[1]7:

Vpeta drevesa
December 18, 2024

1 Disjunktne mnozice

Ceprav poglavije obljublja delo z vpetimi drevesi, se bomo najprej posvetili neki drugi podatkovni
strukturi, ki nam bo kasneje prisla prav. Prav pa nam pride v Stevilnih aplikacijah, kjer imamo
opravka z zdruzevanjem mnozic ali kaksnih drugih ekvivalenénih razredov objektov.

Podatkovna struktura disjunktnih mnozic (disjoint-set) hrani mnozico disjunktnih mnozic (ali
razbitje mnozice na podmnozice) in omogoca naslednje operacije:

e add(x): Doda novo mnozico {z} z enim samim elementom.
e find(x): Najde mnozico, ki ji pripada element x.
e union(x,y): Zdruzi mnozici elementov x in y.

Poleg disjunktnih mnozic se za to podatkovno strukturo uporablja tudi izraz union-find. Pogosto
se problemi za¢nejo s mnozicami posameznih elementov, ki jih nato zdrzujemo z uporabo funkcij
union in find, zato se bomo omejili na ta primer. Dopolnitev razvitih resitev s funkcijo add za
dodajanje novega elementa je enostavna.

Posamezne mnozice bomo predstavili z drevesi. Koren drevesa pa bo predstavnik posamezne
mnozice. Funkcija £ind (x) bo torej morala poiskati in vrniti koren drevesa, funkcija union(x,y) pa
zdruziti dve drevesi v eno. Koren drevesa z elementom x lahko pripnemo kot otroka korenu drevesa
z elementom y. Zdruzevanje je torej uc¢inkovito, vendar lahko s takimi zdruzevanji nastanejo zelo
izrojena drevesa, zato je ¢asovna zahtevnost operacije find linearna.

Ker imamo opravka z dvema funkcijama, pri analizi u¢inkovitosti obi¢ajno opazujemo zaporedje
n — 1 zdruzevanj (kar postopoma zdruzi vseh n posameznih elementov v eno samo mnozico), med
tem pa izvedemo Se m > n klicev funkcije find.

#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;

typedef pair<int,int> PII;

typedef vector<int> VI;

typedef vector<pair<int,int>> VII;
typedef vector<vector<int>> VVI;

[2]:

[3]:

template<typename T>

void print(const vector<T> &sez) {
for (T x : sez) cout << x << " ",
cout << endl;

1.0.1 Zdruzevanje po velikosti

Prva izboljsava temelji na pametnejSem zdruzevanju. Pri zdruzitvi dveh dreves je smiselno manjsega
pripeti k vec¢jemu. Velikost drevesa lahko merimo po Stevilo vozlis¢ (union by size) ali po oceni
visine (union by rank). Osredotocili se bomo na prvo moznost, ker dobimo z drugo enake rezultate.

Ob vsaki zdruzitvi se viSina drevesa lahko poveca za najvec 1 (¢e zdruzujemo enako globoki drevesi).
Pri zdruzevanju postane vozlis¢e manjsega drevesa del vsaj dvakrat vecjega zdruzenega drevesa.
Zato lahko vsako vozlisée nastopa v najve¢ O(logn) zdruZzevanjih (sicer bi moralo imeti zdruzeno
drevo ve¢ kot n vozlis¢, kar ni mogoce). Casovna zahtevnost operacije join je O(1), find pa O(logn).

1.0.2 Stiskanje poti

Druga mozna izboljava temelji na iskanju korena drevesa (find). Ce smo Ze prehodili dolgo pot,
da smo nasli koren, bi lahko vsa vozlis¢a na poti tudi povezali direktno nanj, da nam kasneje ne
bo treba tega poceti ponovno.

Ce imamo opravka samo z operacijami find (brez zdruZzevanj), je amortizirana ¢asovna zahtevnost
operacije find O(1) (v zaporedju m > n find-ov). V zaporedju operacij find bomo vsako vozlis¢e
pri iskanju korena prehodili enkrat (morda jih bomo prehodili cel kup Ze v prvi operaciji in kasneje
nobenega, ali pa v vsaki operaciji nekaj, skupaj pa ravno vse).

Ce upostevamo se zdruzevanja, je amortizirana analiza nekoliko kompleksnejsa. Povejmo samo, da
je ¢asovna zahtevnost postopnega zdruzevanja vseh elementov v eno mnozico (n — 1 operacij join)
z m > n vmesnimi operacijami find enaka O(mlogn). Amortizirana zahtevnost operacije find je
torej O(logn). S strategijo zdruzevanja po velikosti smo dosegli enako zahtevnost, ki pa ni bila
amortizirana.

1.0.3 Skupna resitev

Obe izboljsavi lahko tudi zdruzimo, saj ne vplivata ena na drugo. Zdruzevanje po velikosti skrajsa
poti, ki jih stiskanje poti kasneje Se dodatno skrajSa. Stiskanje poti ne spremeni velikosti drevesa,
temvec ga zgolj preuredi, zato ne vpliva na zdruzevanje po velikosti.

Rezultat je podatkovna struktura s skoraj konstantnimi amortiziranimi ¢asovnimi zahtevnostmi
posameznih operacij. Casovna zahtevnost je O(mlog”n), $e tesnejsa meja pa je O(ma(n)). Obe
funkciji (iterirani logaritem in inverzna Ackermannova funkcija) rasteta izjemno pocasi in sta prak-
ticno konstantni za vse razumne vrednost, npr. n = 205536 ~ 102090 Jog (n) = 5,a(n) = 4.
Amortizirana casovna zahtevnost posamezne operacije v procesu zdruzevanja posameznih elemen-
tov v eno konéno mnozico je torej prakticno konstantna!

class DisjointSet { // Union-Find
public:
vector<int> parent, size;

[4]:

[5]:

DisjointSet(int n) {
parent = vector<int>(n);
size = vector<int>(n);
for (int i=0;i<n;i++) { // individual sets
parent[i] = i;
sizel[i] = 1;

int root(int x) { // find
if (parent[x]==x) return x; // reached the root
int r = root(parent[x]);
parent[x] = r; // path compression
return r;

void join(int x, int y) { // union by size
x=root(x); y=root(y); // replace by roots
if (x==y) return;
if (sizel[x]>sizely]) swap(x,y); // make x smaller
parent[x] = y; // attach to larger root
sizel[y] += sizel[x];

};

DisjointSet ds(10);

ds.join(3,4); ds.join(5,7); ds.join(0,3); ds.join(8,9); ds.join(7,9);
cout << (ds.root(3) == ds.root(7)) << endl;

cout << (ds.root(5) == ds.root(8)) << endl;

2 Minimalno vpeto drevo

Vpeto drevo (spanning tree) grafa G je drevo T, ki vkljucuje vsa vozlis¢a grafa G in podmnozico
njegovih povezav. Minimalno vpeto drevo (minimum spanning tree, MST) je tisto vpeto drevo,
ki ima najmanjso vsoto utezi povezav. Ce imamo opravka z ve¢ komponentami, govorimo o mini-
malnem povezanem gozdu. Tam za vsako povezano komponento loc¢eno pois¢emo minimalno vpeto
drevo.

Vpeto drevo lahko enostavno pois¢emo s preiskovanjem v Sirino ali globino iz poljubnega vozlisca.
Kako pa poiséemo minimalno vpeto drevo?

ifstream fin("mst.txt");
int n,m;

fin >> n >> m;
vector<VI> edges;

[6]:

vector<VII> adj(n);

for (int i=0;i<m;i++) {
int a,b,w;
fin >> a >> b >> w;
edges.push_back({a,b,w});
adj[a] .push_back({b,w});
adj[b] .push_back({a,w});

2.0.1 Prerezna lastnost

.....

v razlicnih delih razbitja pa prerezne povezave (cut-edge, cut-set).

Prerezna lastnost (cut property) pravi, da je najmanjsa prerezna povezava vedno del nekega min-
imalnega vpetega drevesa (ne glede na izbrani prerez). Naj bo e najmanjsa prerezna povezava v
razbitju vozlis¢ na mnozici A in B =V — A. Recimo, da ta povezava ni del nobenega minimalnega
vpetega drevesa. Potem mora v minimalnem vpetem drevesu obstajati neka druga povezava ¢’
med A in B. Vemo, da je w(e) < w(e’). Povezavo e’ lahko zamenjamo z e in pri tem ohranimo ali
zmanjsamo vsoto povezav v vpetem drevesu.

2.1 Prim

Primov algoritem je pozresen algoritem, ki gradi minimalno vpeto drevo s Sirjenjem od
izhodiscenega vozlis¢a navzven proti sosedom. Za izhodis¢e lahko uporabimo poljubno vozlisce,
saj morajo biti vsa del minimalnega vpetega drevesa. Oglejmo si prerez grafa na mnozico A, ki
vkljucuje vsa vozliséa do sedaj zgrajenega drevesa in mnozico B, ki vsebuje preostala. Iz prerezne
lastnosti sledi, da je najmanjSa povezava med A in B del nekega minimalnega vpetega drevesa.
Zato jo lahko dodamo v drevo in ponovimo enak razmislek.

Analizirajmo ¢asovno zahtevnost takega postopka. V drevo moramo dodati n vozlisé, vsaki¢ pa

svve

Casovna zahtevnost bi bila O(nm).

Lahko pa jo izboljsSamo. Za vsako Se nedodano vozlis¢e bomo vzdrzevali njegovo razdaljo do ze
zgrajenega drevesa. Na zacetku so vse te razdalje enake oo, razen za zacetno vozlisce, ki ima razdaljo
0. Na vsakem koraku pois¢emo vozlisce z najmanjso razdaljo, ga dodamo v drevo in posodobimo
razdalje do drevesa vseh njegovih sosedov. Vse skupaj bomo obravnavali O(m) povezav. Na vsakem
koraku dodajanja novega vozlisca v drevo pa bomo iskali vozlis¢e z najmanjso razdaljo do drevesa.
Casovna zahtevnost je O(n? +m) = O(n?).

Namesto veckratnega iskanja vozlis¢a z najmanjso razdaljo lahko hranimo vozlisc¢a v prioritetni vrsti
podobno kot v Dijkstrovem algoritmu. Posodobljene razdalje dodajamo v vrsto, ¢e dobimo iz vrste
kaksno staro vrednost, pa jo ignoriramo. Casovna zahtevnost take implementacije je O(mlogn).

int Prim(int n, vector<VII> &adj, vector<PII> &mst) {
vector<int> dist(n,-1); // distance from the tree
vector<int> done(n), parent(n);
int cost=0;
priority_queue<PII, vector<PII>, greater<PII>> pq;

[7]:

dist[0]=0; pq.push({0,0});
while (!pqg.empty()) {
auto [d,x]=pq.top(); pq.popQ);
if (done[x]) continue; // ignore old items in queue
cost+=d;
done [x]=1;
for (auto [y,w] : adj[x]) if (!donely]) { // update unfinished,,
~neighbors
if (distlyl==-1 || w<dist[yl) { // new or smaller distance
dist[yl=w; pq.push({w,y});
parent [y]=x;

}

for (int x=1;x<n;x++) { // skip root
mst.push_back({x,parent[x]});

}

return cost;

vector<PII> mst;
cout << Prim(n, adj, mst) << endl;

for (PII edge : mst) cout << edge.first << " " << edge.second << endl;
37

10

21

32

4 3

5 2

6 5

76

8 2

2.2 Kruskal

Kruskalov algoritem je prav tako pozresne narave. ZacCne z mnozico vozlis¢ in dodaja povezave
od manjsih proti ve¢jim povezavam glede na utezi. Pravzaprav postopoma pretvarja gozd z vec
manjsimi drevesi v eno veliko drevo. Vsako povezavo (z,y) doda, ¢e njena vkljucitev ne ustvari cikla.
Povedano drugace, vozlis¢i x in y ne smeta pripadati istemu drevesu oz. povezani komponenti.

Vodi ta postopek res do optimalne resitve? Tudi tu si lahko pomagamo s prerezno lastnostjo.
Recimo, da smo ze sestavili nek gozd in zZelimo dodati povezavo (z,y). Naj bo drevo z vozlis¢em
x mnozica A, vsa ostala vozlis¢a pa mnozica B. Povezava (x,y) je globalno najcenejSa nedodana
povezava in zato tudi najcenejSa povezava med mnozicama A in B. Torej jo lahko gotovo dodamo
v vpeto drevo in pri tem ne bomo zgresili optimalne resitve.

Za zaCetek moramo povezave urediti po velikosti, kar zahteva O(mlogm) casa. Nato pa obrav-

.....

[8]:

[9]:

[10]:

ponente. Povezano komponento lahko vsaki¢ znova dolo¢imo z uporabo preiskovanja v Sirino
ali globino, ki ima ¢asovno zahtevnost O(m). Casovna zahtevnost celega postopka bi bila
O(mlogm + mm) = O(m?).

Lahko pa uporabimo podatkovno strukturo disjunktnih mnozic, ki predstavljajo povezane kompo-
nente. Posamezna vozlis¢a zdruzujemo v povezane komponente, da dobimo na koncu eno samo
komponento, ki je minimalno vpeto drevo. Operacije v strukturi disjunktnih mnozic so prakti¢no
konstantne in zanemerljive v primerjavi z zacetnim urejanjem povezav. Casovna zahtevnost je
O(mlogm + ma(n)) = O(mlogm) = O(mlogn).

bool cmpW(VI el, VI e2) { return el[2] < e2[2]; }

int Kruskal(int n, vector<VI> &edges, vector<PII> &mst) {
sort (edges.begin(), edges.end(), cmpW); // sort by weights
DisjointSet ds(n);
int cost=0;
for (VI e : edges) {
int a=e[0], b=el[1], w=e[2];
if (ds.root(a)==ds.root(b)) continue; // same component?
ds.join(a,b);
cost+=w;
mst.push_back({a,b});
}

return cost;

vector<PII> mst;
cout << Kruskal(n, edges, mst) << endl;
for (PII edge : mst) cout << edge.first << " " << edge.second << endl;

w
~

WO NNOO W N
N wWw o 00N O

2.3 Steinerjevo drevo v grafu

V problemu minimalnega vpetega drevesa smo morali poiskati podmnozico povezav z najmanjso
vsoto, ki med seboj povezujejo vsa vozliséa grafa v obliki drevesa. Problem lahko posplosimo tako,
da zahtevamo, da je med seboj povezana samo neka izbrana podmnozica vozlis¢ (ki jim re¢emo
terminali, njihovo stevilo pa bomo oznacili s t), vkljucuje pa lahko tudi druga vozlisca

e t = n: Ce so vsa vozlista terminali, imamo opravka s problemom minimalnega vpetega
drevesa.

evve

e V splosnem se temu problemu rece Steinerjevo drevo v grafu. Vozlis¢em, ki so del resitve
(drevesa), ¢eprav niso terminali, pa Steinerjeve tocke.

Problem Steinerjevega drevesa spada med tezke probleme, za katere ne poznamo algoritmov s
polinomsko zahtevnostjo v odvisnosti od Stevila terminalov ¢. Soroden geometrijski problem Stein-
erjevega drevesa v ravnini, kjer zelimo povezati ¢ tock z ravnimi ¢rtami, pri ¢emer lahko dodajamo

vvvvv

	Disjunktne množice
	Združevanje po velikosti
	Stiskanje poti
	Skupna rešitev

	Minimalno vpeto drevo
	Prerezna lastnost
	Prim
	Kruskal
	Steinerjevo drevo v grafu

