎 𝑑𝑖 + 𝜆𝐸𝑆(𝑑𝑖)

Smoothness term that assigns
a high cost if disparities change 
significantly between consecutive pixels

𝐸 𝑑 = large

𝐸𝑑𝑎𝑡𝑎 𝑑𝑖 = 𝑒−𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑑𝑖)

“Energy” output w.r.t. location

𝑥 = 0 𝑥 = 𝑁

How to find 𝑑 with 
globally minimal 
𝐸 𝑑 ?

http://lunokhod.org/?p=1356

𝐸 𝑑 = small



Global disparity optimization

• Optimal sequence of disparities 

dopt = (𝑑1: 𝑑𝑁) obtained by 

dynamic programming (e.g., Viterbi 

algorithm).

• Apply independently to each line.
46

𝑑 = 0

𝑑𝑚𝑎𝑥

Similarity score

𝑥 = 0 𝑥 = 𝑁

…
…

Disparity map

Cox, Hingorani, Rao, Maggs, “A Maximum Likelihood Stereo Algorithm,” CVIU, 1996.

𝐸 𝑑𝑜𝑝𝑡 = minimal

http://lunokhod.org/?p=1356



Semi global block matching (SGBM)

• Apply line-based optimization across several directions in the image …

47http://lunokhod.org/?p=1356



Semi global block matching (SGBM)

• … aggregate disparity energies from all direction-optimal assignments 

and take the disparity at each pixel that received a minimum energy.

48

Heiko Hirschmuller, “Stereo processing by semiglobal matching and mutual information”. TPAMI, 2008

Left-to-right line optimization After aggregating 8-direction energies

http://lunokhod.org/?p=1356



Application: View interpolation

Right image

Slide credit: Svetlana Lazebnik 49



Left image

Application: View interpolation

50Slide credit: Svetlana Lazebnik



Application: View interpolation

Disparity

51Slide credit: Svetlana Lazebnik



Application: View interpolation

52Slide credit: Svetlana Lazebnik



Application: view interpolation

• Inpainting required: fill-in the previously occluded scene regions for 

better realism

53

Kopf et al., One Shot 3D Photography, Arxiv 2008



Video view interpolation

http://research.microsoft.com/IVM/VVV/

54

L. Zitnick et al, High-quality video view interpolation 
using a layered representation, SIGGRAPH 2004



loss

loss

Avoiding stereo: Mono-depth – a basic approch

• Train a CNN to predict depth based on a single image

• Unsupervised training: use stereo disparity prediction consistency

55

Le
ft

Real Right

R
ig

h
t

CNN

L disparity Predicted Right

Predicted Left Real LeftR disparity

Godard et al., Unsupervised Monocular Depth Estimation with Left-Right Consistency, CVPR2017



Monodepth 2

56

Godard et al., Digging Into Self-Supervised Monocular Depth Estimation, ICCV2019  [GIT]



Reconstruction by a moving camera

• If a camera is moving freely, the “stereo system” cannot be pre-

calibrated (except from matrix 𝑲, that is)

• Actually, we are dealing with multiple “cameras”

https://www.youtube.com/watch?v=5QLutxstkw4
57



RECONSTRUCTION FROM MULTIPLE IMAGES
A BRIEF OVERVIEW

Machine perception

58



Problem formulation

• Given several images of the same scene, reconstruct all camera 

parameters (poses 𝑹i, 𝒕i & calibration matrices 𝑲i) and the 3D points Xj

59

𝑿j
Pi = 𝑲[𝑹i|𝒕i]

𝒙𝑖𝑗 = 𝑷iXj

𝒙1𝑗



A simple structure from motion (SFM) pipeline

• Assume a moving camera with known calibration matrix 𝑲

• Assume a two-view problem (easily extends to multiple views)

• We will consider a pipeline that’s easier to explain (but not used in practice)

60Image from: Xiao, J. Multiview 3D Reconstruction for Dummies

E= t× 𝐑 P= 𝑲[𝐑|𝒕]

𝜆1x1j = P1Xj
𝜆2x2j = P2Xj

𝑬 = 𝑲𝑇𝑭𝑲′1

𝑲



A simple structure from motion (SFM) pipeline

• Finally, using Pi = 𝑲[𝑹i|𝒕i], optimize the 

camera parameteres & 3D point positions by

minimizing the re-projection errors:

𝑲

61Image from: Xiao, J. Multiview 3D Reconstruction for Dummies

{𝐑i
∗, 𝐭i

∗, 𝑿j
∗} = argmin෍

𝑖

෍

𝑗

(𝐱𝑖𝑗 − 𝐊𝑖 𝐑𝑖|𝐭𝑖 𝐗𝑗)
2

Bundle adjustment
{𝐑i

∗, 𝐭i
∗, 𝑿j

∗}

Bundle adjustment = Minimize re-projection error

𝒙𝑖𝑗 should be close to 𝑷iXj:

?

𝒙1𝑗
𝒙2𝑗

𝑿j

ϵij = (𝐱𝑖𝑗 − 𝑷iXj)
2



Fundamental matrix estimation

• Assume known correspondences 𝑥𝑖 𝑖=1:𝑁 , 𝑥′𝑖 𝑖=1:𝑁

• Estimate 𝐹 that minimizes reprojection errors

• Nonlinear optimization (Levenberg-Marquardt), requires good initial estimate.

• Usually initialized by 8-point algorithm (described next).

𝒙𝑖 𝐥𝑖′ = 𝐅𝑇𝐱𝑖

𝒙′𝑖𝐥𝑖 = 𝐅𝐱′𝑖

𝑑(𝐱𝑖 , 𝐅𝐱′𝑖) 𝑑(𝐱𝑖′, 𝐅
𝑇𝐱𝑖)

ϵ(𝐅) =
1

𝑁
෍

𝑖=1

𝑁

(𝑑2(𝐱𝑖 , 𝐅𝐱′𝑖) + 𝑑2(𝐱𝑖′, 𝐅
𝑇𝐱𝑖))

ϵ(𝐅)

62

x𝑇Fx′ = 0



Fundamental matrix estimation:  The Eight-point algorithm

x = (u, v, 1)T,   x’ = (u’, v’, 1)T

Slide credit: Svetlana Lazebnik

Coordinates of a pair of corresponding points:

Epipolar constraint: 𝒙𝑇𝑭𝒙′ = 𝟎

Minimize:

with constraint

||F||2 = 1

෍

𝑖=1

𝑁

(𝑥𝑖
𝑇 𝐹𝑥′𝑖)

2

𝐹 ← last eigenvector(A)

Homogeneous 
system!

𝐀𝐟 = 𝟎

𝐹33 + 𝐹13𝑢 + 𝐹31𝑢
′ + 𝐹23𝑣 + 𝐹32𝑣

′ + 𝐹11𝑢𝑢
′ + 𝐹12𝑢𝑣

′ + 𝐹21𝑢
′𝑣 + 𝐹22𝑣𝑣

′ = 0

(one equation per correspondence – require 8)

63



1. Precondition: Center image points, and scale such that the standard deviation 

becomes 2 pixels.

• ෥𝒙 = 𝑻𝒙,  ෥𝒙′ = 𝑻′𝒙′

2. Apply 8-point algorithm to calculate ෩𝑭 from the preconditioned points.

3. Enforce rank=2 

(decompose ෩𝑭, by SVD set the smallest singular value to zero and reconstruct ෩𝑭):

4. Transform the fundamental matrix back to original units: 

Let T and T’ be the transformations used to precondition the points in each image 

separately. Then the fundamental matrix equals to 𝑭 = 𝑻′𝑇෩𝑭𝑻.

Normalized 8-point algorithm

64

෩𝑭 = 𝐔𝐃𝐕𝑇

= 𝐔

𝑑11
𝑑22

𝑑33

𝑣11 ⋯ 𝑣13
⋮ ⋱ ⋮

𝑣31 ⋯ 𝑣33

𝑇

SVD

Set d33=0 and reconstruct F: ෩𝑭 = 𝐔
𝑑11

𝑑22
0

𝑉𝑇



• In general, the correspondences are unknown

• Jointly find the fundamental matrix F AND the correspondences!

(pairs across two views (x’,y’) (x,y)).

• Approach

1. Find keypoints in each image

2. Calculate possible matches (potential matches)

3. Robustly estimate the epipolar geometry by RANSAC

Slide credit: Kristen Grauman

Fundamental matrix estimation

65



• Randomly select a set of 8 correspondences

• Calculate F using these correspondences

• This gives the epipolar constraint!

• Estimate how many correspondences support F:

• Apply the estimated fundamental matrix to all points in 

image 𝐼1 and compute their epipolar lines in image 𝐼2. 

• Number of inliers: points in 𝐼2 that lie close to their 

epipolar lines calculated from 𝑭 and corresponding points 

from 𝐼1.

• Choose 𝑭 with maximal support (#inliers)

RANSAC to robustly estimate F

66

𝒙𝑖

𝒙′𝑖
𝐥𝑖′ = 𝐅𝑇𝐱𝑖

Slide credit: Kristen Grauman



Fundamental matrix estimation summary

• Robust estimation of F

• Improve by a nonlinear optimization of the cost function w.r.t. 𝑭 using 

inliers only:

Potential matches RANSAC Epipolar. geom.

ϵ(𝐅) =
1

𝑁
෍

𝑖=1

𝑁

(𝑑2(𝐱𝑖 , 𝐅𝐱′𝑖) + 𝑑2(𝐱𝑖′, 𝐅
𝑇𝐱𝑖))

67



A simple structure from motion (SFM) pipeline

68

𝑲

Bundle adjustment
{𝐑i

∗, 𝐭i
∗, 𝑿j

∗}

Nister, TPAMI 2004

• But, if 𝑲 is actually, known, we can estimate 𝑬 directly in RANSAC, avoiding 

computation of 𝑭.

• Transform pixels to image-plane points:

• Calculate 𝑬 from 5 correspondences using the 5-point algorithm [Nister, TPAMI 2004].

(solves a 10-degree polinomial)

estimate E directly

𝒙p = 𝑲−1𝒙 , 𝒙′p= 𝑲′−1𝒙′



Uncalibrated structure from motion (SFM)

69

Estimate F

Zisserman, Hartley, Multiple View Geometry in Computer Vision, 2004

Projective 
cameras P1, P2

Without constraints on projection matrices or the 
scene, the estimation is accurate up to a projective 
invertible matrix 4 × 4 matrix 𝑸:

𝒙𝑖𝑗 = (𝑷i𝑸
−1)(𝑸𝑿𝑗)



Uncalibrated structure from motion (SFM)

70

Estimate F

Self-calibrate: 
Estimate 𝑲

Zisserman, Hartley, Multiple View Geometry in Computer Vision, 2004

Triangulate

Upgrade projection 
matrices

𝑷i = 𝑲[𝑹i|𝒕i]

Projective 
cameras P1, P2

Bundle adjustment
on {𝑷i}{𝑿j}

Bundle adjustment
{𝐑i

∗, 𝐭i
∗, 𝑿j

∗}



Try multi-view reconstruction at home

• Bundler: Structure from Motion (SfM) for Unordered Image Collections

PhotoTurism video on YouTube

71

https://www.youtube.com/watch?v=5rYyB4pKPRo



Recent deep network DUSt3R: A 3D foundation model

• Two images processed, for each predict the point cloud in the left 

camera coordinate system

• To get correspondences, just match the points in 3D – i.e., for each 

point in the left camera 3D point cloud, find the closest point in the 

right camera 3D point cloud.
72Wang, Leroy, Cabon, Chidlovskii, Revaud, DUSt3R: Geometric 3D Vision Made Easy, CVPR2024



Recent deep network DUSt3R: A 3D foundation model

• Pretrained on huge datasets, allows many downstream 3D 

reconstruction tasks

73

https://github.com/naver/dust3r

https://github.com/naver/dust3r



Recent deep network DUSt3R: A 3D foundation model

74

Awesome demo: https://europe.naverlabs.com/research/publications/dust3r-geometric-3d-vision-made-easy/



ACTIVE STEREO
Machine perception

75



Structured light stereo

• Idea: project „structured“ light patterns over the object

• Correspondence problem simplifies

• Can use only a single camera

Slide credit: Steve Seitz

Epipolar geometry still holds!

camera

projector

76



Laser scanning

• Optical triangulation

• Project a laser light plane

• Move over an object (the motion has to be accurately measured!) 

• Very precise way to scan using structured light.

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/

77Slide credit: Steve Seitz



Obtained models

The Digital Michelangelo Project, Levoy et al.

Michelangelo’s David (Florence)

78Slide credit: Steve Seitz



Obtained models

The Digital Michelangelo Project, Levoy et al.

79Slide credit: Steve Seitz



Multi-band triangulation

• Project multiple bands to speedup scanning

• But, which pixels belong to which band?

• Answer #1: Assume smooth surface

e.g. Eyetronics’ ShapeCam

Slide credit: Szymon Rusienkiewicz 80



Multi-band triangulation

• Project multiple bands to speedup scanning

• But, which pixels belong to which band?

• Answer #2: Project color bands (or points)

L. Zhang, B. Curless, and S. M. Seitz. Rapid Shape Acquisition Using Color Structured Light and 
Multi-pass Dynamic Programming. 3DPVT 2002

81Slide credit: Szymon Rusienkiewicz



Quality control

• Automatic car inspection

• Industrial project (2016)

• Designed sensory system

and software

82



In gaming industry (2010)

• Project a point pattern for ultra fast triangulation!

Accuracy and Resolution of Kinect Depth Data for Indoor 

Mapping Applications 
Kourosh Khoshelham and Sander Oude Elberink

83



In phones (2017)

• Project a point pattern for ultra fast triangulation!

84

https://www.youtube.com/watch?v=OvVKnC6gGtg
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Machine perception
Recognition & Detection 1: 

Classical approaches
Matej Kristan

Laboratorij za Umetne Vizualne Spoznavne Sisteme,
Fakulteta za računalništvo in informatiko,

Univerza v Ljubljani



Recognition, Detection, Segmentation and beyond

2Slide curtesy: Andreas Geiger



Recognition / Image classification

• Assume we have tagged an object with a bounding box

Whose face is it?

Marilyn Manson? The Woodabe tribe guy?

...
Mr T?

Assume it’s one of your Instagram friends….

3



Recognition by classification

𝑓(𝐼0) 𝑓(𝐼1) 𝑓(𝐼2)
𝑓(𝐼3)

𝑑(𝑓 𝐼0 , 𝑓(𝐼𝑖))

• Select the one with minimal distance?

• Select the one(s) whose distance is sufficiently small?

4



Recognition by classification

• Alternative application: Is this and apple or pear?

• Quality of recognition profoundly depends on the quality of image 

representation – features. 

𝑓(𝐼)

Compactness (c)

H
u

e 
(h

)

5

APPLE



How to determine the features?

1. Natural (linear) coordinate systems: 

For some applications, it is enough just to linearly transform the input 

data.

2. Feature selection:

Machine learning to select optimal features from a pool of several 

handcrafted transforms.

3. Handcrafted nonlinear transforms:

Nonlinear transforms improve feature robustness.

4. End-to-end learning of feature transform:

Have machine learn entire feature extraction and selection pipeline.

6



LEARNING LINEAR COORDINATE SYSTEMS 
BY SUBSPACE METHODS

Machine Perception

7



• Imagine image as a high-dimensional gray-level vector 

(e.g., stack columns one on top of the other) → 100x100 image = 10k×1 dim vector

• What is the number of values required to encode the image? … 10k?

Motivation

8

10k×1 

Some images
Image from the set



• Each image in the dataset has been generated by this equation:

Motivation

9

= + ⋅ (−0.6) + ⋅ (−0.6)

xi μ u1 u2
y1 y2

DoF=2!!

⋅
y1
y2

μ

+ xi

xi = P ⋅ 𝒚i + 𝝁

𝒚i =
−0.6
−0.6

y1

y2

A linear subspace!

𝝁

u1
u2

xi

u1 u2

P



Principal component analysis PCA (linear subspace)

• Find a low-dimensional linear subspace with orthonormal basis, such that projection of 

the data onto the subspace minimally distorts the data.

10

𝝁

u1
u2

𝑈T𝑈 = I

u1 uK

𝑈 = …
μ
=



Principal component analysis PCA (linear subspace)

• Find a low-dimensional linear subspace with orthonormal basis, such that projection of 

the data onto the subspace minimally distorts the data.

11

𝒙𝑖

𝑼𝑇(𝒙𝑖 − 𝝁)

𝒚𝑖

𝑼𝒚𝑖 + 𝝁

෥𝒙𝑖

ϵ𝑖 𝝁,𝑼 = 𝒙𝑖 − ෥𝒙𝑖
2

Reconstruction error minimization
(over training set)!



A 1D subspace derivation

• Assume N centered data points: 𝑥1, … , 𝑥𝑁 ; 𝑥𝑖 ∈ 𝑅𝑀 ,i.e., μ =
1

N
σi=1
N x

i
= 0

• Find a unit vector 𝒖 ∈ 𝑅𝑀 such that projection to this vector minimizes the 

average reconstruction error

12

𝒙i

𝜖𝑖 = ෥𝒙i − 𝒙i
2

a𝑖

ℰ(𝒖) = 1
N෍

i=1:N
෥𝒙i − 𝒙i

2

෥𝒙i = 𝒖 ⋅ ai

ai = 𝒖T𝒙i

= 1
N
෍

i=1:N
𝒖𝒖T𝒙i − 𝒙i

2

𝒖
= 1

N෍
i=1:N

−𝒙i
T𝒖𝒖T𝒙i + 𝒙i

T𝒙i

uopt = argmin
u

ℰ(𝒖)
uopt = argmax

u

1
N෍

i=1:N
𝒙i
T𝒖𝒖T𝒙i

෥𝒙i



A 1D subspace derivation

13

uopt = argmax
u

ℰ′(𝒖)

ℰ′(𝒖) = 1
N
෍

i=1:N
𝒙i
T𝒖𝒖T𝒙i

= 1
N෍

i=1:N
𝒖T𝒙i𝒙i

T𝒖

= 𝒖T 1
N෍

i=1:N
𝒙i𝒙i

T 𝒖

Data covariance matrix 𝚺

𝒖

𝚺

σ2(𝒖) = 𝒖T𝜮𝒖

• Find the unit vector that maximizes the projected data variance 𝒖T𝜮𝒖 ! 

uopt = argmax
u

𝒖T𝜮𝒖



PCA – projected variance maximization

• Task: Find u, that maximizes the following cost function (projected data variance)

• Under constraint: 𝒖 2 = 1

• Write a Lagrangian for constrained optimization: 

• We have obtained a standard equation whose solutions for u are the eigenvectors of Σ.

14

ℰ′(𝒖) = 𝒖T𝜮𝒖

ℒ 𝒖 = 𝒖T𝜮𝒖 − 𝜆 𝒖T𝒖 − 𝟏

𝜕ℒ (𝒖)

𝜕𝒖
= 0

𝜮𝒖 = λ𝒖

uopt = argmin
u

ℰ(𝒖)

uopt = argmax
u

𝒖T𝜮𝒖



PCA – projected variance maximization

• Equation 𝜮𝒖 = λ𝒖 is solved by eigenvectors & eigenvalues (𝒖j, λj)j=1:K of 𝜮.

• But which one maximizes the cost function ℰ′(𝒖) = 𝒖T𝜮𝒖 ?

• Plugging 𝜮𝒖j = λj𝒖jinto the cost gives: ℰ′(𝒖j) = λj𝒖j
T𝒖j = λj

• Since there are finite number of eigenvalues, the largest eigenvalue 

maximizes the cost! → (𝒖max, λmax)

• Since eigenvectors are orthogonal, following similar arguments, we can 

show that the subspace is spanned by the eigenvectors, ordered by their 

eigenvalues (from largest to smallest)

15



• Calculate eigenvectors and eigenvalues of covariance matrix 𝚺

• Eigenvectors: main directions of variance, perpendicular to each other.

• Eigenvalues: variance of data in direction of eigenvectors

• PCA is actually: change of coordinate system that captures major directions of 

variance in the data.

1 1 e

g

1g

2g

PCA – geometric interpretation

p1

p2

(0,0)

a1

a2

(0,0)

1. Translate to origin by 𝐭 = 𝝁
2. Rotate by 𝑹 = 𝑼

𝑼 = [𝒖1, 𝒖2]

16



Projection and reconstruction

• We know the covariance matrix 𝚺 and the mean value 𝝁

• Concatenate first K eigen vectors into a rotation matrix U:

• Projection to subspace:

• Reconstruction:

Reconstruction error:

𝑦𝑖 = 𝑎1, 0
𝑇

17



Example: Object representation

= + a1 + a2 + a3

Slide credit: Ales Leonardis

Q: How many of 𝑎𝑖 should you retain?
18

𝜇

𝜇 𝑢1

𝑢2

𝑢3

𝑢1 𝑢2 𝑢3



How many eigenvectors for reconstruction?

• Can show that the sum of squared differences 𝜖(𝑚) between training images 𝒙𝑖 𝑖=1:𝑁

and their reconstructions using only first m eigen vectors is given by:

Cumulative sum of eigenvalues
(explained variance)

90% of variance

𝑚 eigen vectors

𝜖(𝑚) =෍

𝑗=1

𝑁

𝜆𝑗 −෍

𝑗=1

𝑚

𝜆𝑗 = ෍

𝑗=𝑚+1

𝑁

𝜆𝑗

19

Original
Reconstruction

with 𝑚 eigenvectors

𝜖 𝑚 = 2-

20 40 60 80 100 120 140 160 180
0

5

10

15
x 10

5

index

e
ig

e
n
v
a
lu

e

Eigenvalues
(largest to smallest)



Build you own subspace!

• Reshape all training images into column vectors:

• Calculate the average image:

• Center data:

• Calculate the covariance matrix: 

• Calculate eigenvector matrix U and eigenvalue matrix S (using, e.g., svd):

• Construct a matrix using only first K eigen vectors: 

• For each test image x:

• Project to subspace:

• Reconstruct:  

20

Note: for positive semidefinite matrix C,
eigenvalues == singular values



Important!

• Do not implement PCA as shown in the previous slide! 

1. Consider the size of the covariance matrix C

• The size is MM, where M is the number of pixels in the image!

• But, we have only N training examples, typically N<<M.

 So C will have at most rank N!

2. In any case, we need only first k eigen vectors!

21



The inner-product matrix

• For a large 𝑀, the SVD of 𝐶 becomes inefficient.

• For N <<M, the 𝑁 × 𝑁 inner product matrix   will be smaller:

• Eigenvectors and eigenvalues of matrix  𝑪 are calculated from the 

eigenvectors 𝒖𝑖
′ and eigenvalues 𝜆𝑖

′ of 𝑪′:

This is called 
“the dual PCA”

1
dd

T

N
=C X X

22



A general PCA algorithm

Slide credit: Danijel Skočaj 23



Classification by subspace reconstruction

• If the window contains a category for which the subspace was constructed, the 

reconstruction will work well, otherwise not!

• A real-life example

Cropped

Cropped

Reconstructed

project to 
subspace and back

Reconstructed

project to 
subspace and back

Decent similarity

Not similar

24



• Can exploit this property for category detection/recognition

• Assume we have used a large collection of faces to construct the subspace.

• Fact: Only faces will be well reconstructed by the subspace!

Small reconstruction
error

Large reconstruction
error

[face]/
[not face]?

[face]/
[not face]?

Classification by subspace reconstruction

25



Detection by distance from subspace

• Use a subspace learned on faces to detect a face.

• Approach: slide a window over each image position and calculate the 

reconstruction error.

• Repeat for all scales. Makes sense to normalize the window intensity |W|=1.

• Low reconstruction error 

indicates a face.

(i.e., apply a threshold)

2

i i − x x

26



Home study: Textbooks on PCA

• Szeliski, R., Computer vision – algorithms and applications, 2011, 

Section14.2.1 (available online)

• Forsyth, Ponce, Computer vision – a modern approach, second edition, 

2012, Section 16.1.5

• Prince, S.J.D. Computer vision – modelling learning and inference, 2012, 

Section 13.4 (to 13.4.3) (available online)

27



DecoderEncoder

PCA is a linear autoencoder

28

−𝜇 ෩𝑼𝑇 +𝜇෩𝑼

𝑰𝑖

re
sh

ap
e

෨𝑰𝑖

ℒ 𝜇, ෩𝑈 = 𝑰𝑖 − ෨𝑰𝑖
2

𝜇, ෩𝑈 = argmin
𝜇∗, ෩𝑈∗

ℒ 𝜇∗, ෩𝑈∗

෥𝒙𝑖

re
sh

ap
e

𝒙𝑖 ~105
𝒚𝑖

~101

෥𝒙𝑖 ~105



DecoderEncoder

Encoder-Decoder does not have to be linear

29

𝑰𝑖

re
sh

ap
e

෨𝑰𝑖

ℒ Θ1, Θ2 = 𝑰𝑖 − ෨𝑰𝑖
2

Θ1, Θ2 = argmin
Θ1
∗ ,Θ2

∗
ℒ Θ1

∗ , Θ2
∗

re
sh

ap
e

𝒙𝑖 𝒚𝑖 ෥𝒙𝑖
neural network neural network

Θ1 Θ2

• Modern Autoencoders apply (convolutional/transformer) neural 

networks to map into a nonlinear subspace (latent space)

https://towardsdatascience.com/applied-deep-learning-part-3-autoencoders-1c083af4d798



Autoencoders don’t have to just reconstruct

30

ℒ Θ1, Θ2 = 𝑰𝑖 − ෨𝑰𝑖
2

neural network
Θ1

neural network
Θ2

Faultless products

Anomalies detected by differencing the reconstruction and input

Reconstructions

Zavrtanik, Kristan, Skočaj, DRÆM – A discriminatively trained reconstruction embedding for surface anomaly detection, ICCV 2021



Autoencoders don’t have to just reconstruct

31

neural network
Θ1

neural network
Θ2

Colorized image

Zhang et al., Colorful Image Colorization, ECCV 2016 [GIT]

ℒ Θ1, Θ2 = 𝑰𝑖 − ෨𝑰𝑖
2

Color image Grayscale image



Parametric subspace (PCA)

• Even in PCA, the same object viewed under different conditions 

(illumination, orientation) projects into different parts of the subspace:

• One could thus in principle generate different appearances by accessing specific 

part of the subspace

Video from Ales Leonardis 32

Subspace point (a vector)

Generated image (a vector)



Generative promptable image models

• Modern generators like StableDiffusion1 proceed by first generating an 

appropriate latent representation, then decode into image.

• But, how to come up with the appropriate decoder? And how to find 

the right latent representation?

33

Decoder

re
sh

ap
e

෨𝑰𝑖

෥𝒙𝑖
neural network

Θ2

𝒚𝑖

“A woman with smeared mascara, 
holding a syringe, portrait, closeup, 
yellow background.”

1Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models, CVPR 2022



(2.)

Generative promptable image models

1. Train a (variational) autoencoder on a huge dataset

2. Train a text encoder, aligned with image features 

from large corpus of image/text pairs.

3. Train a diffusion model that uses text prompt to 

generate the latent representation of an input.

34

(3.)

Text encoder

“A cute 
puppy sitting 
on grass”

Generator
(of latent image vect.)

Decoder



Examples of image generation

35

Prompt: “A close-up shot of a passionate female chef in her 40s 
with curly black hair tucked under a white chef's hat, wearing a 
crisp white double-breasted jacket. She's intently focused on 
plating a colorful dish in a sleek, modern kitchen. Her skilled 
hands delicately position a vibrant red bell pepper slice on the 
plate. Stainless steel appliances and hanging copper pots gleam 
in the background. Steam rises from the freshly cooked food, 
creating a misty effect around her. Her expression shows a mix 
of concentration and pride. The scene captures the artistry and 
precision of haute cuisine, styled like a high-end culinary 
magazine spread with dramatic lighting emphasizing the 
textures and colors of the food.” https://dreamfusion3d.github.io/

Poole et al., DreamFusion: Text-to-3D using 2D Diffusion, 2022

Prompt: “A zoomed out DSLR photo of a squirrel DJing”

Prompt: “a guy I met in front of Parlament pub 
last night, joyful, looked like Yann Le Cun, but 
younger and thinner and said he's from FDV”

https://flux1.ai/
OpenAI (DALL·E) via ChatGPT



• PCA minimizes reprojection (reconstruction) error 

• Reconstruction subspace is not necessarily optimal for discrimination

• How to learn potentially “local” discriminative features?

PCA feature construction issues

36

Task: Determine whether the 
person’s wearing glasses.



Time/computation criticality

• A lot of applications are time- and resources-critical

• A case study: Face detection

• Seminal work in realtime detection: Viola&Jones face detector

37

Viola, M. Jones, Robust Real-Time Face Detection,  IJCV, Vol. 57(2), 2004.



How to come up with features?

1. Natural coordinate systems: 

For some applications, it is enough just to linearly transform the input 

data.

2. Feature selection:

Machine learning to select optimal features from a pool of several 

handcrafted transforms.

3. Handcrafted nonlinear transforms:

Nonlinear transforms improve feature robustness.

4. End-to-end learning of feature transform:

Have machine learn entire feature extraction and selection pipeline.

PCA

38



LEARNING FEATURES BY FEATURE SELECTION
Machine Perception

39



Case study: Face detection

• Compact objects → sliding window

• To achieve real-time processing

1. Feature extraction should be fast

2. Classifier application should be fast

40

Viola, M. Jones, Robust Real-Time Face Detection,  IJCV, Vol. 57(2), 2004.



106 examples

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
…

Support Vector Machines Conditional Random Fields

McCallum, Freitag, Pereira 
2000; Kumar, Hebert 2003, …

Guyon, Vapnik

Heisele, Serre, Poggio, 
2001,…

Adapted from Antonio Torralba

Boosting

Viola, Jones 2001, 
Torralba et al. 2004, 
Opelt et al. 2006,…

Choosing the appropriate classifier

41



AdaBoost: Intuition

• Task: Build a classifier which is a weighted sum of many (weak) classifiers 

• Weak == fast to compute (!)

weight
weak classifier

𝑓1(𝑥)

𝑓 2
(𝑥
)

Example of a weak classifier:

𝑓1(𝑥)

𝑓 2
(𝑥
) ℎ(𝑥)

𝜃𝑡 ℎ𝑡(𝑥)

42

ℎ(𝑥) = sgn ෍
𝑡=1

𝑇

𝛼𝑡ℎ𝑡(𝑥)

Final (strong) classifier

Y. Freund and R. Schapire, A short introduction to boosting, JSAI, 1999. 



AdaBoost: Intuition

• Train a sequence of weak classifiers.

• Each weak classifier  splits training 
examples with at least 50% accuracy.

• Those examples that are incorrectly 
classified by the weak classifier, get 
more weight in training the next 
weak classifier.

𝑓1(𝑥)

𝑓 2
(𝑥
)

ℎ1(𝑥)

𝑓1(𝑥)

𝑓 2
(𝑥
) ℎ2(𝑥)

𝑓1(𝑥)

𝑓 2
(𝑥
)

ℎ3(𝑥)

43

The final classifier is a 
combination of many 
weak classifiers!

ℎ(𝑥) = sgn ෍
𝑡=1

𝑇

𝛼𝑡ℎ𝑡(𝑥)

…

Y. Freund and R. Schapire, A short introduction to boosting, JSAI, 1999. 



Case study: Face detection

• Compact objects → sliding window

• To achieve real-time processing

1. Feature extraction should be fast
(How to calculate fast/strong features)

2. Classifier application should be fast
(ensable of weak classifiers = fast evaluation)

44

?

Viola, M. Jones, Robust Real-Time Face Detection,  IJCV, Vol. 57(2), 2004



Computing features

The value of each feature is the difference between the 
intensity in „black“ and „white“ regions.
Black is weighted as -1, white as +1.

Simple rectangular filters as feature extractors (feature defined by filter type and position)

…

Sum=1500 Sum=2000
+ -
𝑓1 𝑥 = −500

𝑓1 𝑥 𝑓2 𝑥 𝑓3 𝑥 𝑓4 𝑥

-1+1
-1

+1 -1 -1+1

0 0 0 0

45



Computing features

𝑓1 𝑥

-1+1

-1+1

Require evaluation at many displacements and multiple scales!

Possible to evaluate such a simple filter efficiently!

Simple rectangular filters as feature extractors

0

0

46



Integral image

• Our filters are based on sums of intensities within 

rectangular regions.

• This can be done in constant time for arbitrary large 

region!

• Require precomputing the integral image.

Value at (x,y) is the sum 
of pixel intensities above 
and left from (x,y)

-1+1

Integral image

Efficient computation – Integral images

47

1 2

3 4



• Consider a more complex filter

-1 +1

+2

-1

-2

+1

Integral image

(x,y)

* =?

Efficient computation – Integral images

48



Previously at MP...

• Learning features by subspace construction: PCA

• Learning features by feature selection

(A case study: Viola-Jones face detector)

49

ℎ(𝑥) = sgn ෍
𝑡=1

𝑇

𝛼𝑡ℎ𝑡(𝑥)

Fast feature extraction



Large collection of filters

Account for all possible parameters:
position, scale, type

More than 180,000 
different features in a 24x24 window. 

Apply Adaboost for 
(i) selecting most informative features and
(ii) composing a classifier (weights+thresholds).etc...

50

ℎ(𝑥) = sgn ෍
𝑡=1

𝑇

𝛼𝑡ℎ𝑡(𝑥)

Viola, M. Jones, Robust Real-Time Face Detection,  IJCV, Vol. 57(2), 2004



Efficiency issues

• Filter responses can be evaluated fast.

• But each image contains a lot of windows, that we need to classify 

– potentially great amount of computation!

• How to make detection efficient?

Extract features at 
each bounding box 
and apply Adaboost
classifier.

51

ℎ(𝑥) = sgn ෍
𝑡=1

𝑇

𝛼𝑡ℎ𝑡(𝑥)



Cascade of classifiers

• Efficient: Apply first few classifiers (fast), to reject the windows 

that obviously do not contain the particular category! Then re-

classify the regions that survived, with stronger classifiers. 

…

52

ℎ(𝑥)= sgn(𝛼1ℎ1 𝑥 + 𝛼2ℎ2 𝑥 + 𝛼3ℎ3 𝑥 + 𝛼4ℎ4 𝑥 +...+ 𝛼𝑇−1ℎ𝑇−1 𝑥 + 𝛼𝑇ℎ𝑇 𝑥 )

1

2 3

4 5



Cascade of classifiers

• Chain classifiers from  least complex with low true-positive rejection rate to 

most complex ones

53

ℎ(𝑥)= sgn(𝛼1ℎ1 𝑥 + 𝛼2ℎ2 𝑥 + 𝛼3ℎ3 𝑥 + 𝛼4ℎ4 𝑥 +...+ 𝛼𝑇−1ℎ𝑇−1 𝑥 + 𝛼𝑇ℎ𝑇 𝑥 )
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Viola-Jones face detector

• Train using 5k positives and 350M negatives

• Real-time detector using 38 layers in cascade

• 6061 features in the final layer (classifier)

• [OpenCV implementation:http://sourceforge.net/projects/opencvlibrary/]

faces

non-faces

Train a cascade of
classifiers using
the Adaboost

Selected features, 

thresholds and weights.

New image

Postprocess detections by 
non-maxima suppression.
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➢ 384x288 images, detection 15 fps 
on 700 MHz Intel Pentium III 
desktop (2001). 
Training time = weeks!



Viola-Jones face detector

• The video visualizes all the 
“features”, i.e., filter responses 
checked in a cascade.

• Observe the increase of cascade 
once close to face.

The major two features:

55

http://cvdazzle.com/



Becoming invisible to the computer

(2010) http://cvdazzle.com

Θ𝑜𝑝𝑡

56



Viola-Jones: results

57

Viola, Jones, “Rapid Object Detection using a Boosted Cascade of Simple Features”, CVPR2001

Viola-Jones detection image credit: Žiga Emeršič



Much stronger features required in general

• Require a representation/features that:

• Accounts for intra-class variation (contrast, illumination, occlusion, etc.)

• Distinguishes between different classes 

58

Variability Pose

Illumination AspectOcclusion



How to come up with features?

1. Natural coordinate systems: 

For some applications, it is enough just to linearly transform the input 

data.

2. Feature selection:

Machine learning to select optimal features from a pool of several 

handcrafted transforms.

3. Handcrafted nonlinear transforms:

Nonlinear transforms improve feature robustness.

4. End-to-end learning of feature transform:

Have machine learn entire feature extraction and selection pipeline.

PCA

59

Boosting



HANDCRAFTED NONLINEAR TRANSFORMS
Machine Perception

60



• Problem: Color or gray-level representation is sensitive to illumination 

changes or within-class color variations.

Hand-crafting global features

61

Locally unordered: 
invariant to small shifts and 
rotations

Contrast 
normalization: 
addresses non-
uniform illumination 
and varying intensity.

Local Histograms:



Sobel (gradient)

Gradient-based representation: HOG

Navneet Dalal and Bill Triggs , Histograms of Oriented Gradients for Human Detection, CVPR 2005

Image

Calculate hog in 8 × 8
blocks and normalize HOG descriptor

• Histogram of gradient 

orientations

• Weighted by magnitude

• Similar to SIFT

62



Practical approach to learning a detector

Persons

Background

Train a person/nonperson
classifier

Extract
HOGs

Extract
HOGs

63



Application: Pedestrian detection

Dalal and Triggs, Histograms of oriented gradients for human detection, CVPR2005

• Sliding window: 

1. extract HOG at each displacement

2. classify by a linear support vector machine (SVM)

(in principle, convolution)

64

𝒙

HOG

HOG

𝒘

, ( )  sign ( b)Tf x = +w x

Crop

> 0



Navneet Dalal, Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005 

Pedestrian detection HoG+SVM
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• Strengths:

• Simple to implement

• Can deal with scale changes 

(e.g., by pyramid implementation)

• Weaknesses:

• Adding aspect change (nonconstant 

width-to-height ratio) significantly

increases the number of bounding boxes 

to test

• Feature construction for each box

increases computational complexity

Issues with sliding window object detection

66



Region proposals

• Apply a cascade: (i) generate small set of regions (~5000), (ii) evaluate a 

potentially computationally demanding classifier only on each region

?

Sande, et al., Segmentation as Selective Search for Object Recognition, ICCV 2011

67

Generated region proposals After verification with a “cow” classifier



Selective search

• Insight: Images are intrinsically hierarchical

• Start by over-segmentation into small regions

Sande, et al., Segmentation as Selective Search for Object Recognition, ICCV 2011

“Efficient graph-based image segmentation” Felzenszwalb and Huttenlocher, IJCV 2004
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Selective search

• Merge two most similar regions based on texture similarity and region size

• Continue until a single region remains.

Sande, et al., Segmentation as Selective Search for Object Recognition, ICCV 2011
69



Selective search

• From each merged region generate a bounding box

Sande, et al., Segmentation as Selective Search for Object Recognition, ICCV 2011
70



Selective search

• High recall

• Object-category agnostic!

• Has been the basis for

many state-of-the-art

computationally-heavy

detectors

• ! But still learning 

powerful feature 

descriptors & classifiers 

remained an open Q.
Sande, et al., Segmentation as Selective Search for Object Recognition, ICCV 2011
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How to come up with features?

1. Natural coordinate systems: 

For some applications, it is enough just to linearly transform the input 

data.

2. Feature selection:

Machine learning to select optimal features from a pool of several 

handcrafted transforms.

3. Handcrafted nonlinear transforms:

Nonlinear transforms improve feature robustness.

4. End-to-end learning of feature transform:

Have machine learn entire feature extraction and selection pipeline.

PCA

HOG

Adaboost



END-TO-END FEATURE 
(AND CLASSIFIER ) LEARNING

Machine Perception



Modern representation learning

(+linear trans.)

Classifier

Slide concept from: Kaiming He

pixels
“panda”?

edges, etc.
(+ feat. sel.)

Classifier
pixels

“panda”?

edges histograms
K-means

sparse code
FV/Vladpixels

“panda”?
Classifier

HOG, SIFT, etc.

pixels

“panda”?end-to-end learning of features and classifiers

edges histograms
pixels

“panda”?
HOG, SIFT, etc.

Classifier



Recall a simple neural network

A sigmoid neuron: 

𝑥1

𝑥2

𝑥3

+ 𝑦

𝑦 = 𝑔(෍

𝑖

𝑤𝑖𝑥𝑖)

A weighted sum of values 
𝑥𝑖, transformed by a 
nonlinear function 𝑔(⋅):

𝑥1

𝑥2

𝑥3

𝑥4

𝑥5

𝑥6

𝑦

A network of neurons: 

𝑦 = 𝑓(𝑥1: 𝑥6; 𝒘)

𝑔(⋅)



Classification problem: training the network

• For an input image 𝑥(𝑗), predict probability of cat&dog, i.e., y(𝑗) = [𝑝𝑐𝑎𝑡 , 𝑝𝑑𝑜𝑔]

𝑡(𝑗) = [1,0]

𝑥1
(𝑗) 𝑥2

(𝑗)

𝑥3
(𝑗)

𝑥4
(𝑗)

𝑥5
(𝑗) 𝑥6

(𝑗)

𝒙(𝑗)

𝑥1
(𝑗)

𝑥2
(𝑗)

𝑥3
(𝑗)

𝑥4
(𝑗)

𝑥5
(𝑗)

𝑥6
(𝑗)

𝑦
𝑦(𝑗) = [0.7,0.3] 𝑡(𝑗) = [1,0]

Cost function (cross entropy):

𝜖 𝑗 = 𝐶𝐸(𝑡 𝑗 , 𝑓 𝒙 𝑗 ; 𝒘 )
𝜖(𝒘) = ∑𝜖 𝑗

𝒘opt = argmin
𝒘

𝜖(𝒘)

Find optimal parameters:

Iteratively adjust the weights to 
reduce the cost: gradient descent

𝒘 ← 𝒘− 𝛼
𝜕𝜖(𝒘)

𝜕𝒘

Efficient implementation: The backpropagation algorithm

cat dog 

cat dog 



Put some structure in neural networks: CNN

• A fully connected neural network

• A convolutional neural network (CNN)

All weights potentially 
different values.

input

output

input

output

output

= *

input
Filter/kernel



Consider the image classification problem

Net 0.99 0.01



Convolutional neural networks

conv poolRELU conv poolRELU

Im
ag

e

Simonyan and Zisserman: Very Deep Convolutional Networks for Large-Scale Image Recognition. ICLR, 2015

The basic building blocks:
• Convolutional layers
• Nonlinearity (RELU)
• Pooling layers

Goal: Gradually decrease spatial size (WxH) 
and increase the depth (feature dimension)



Convolutional layer

Image

(e.g, 32x32x3) 

…

N filters

(e.g, 5x5x3) 

Convolve with 

each filter

Each filter 

generates a 2D 

output 

Output is a 32x32xN 

tensor



• Rectified linear unit (RELU)

• Implement nonlinear feature 

transformations

• Specific form crucial for backpropagation to 

work!

Nonlinear layer (e.g., RELU)

Set negative 

values to 0

N inputs N outputs

input

o
u

tp
u

t



• Implements downsampling:

• Reduce spatial resolution

• Increase the receptive field (which pixels influence the neuron)

Pooling layer

3x3
3x3pool



• A popular pooling operation: max pool

Pooling layer

3x3
3x3pool



Fully-connected layer

• Maps final 1x1x4096 feature vector into the final prediction one-hot 

vector of probabilities (in the above example 1000 output categories). 

Heavy on parameters...

Cat
Dog
Cow 

Racoon

𝑝𝑐𝑎𝑡 ∈[0,1]

..
. ..
.

𝑝𝑑𝑜𝑔 ∈[0,1]

𝑝𝑐𝑜𝑤 ∈[0,1]

Followed by a softmax function,
such that all probabilities sum to 1.

𝑝𝑟𝑎𝑐𝑜𝑜𝑛 ∈[0,1]



A conceptual CNN architecture

• Architecture contains feature extraction as well as a classifier

• Learning means: 

• Learn feature extraction (convolution filter kernels)

• Learn a classifier (e.g., a multi-layer perceptron)

Feature extraction Classifier



CNNs attract a significant attention in 2012

• The filters and biases in CNN are the parameters to be learned.

• The breakthrough came with the AlexNet (50-60 million parameters)

• Became possible due to HUGE labelled datasets (ImageNet )

1Krizhevsky et al., ImageNet Classification with Deep Convolutional Neural Networks, NIPS2012

14 million labeled images, 20K categories

http://www.image-net.org/

Huge advances made in subsequent the years...



CNN architectures

• Speed approximately inversely proportional with the number of parameters

• Crucial aspect for embedded-ready architectures

• Accuracy (somewhat) related to the network complexity



From image-wide to pixel-level classification/labelling

• So far we considered classifying the entire image

• But many applications require more fine-grained classification

-> “Street scene”

Assign a class
label to each pixel



• Apply CNNs to encode each pixel 

• Encode the pixels by applying a few conv-relu-pool blocks

• Add a final 1x1xN filter to predict the one-hot vector for each pixel 

Semantic segmentation Long, Shelhamer and Darrell: Fully convolutional networks for semantic segmentation. CVPR, 2015

?



Semantic segmentation: Unet

• A general approach: apply a “decoder” to gradually upsample the features.

• Skip connections: attach encoder features to the upsampled decoder 

features

N classes

3
Encoder Decoder

Ronnenberg et al., U-Net: Convolutional Networks for Biomedical Image Segmentation, MICCAI2015

“skip” connection

“skip” connection

“skip” connection

“skip”

>126k citations!



Autonomous cars

Yuhui Yuan, Xilin Chen, Jingdong Wang, Object-Contextual Representations for Semantic Segmentation, Arxiv 2019

Top performers on the major autonomous cars benchmark Cityscapes in 2019.



Autonomous boats

Bovcon, Kristan, WaSR -- A Water Segmentation and 
Refinement Maritime Obstacle Detection Network, TCyb 2021



Object detection

Image curtesy: Andreas Geiger
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tvmonitor? no.
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CNN

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
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CNN

ConvNet(𝑟𝑖)

Linear
classifier

Box regressor

Selective search,
Edge Boxes,
MCG, …

𝐼:

Per-image computation Per-region computation for each 𝑟𝑖 ∈ 𝑟(𝐼)

Crop & 
warp

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

𝑓𝐼 = 𝐼

1

2 3

4

5

Object detection by R-CNN 

Slide credit: Ross Girshick
Girshick et. al, Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation, CVPR 2014



Box regression

• Region proposal generates approximate bounding box

• The box regressor refines it

Anchor box: 
transformed by
box regressor

P(object) = 0.94



aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

ConvNet(𝑟𝑖)

Linear
classifier

Box regressor

Selective search,
Edge Boxes,
MCG, …

𝐼:

Per-image computation Per-region computation for each 𝑟𝑖 ∈ 𝑟(𝐼)

Crop & 
warp

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

𝑓𝐼 = 𝐼

Very heavy per-region computation
E.g., 2000 full network evaluations

“Slow” R-CNN

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

Slide credit: Ross Girshick



Why is it slow?
aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

Network Θ Features

Process (classify)

Network Θ
Features

Process (classify)

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

Network Θ

Features

Process
(classify)



aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

ConvNet(𝑟𝑖)

Linear
classifier

Box regressor

Selective search,
Edge Boxes,
MCG, …

𝐼:

Per-image computation Per-region computation for each 𝑟𝑖 ∈ 𝑟(𝐼)

Crop & 
warp

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

𝑓𝐼 = 𝐼

Very heavy per-region computation
E.g., 2000 full network evaluations

“Slow” R-CNN

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

Slide credit: Ross Girshick



Generalized R-CNN→ Fast R-CNN

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

𝐼:

Per-image computation Per-region computation for each 𝑟𝑖 ∈ 𝑟(𝐼)

Selective search,
Edge Boxes,
MCG, …

A classification head and box regression head
are finally applied

Girshick. Fast R-CNN. ICCV 2015.

FCN(𝐼)1

RoIPool2 MLP

3 Softmax clf.

Box regressor

4

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

A few CNN layers to 
extract features

RoIPool: Interpolates extracted 
features within a proposed region 
and resizes to a predefined 
resolution, which is fixed for the 
input of the multi-layer perceptron 
(MLP)

Slide credit: Ross Girshick



aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

MLP

Softmax clf.

Box regressor

RoIPool𝐼:

Per-image computation Per-region computation for each 𝑟𝑖 ∈ 𝑟(𝐼)

Selective search,
Edge Boxes,
MCG, …

FCN(𝐼)

Region proposals have very poor recall
(ok for PASCAL VOC, major bottleneck for COCO)

Also, they can be slow

The Problem with Fast R-CNN

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

A few CNN layers to 
extract features

Slide credit: Ross Girshick



Faster R-CNN

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

MLP

Softmax clf.

Box regressor

𝑓𝐼 = FCN(𝐼)

𝐼:

Per-image computation Per-region computation for each 𝑟𝑖 ∈ 𝑟(𝐼)

RoIPool

Ren, He, Girshick, Sun. Faster R-CNN:  Towards Real-Time Object Detection. NIPS 2015.

Learned proposals
Shares computation with whole-image network

RPN(𝑓𝐼)

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

Slide credit: Ross Girshick

Region proposal network 
(RPN) generates bboxes by 
regression from CNN 
features

A few CNN layers to 
extract features



Region proposal network (RPN)

• Generate object proposals by so-called anchor boxes

Slide credit: Ross Girshick



Region proposal network (RPN)

• Low objectness score example

Slide credit: Ross Girshick



aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

MLP

Softmax clf.

Box regressor

𝑓𝐼 = FPN(𝐼)

...𝐼:

Per-image computation Per-region computation for each 𝑟𝑖 ∈ 𝑟(𝐼)

RoIPool

Lin et al. Feature Pyramid Networks for Object Detection. CVPR 2017.

The whole-image feature representation
can be improved by making it multi-scale

RPN(𝑓𝐼)

Faster R-CNN with a Feature Pyramid Network

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

Compute pyramid 
CNN features

Slide credit: Ross Girshick



aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

MLP

Softmax clf.

Box regressor

𝑓𝐼 = FPN(𝐼)

𝐼:

Per-image computation Per-region computation for each 𝑟𝑖 ∈ 𝑟(𝐼)

RoIAlign

He et al. Mask R-CNN. ICCV 2017.

Training the mask head
RPN(𝑓𝐼)

FCN Masks

Cascaded heads (inference only)

Mask R-CNN

aeroplane? no.

..

person? yes.

tvmonitor? no.

warped region
..

CNN

Slide credit: Ross Girshick



Mask predictor

• Per-pixel occupancy map is predicted at the regressed bounding box

28x28 soft prediction

Resized Soft prediction

Final mask

Validation image with box detection shown in red

Slide credit: Ross Girshick



Mask R-CNN application

Slide credit: Ross Girshick



Human pose estimation

• Add keypoint head (28x28x17)

• Predict one “mask” for each keypoint

• Softmax over spatial locations 

(encodes one keypoint per mask “prior”)

keypoints

x17

(Not shown: Head architecture is slightly different for keypoints)

17 keypoint “mask”
predictions shown as
heatmaps with OKS
scores from argmax
positions

Slide credit: Ross Girshick



Human pose estimation



Human “surface” estimation

Huge effort made to come 
up with manual ground 
truth annotations!

50K humans, over 5 million
manually annotated 
correspondences.



Human “surface” estimation

Güler, Neverova, Kokkinos, DensePose: Dense Human Pose Estimation In The Wild, CVPR 2018

http://densepose.org/

The CVPR2018 oral available here: https://www.youtube.com/watch?v=Dhkd_bAwwMc





Toolbox available https://github.com/facebookresearch/detectron2

Do tu.



Single-stage detectors

• Frame detection process similar to segmenation: for each pixel predict the 

output e.g., [bounding-box, object class, etc.]

• Early approaches: YOLO[1], SSD[2]

• More recent FCOS[3]:

Regression

Centerness

[1]Redmon, You Only Look Once: Unified, Real-Time Object Detection, CVPR2016
[2]Liu et al., SSD: Single Shot MultiBox Detector, ECCV2016
[3]Tian et al., FCOS: A Simple and Strong Anchor-free Object Detector, TPAMI2020



Single-stage detectors

• Faster than two-stage detectors

• Recent sota: Transformers, e.g., DETR[2] 

[1]Tian et al., FCOS: A Simple and Strong Anchor-free Object Detector, TPAMI2020
[2] Carion et al., End-to-End Object Detection with Transformers, ECCV2020

Table & Image from FCOS[1]



Panoptic segmentation

Panoptic segmentation

https://kharshit.github.io/blog/2019/10/18/introduction-to-panoptic-segmentation-tutorial

Holistic scene understanding requires for each pixel:
Stuff & instance labels



Panoptic segmentation

• Combines object detection 

and stuff segmentation

https://www.youtube.com/watch?v=j11mvFqFmfA&t=110s

Žust & Kristan, PanSR: An Object-Centric Mask Transformer for Panoptic Segmentation, Arxiv2024



Đukić, Lukežič, Zavrtanik, Kristan. A Low-Shot Object Counting Network With Iterative Prototype Adaptation, ICCV2023
Pelhan Lukežič, Zavrtanik, Kristan. DAVE -- A Detect-and-Verify Paradigm for Low-Shot Counting, CVPR 2024
Pelhan, Lukežič, Zavrtanik, Kristan. A Novel Unified Architecture for Low-Shot Counting by Detection and Segmentation, NeurIPS2024
Pelhan, Lukežič, Kristan. Generalized-Scale Object Counting with Gradual Query Aggregation, Arxiv 2025 

Few-shot counting[1] … by detection

Input: Image + N exemplars

Output: 8

[1]Ranjan, et al. "Learning to count everything." CVPR 2021



Pelhan, Lukežič, Kristan. Generalized-Scale Object Counting with Gradual Query Aggregation, AAAI 2026

Few-shot counting[1] … by detection

• SAM2 extension
• Fast & reliable
• Excellent in dense regions

SAM 2.1 GeCo2

GeCo2

https://huggingface.co/spaces/jerpelhan/GECO2-demo



Huge performance leaps

Deng et al., RetinaFace: Single-stage Dense Face Localisation in the Wild, Arxiv2019Viola, Jones, “Rapid Object Detection using a Boosted Cascade
of Simple Features”, CVPR2001

Viola-Jones detection image credit: Žiga Emeršič

Viola-Jones (2001) vs RetinaFace (2019)



• Adding small (but specific!) perturbations to images

• Generating „adversary“ images 

https://karpathy.github.io/2015/03/30/breaking-convnets/

dog + perturbation

Over 99.6% 
confidence 
in decision!

Nguyen et al., Deep Neural Networks are 
Easily Fooled: High Confidence Predictions 
for Unrecognizable Images, CVPR 2015 
(http://www.evolvingai.org/fooling)

CNNs and “human performance” fallacy

Ostrich!
=



CNNs and “human performance” fallacy

https://techcrunch.com/2018/01/02/these-psychedelic-stickers-blow-ai-minds



A look forward: Convergence of methodology

• Methodology across different computer vision subfields (object detection, 

segmentation, 3D vision, tracking...) is converging

• AND, the methodology across the different disciplines (computer vision, 

natural language processing, speech processing) is converging

• DALL-E [OpenAI2021] (12 109 params)
“…an armchair in the shape of an avocado…”



Look forward: Convergence of methodology

• Current mantra: larger datasets & more parameters = better performance

• Challenges: 

learning from few examples, computational reduction, architectures that 

reason,...

• Keep in mind the trivia: 

• 15 year methodological cycles since 60’s

• The last one started ~2012

• Exponential advancements expected

• Foundation models? Cross-modal learning? Agentic processing? Architecture 

paradigm shifts?



Conclusion

• This brief overview covered merely some basics in modern CV

• For recent advancements, see proceedings of the major conferences:

• Computer vision and pattern recognition (CVPR)

• Neural information processing systems (NeurIPS)

• International conference on computer vision (ICCV)

• European conference on computer vision (ECCV)

• International Conference on Learning Representations (ICLR)

• International Conference on Machine Learning (ICML)
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RECOGNITION USING LOCAL FEATURES: 
BAG OF WORDS MODELS

Machine perception

2



• What is texture? Could say: “spatially organized repeatable images”

• Texture can be characterized in terms of textons (small „images“)

Intuition: texture recognition

3



Intuition: texture recognition

Universal texton dictionary

Julesz, 1981; Cula & Dana, 2001; Leung & Malik 2001; Mori, Belongie & Malik, 2001; Schmid 2001; Varma & Zisserman, 2002, 2003; Lazebnik, Schmid & Ponce, 2003

4



Bag of words models

Bag of „words“Object

5



Bag of visual words

• Summarize an image by a distribution 

(histogram) over visual words. 

• Analogous to text-based information 

retrieval systems  – think of Google.

• Except: how to identify the “words”?

Image credit: Li Fei-Fei Slide credit: Kristen Grauman 6



Category 
classification

Train

Detect features
& represent by descriptors

Dictionary terms

Represent images by histograms 
over the dictionary terms

Build category models or 
classifiers

Recognition

Slide credit: Li Fei-Fei 7



Train

Detect features
& represent by descriptors

Dictionary terms

Represent images by histograms 
over Dictionary terms

Build category models or 
classifiers

1.
2.

3.

8Slide credit: Li Fei-Fei



1. Feature detection & representation

9Slide credit: Li Fei-Fei



• Use feature point detectors (we have studied quite a few)

• E.g., SIFT

• Normalize each region to remove 

local geometric deformation

Detect Normalize

1.0 Feature detection & representation

10



Normalize the
region

Detect regions

[Mikojaczyk and Schmid ’02]

[Matas et al. ’02] 

[Sivic et al. ’03]

Calculate the 
SIFT descriptor

[Lowe’99]

Slide credit: Josef Sivic

1.1 Feature detection & representation
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…

Collect descriptors from all key-points 
from all training images.

1.2 Feature detection & representation

12



Train

Detect features
& represent by descriptors

Dictionary terms

Represent images by histograms 
over Dictionary terms

Build category models or 
classifiers

2.

Dictionary:
How to create 
„word“ labels from the extracted SIFT 
descriptors?

13

SIFTs corresponding to the same 
„visual word“ should be similar.

Similar SIFTs form clusters!

Training images SIFT descriptors



• A standard approach to learning the visual codebook

• Apply K-means clustering to the detected SIFT descriptors

• Each cluster center is a visual word (for the dictionary)

• Important: Learn the code-book on separate training data (!!! This is learning stage!)
Training images

All detected SIFTs

Apply clustering

2.1 Clustering by vector quantization

14

𝑤2

𝑤1

𝑤3

Keep only 
cluster centers



• How to assign visual words to the detected SIFTs?

• For each detected keypoint, assign the word ID closest to the extracted SIFT.

• Codebook = visual dictionary (vocabulary)

𝑤2

𝑤1

𝑤3ID of word?

𝐼𝐷 = 𝑤1

2.1 Clustering by vector quantization

15



2.2 Visual dictionary – example

Slide credit: C. Schmidt 16



2.2 Visual dictionary – issues

• How to choose dictionary size?

• Too small: visual words not expressive enough to describe all possible  patches.

• Too large: visual words too similar to discriminate well

• Computational efficiency in matching

(need to compare many keypoints to 

many visual words in dictionary)

• Vocabulary trees

D. Nistér and H. Stewénius, “Scalable recognition 

with a vocabulary tree,” in Proc. CVPR, 2006

17



Train

Detect features
& represent by descriptors

Dictionary terms

Represent images by histograms 
over Dictionary terms

Build category models or 
classifiers

3.

18

3. Image representation
4. Build a classifier

4.



3. Image representation

• Each image is represented by a 1000-4000 dimensional histogram, which is then 

normalized (L1/L2 norm)

1 . Detect regions

19

2. Classify the regions:
Get ID of each detected SIFT by 
comparing to the (prelearned) 
visual dictionary...

(precomputed)

…..

fr
eq

u
en

cy

visual words

3. Compute how many times 
each word was detected...



• Using the training set, we have first built a visual vocabulary.

• The vocabulary can be now used to encode any image with the histogram

• As the final stage of learning, we need to train a classifier that will classify 

images based on the extracted bag of word histograms.

4. Build a classifier

20



4.1 Build a classifier by SVM

Category 1

Category 2

Train a classifier
e.g., SVM

21

Extract
BOWs

Extract
BOWs



Category 
classification

Train

Detect features
& represent by descriptors

Dictionary terms

Represent images by histograms 
over the dictionary terms

Build category models or 
classifiers

Recognition

Slide credit: Li Fei-Fei

1.
2.

3.

4.

22



5. Recognition

• How to classify a new image?

• Encode the image with the dictionary learned in the training stage

• Feed to a classifier trained at training stage

23

New image

Pre-learned 
dictionary

Encode by Bow Apply a 
pre-trained SVM

Classified as: 
motorbike



6. BoW application in practice

• Performs very well in image classification despite the background 

clutter...

Slide credit: C. Schmidt 24



Books classified as faces and buildings

Buildings classified as faces and trees

Cars classified as buildings and phones

6.1 Examples of false classification

25



6.2 Bags of words: Summary

• Strengths:

• Fixed descriptor length.

• Robust to object position 

and orientation

• Weaknesses:

• Does not account for spatial relations among visual words.

• Does not localize objects in the image.

26



OBJECT DETECTION BY FEATURE 
CONSTELLATIONS

Machine perception

27



• How to detect an object in arbitrary pose and estimate 

that pose?

• Brute force sliding windows with exhaustive testing of all 

deformation parameters is not always a good option*.
scale rotation perspective

Detection as a recognition problem

28*deep learning detectors do apply sliding windows, but avoid testing all parameters…



• Represent the target model in terms of small “parts” that can be detected 

even under an affine deformation (Keypoints!)

• Detection: (i) Detect “parts” in image ; (ii) Verify consistency of geometric 

configurations

Local descriptors, e.g., SIFT

Model Test image

Detection as a recognition problem

29



Detection by fitting an affine deformation

• Affine model approximates perspective transform of planar objects.

• Apply RANSAC to get a globally-valid correspondence.

30



Detection by Generalized Hough Transform

• Assume features are invariant to scale and rotation

• Then each detected feature becomes a hypothesis of fitting (translation, 

rotation, scale)

• Each feature casts a vote into the Hough translation/rotation/scale space

model

Slide credit: Svetlana Lazebnik 31



Detection by Generalized Hough Transform

• Assume features are invariant to scale and rotation

• Then each detected feature becomes a hypothesis of fitting (translation, 

rotation, scale)

• Each feature casts a vote into the Hough translation/rotation/scale space

model

32Slide credit: Svetlana Lazebnik



1. Index descriptors
• Distinctive descriptors reduce the search space

2. Apply a generalized Hough transform (GHT) to obtain 
approximate detections
• Key-points associated with local transformation, 

relative to coordinate frame of the object.

3. Refine each detection by fitting affine transform 
between the points on the object and the detected 
points from HGT
• Fit and verify using features, which vote for the

same cell in the Hough space (at least 3 votes)

Slide credit: Kristen Grauman

Detection by GHT – summary 

Lowe, "Distinctive image features from scale-invariant keypoints.” IJCV 2004. 33



Detection results

Detected objects Detection despite
partial occlusion

Background subtraction
to remove background clutter

in training phase

Lowe, "Distinctive image features from scale-invariant keypoints.” IJCV 2004. 

34Slide credit: Kristen Grauman



Applications: retrieval systems

Philbin et al.,. Object retrieval with large vocabularies and fast spatial matching CVPR2007

Interesting work in retrieval: Radenovic, Tolias, and Chum: CNN Image Retrieval Learns from BoW: 
Unsupervised Fine-Tuning with Hard Examples , ECCV 2016

Results (http://www.robots.ox.ac.uk/~vgg/research/oxbuildings/index.html)Query

35



• Sony Aibo

(Evolution Robotics)

• Application of SIFT

• Recognition of the 

charging station

• Comunication using

visual cards

Slide credit: David Lowe

Applications: specific object recognition

36



Applications: Highway vignette verification 

37

Highway checkpoint



Applications: Augmented reality

• Match keypoints to template, estimate camera pose, project 3D object

38
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SUMMARY AND OUTLOOK
Machine perception

40



What did we learn?

• (1,2) Basic image processing

• Thresholding, Morphology, Region descriptors

• Linear/nonlinear filter – convolution, Image pyramids.

• (3) Edge detection and image gradients

• Image derivatives, Canny edge detector

• (4) Fitting models

• Least-squares fitting (iterative, robust), Normal equations, Homogenous 

systems, RANSAC, Hough transform

• (5) Key-points and correspondences between images

• Key-point detection in scale-space, local descriptors, SIFT

41



What did we learn?

• (6,7) Cameras and stereo systems

• Pinhole camera model, Calibration, Epipolar geometry, Dense correspondence, 

Triangulation, Active stereo

• (8a-d) Feature learning for recognition and detection:

• Natural linear coordinate systems: PCA(face recognition)

• Feature selection: Adaboost+integral images (face detection)

• Nonlinear hand-crafted transforms: HoG+SVM (pedestrian detection)

• End-to-end feature & classifier learning: Convolutional neural nets (CNNs)

• (9) Key-point-based recognition

• Bag-of-words models.

• Detection/recognition by RANSAC and Generalized Hough transform.
42



The Next Big Thing on Your List...

• The written exam (see Studis for dates)

• Approx. two hours -- Covers the entire course

• Theoretical as well as analytical assignments (see the lab exercises for examples of analytical parts)

• Oral exam potentially required for low scores (X = ~50%-60% )

• Need to know all that you got wrong on written exam 

• + ~2 random questions

• If >X% do not have to come to oral

• Can if you would like to increase/decrease grade by 1 (or fail?)

• Please fill-out the poll at Studis

• Constructive suggestions towards improving the course

43



Writing a Computer Vision thesis

• ViCoS lab offers a number of topics: segmentation, detection, tracking, 

industrial inspection, fundamental deep learning topics, climate prediction

• I will be accepting candidates after the last MP exam in this semester (6.2)

• 1 week to collect your applications, then will let you know 

• Will announce the call for applications on the eclassroom

• Caution: CV theses are typically challenging (~180 hours)

• See CVPR/ECCV/ICCV/NeurIPS for potential topics (your own ideas also welcome)

44



Other Computer-vision-related courses at FRI

• Bachelor’s level:

• Multimedia Systems (Luka Čehovin, Vicos)

• Development of Intelligent Systems (Danijel Skočaj, Vicos)

• Master’s level

• Advanced computer vision methods (Matej Kristan, Vicos)

• Deep learning (Danijel Skočaj, Vicos)

• Image-based biometry (Peter Peer)

• Biomedical Signal and image Processing (Franc Jager)

• Potentially another course on 3D perception (prepared by Vicos)

45



Other courses on the web

• Check out similar courses at other Universities:

• Aachen: https://www.vision.rwth-aachen.de/course/6/

• Stanford: http://vision.stanford.edu/teaching/cs131_fall1617/schedule.html

• Illinois: http://slazebni.cs.illinois.edu/spring18/

• … many more can be found on the net

• Slovene terminology (see translations here):

https://terminoloski.slovenscina.eu/

46



Thanks!

47

Good luck with the exam(s)!


