
Vpeta drevesa

December 18, 2024

1 Disjunktne množice
Čeprav poglavje obljublja delo z vpetimi drevesi, se bomo najprej posvetili neki drugi podatkovni
strukturi, ki nam bo kasneje prišla prav. Prav pa nam pride v številnih aplikacijah, kjer imamo
opravka z združevanjem množic ali kakšnih drugih ekvivalenčnih razredov objektov.

Podatkovna struktura disjunktnih množic (disjoint-set) hrani množico disjunktnih množic (ali
razbitje množice na podmnožice) in omogoča naslednje operacije:

• add(x): Doda novo množico {𝑥} z enim samim elementom.
• find(x): Najde množico, ki ji pripada element x.
• union(x,y): Združi množici elementov x in y.

Poleg disjunktnih množic se za to podatkovno strukturo uporablja tudi izraz union-find. Pogosto
se problemi začnejo s množicami posameznih elementov, ki jih nato zdržujemo z uporabo funkcij
union in find, zato se bomo omejili na ta primer. Dopolnitev razvitih rešitev s funkcijo add za
dodajanje novega elementa je enostavna.

Posamezne množice bomo predstavili z drevesi. Koren drevesa pa bo predstavnik posamezne
množice. Funkcija find(x) bo torej morala poiskati in vrniti koren drevesa, funkcija union(x,y) pa
združiti dve drevesi v eno. Koren drevesa z elementom x lahko pripnemo kot otroka korenu drevesa
z elementom y. Združevanje je torej učinkovito, vendar lahko s takimi združevanji nastanejo zelo
izrojena drevesa, zato je časovna zahtevnost operacije find linearna.

Ker imamo opravka z dvema funkcijama, pri analizi učinkovitosti običajno opazujemo zaporedje
𝑛 − 1 združevanj (kar postopoma združi vseh 𝑛 posameznih elementov v eno samo množico), med
tem pa izvedemo še 𝑚 ≥ 𝑛 klicev funkcije find.

[1]: #include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;

typedef pair<int,int> PII;
typedef vector<int> VI;
typedef vector<pair<int,int>> VII;
typedef vector<vector<int>> VVI;

1

[2]: template<typename T>
void print(const vector<T> &sez) {

for (T x : sez) cout << x << " ";
cout << endl;

}

1.0.1 Združevanje po velikosti

Prva izboljšava temelji na pametnejšem združevanju. Pri združitvi dveh dreves je smiselno manjšega
pripeti k večjemu. Velikost drevesa lahko merimo po število vozlišč (union by size) ali po oceni
višine (union by rank). Osredotočili se bomo na prvo možnost, ker dobimo z drugo enake rezultate.

Ob vsaki združitvi se višina drevesa lahko poveča za največ 1 (če združujemo enako globoki drevesi).
Pri združevanju postane vozlišče manjšega drevesa del vsaj dvakrat večjega združenega drevesa.
Zato lahko vsako vozlišče nastopa v največ 𝑂(log 𝑛) združevanjih (sicer bi moralo imeti združeno
drevo več kot 𝑛 vozlišč, kar ni mogoče). Časovna zahtevnost operacije join je 𝑂(1), find pa 𝑂(log 𝑛).

1.0.2 Stiskanje poti

Druga možna izboljšava temelji na iskanju korena drevesa (find). Če smo že prehodili dolgo pot,
da smo našli koren, bi lahko vsa vozlišča na poti tudi povezali direktno nanj, da nam kasneje ne
bo treba tega početi ponovno.

Če imamo opravka samo z operacijami find (brez združevanj), je amortizirana časovna zahtevnost
operacije find 𝑂(1) (v zaporedju 𝑚 ≥ 𝑛 find-ov). V zaporedju operacij find bomo vsako vozlišče
pri iskanju korena prehodili enkrat (morda jih bomo prehodili cel kup že v prvi operaciji in kasneje
nobenega, ali pa v vsaki operaciji nekaj, skupaj pa ravno vse).

Če upoštevamo še združevanja, je amortizirana analiza nekoliko kompleksnejša. Povejmo samo, da
je časovna zahtevnost postopnega združevanja vseh elementov v eno množico (𝑛 − 1 operacij join)
z 𝑚 ≥ 𝑛 vmesnimi operacijami find enaka 𝑂(𝑚 log 𝑛). Amortizirana zahtevnost operacije find je
torej 𝑂(log 𝑛). S strategijo združevanja po velikosti smo dosegli enako zahtevnost, ki pa ni bila
amortizirana.

1.0.3 Skupna rešitev

Obe izboljšavi lahko tudi združimo, saj ne vplivata ena na drugo. Združevanje po velikosti skrajša
poti, ki jih stiskanje poti kasneje še dodatno skrajša. Stiskanje poti ne spremeni velikosti drevesa,
temveč ga zgolj preuredi, zato ne vpliva na združevanje po velikosti.

Rezultat je podatkovna struktura s skoraj konstantnimi amortiziranimi časovnimi zahtevnostmi
posameznih operacij. Časovna zahtevnost je 𝑂(𝑚 log∗ 𝑛), še tesnejša meja pa je 𝑂(𝑚𝛼(𝑛)). Obe
funkciji (iterirani logaritem in inverzna Ackermannova funkcija) rasteta izjemno počasi in sta prak-
tično konstantni za vse razumne vrednost, npr. 𝑛 = 265536 ≈ 1020000, log∗

2(𝑛) = 5, 𝛼(𝑛) = 4.
Amortizirana časovna zahtevnost posamezne operacije v procesu združevanja posameznih elemen-
tov v eno končno množico je torej praktično konstantna!

[3]: class DisjointSet { // Union-Find
public:

vector<int> parent, size;

2

DisjointSet(int n) {
parent = vector<int>(n);
size = vector<int>(n);
for (int i=0;i<n;i++) { // individual sets

parent[i] = i;
size[i] = 1;

}
}

int root(int x) { // find
if (parent[x]==x) return x; // reached the root
int r = root(parent[x]);
parent[x] = r; // path compression
return r;

}

void join(int x, int y) { // union by size
x=root(x); y=root(y); // replace by roots
if (x==y) return;
if (size[x]>size[y]) swap(x,y); // make x smaller
parent[x] = y; // attach to larger root
size[y] += size[x];

}
};

[4]: DisjointSet ds(10);
ds.join(3,4); ds.join(5,7); ds.join(0,3); ds.join(8,9); ds.join(7,9);
cout << (ds.root(3) == ds.root(7)) << endl;
cout << (ds.root(5) == ds.root(8)) << endl;

0
1

2 Minimalno vpeto drevo
Vpeto drevo (spanning tree) grafa G je drevo T, ki vključuje vsa vozlišča grafa G in podmnožico
njegovih povezav. Minimalno vpeto drevo (minimum spanning tree, MST) je tisto vpeto drevo,
ki ima najmanjšo vsoto uteži povezav. Če imamo opravka z več komponentami, govorimo o mini-
malnem povezanem gozdu. Tam za vsako povezano komponento ločeno poiščemo minimalno vpeto
drevo.

Vpeto drevo lahko enostavno poiščemo s preiskovanjem v širino ali globino iz poljubnega vozlišča.
Kako pa poiščemo minimalno vpeto drevo?

[5]: ifstream fin("mst.txt");
int n,m;
fin >> n >> m;
vector<VI> edges;

3

vector<VII> adj(n);
for (int i=0;i<m;i++) {

int a,b,w;
fin >> a >> b >> w;
edges.push_back({a,b,w});
adj[a].push_back({b,w});
adj[b].push_back({a,w});

}

2.0.1 Prerezna lastnost

Razbitju vozlišč grafa na dve disjunktni množici pravimo prerez grafa (cut). Povezavam s krajišči
v različnih delih razbitja pa prerezne povezave (cut-edge, cut-set).

Prerezna lastnost (cut property) pravi, da je najmanjša prerezna povezava vedno del nekega min-
imalnega vpetega drevesa (ne glede na izbrani prerez). Naj bo 𝑒 najmanjša prerezna povezava v
razbitju vozlišč na množici 𝐴 in 𝐵 = 𝑉 − 𝐴. Recimo, da ta povezava ni del nobenega minimalnega
vpetega drevesa. Potem mora v minimalnem vpetem drevesu obstajati neka druga povezava 𝑒′

med 𝐴 in 𝐵. Vemo, da je 𝑤(𝑒) ≤ 𝑤(𝑒′). Povezavo 𝑒′ lahko zamenjamo z 𝑒 in pri tem ohranimo ali
zmanjšamo vsoto povezav v vpetem drevesu.

2.1 Prim
Primov algoritem je požrešen algoritem, ki gradi minimalno vpeto drevo s širjenjem od
izhodiščenega vozlišča navzven proti sosedom. Za izhodišče lahko uporabimo poljubno vozlišče,
saj morajo biti vsa del minimalnega vpetega drevesa. Oglejmo si prerez grafa na množico A, ki
vključuje vsa vozlišča do sedaj zgrajenega drevesa in množico B, ki vsebuje preostala. Iz prerezne
lastnosti sledi, da je najmanjša povezava med A in B del nekega minimalnega vpetega drevesa.
Zato jo lahko dodamo v drevo in ponovimo enak razmislek.

Analizirajmo časovno zahtevnost takega postopka. V drevo moramo dodati 𝑛 vozlišč, vsakič pa
moramo obravnavati 𝑚 povezav, da najdemo najmanjšo med že dodanimi vozlišči in preostankom.
Časovna zahtevnost bi bila 𝑂(𝑛𝑚).
Lahko pa jo izboljšamo. Za vsako še nedodano vozlišče bomo vzdrževali njegovo razdaljo do že
zgrajenega drevesa. Na začetku so vse te razdalje enake ∞, razen za začetno vozlišče, ki ima razdaljo
0. Na vsakem koraku poiščemo vozlišče z najmanjšo razdaljo, ga dodamo v drevo in posodobimo
razdalje do drevesa vseh njegovih sosedov. Vse skupaj bomo obravnavali 𝑂(𝑚) povezav. Na vsakem
koraku dodajanja novega vozlišča v drevo pa bomo iskali vozlišče z najmanjšo razdaljo do drevesa.
Časovna zahtevnost je 𝑂(𝑛2 + 𝑚) = 𝑂(𝑛2).
Namesto večkratnega iskanja vozlišča z najmanjšo razdaljo lahko hranimo vozlišča v prioritetni vrsti
podobno kot v Dijkstrovem algoritmu. Posodobljene razdalje dodajamo v vrsto, če dobimo iz vrste
kakšno staro vrednost, pa jo ignoriramo. Časovna zahtevnost take implementacije je 𝑂(𝑚 log 𝑛).

[6]: int Prim(int n, vector<VII> &adj, vector<PII> &mst) {
vector<int> dist(n,-1); // distance from the tree
vector<int> done(n), parent(n);
int cost=0;
priority_queue<PII, vector<PII>, greater<PII>> pq;

4

dist[0]=0; pq.push({0,0});
while (!pq.empty()) {

auto [d,x]=pq.top(); pq.pop();
if (done[x]) continue; // ignore old items in queue
cost+=d;
done[x]=1;
for (auto [y,w] : adj[x]) if (!done[y]) { // update unfinished␣

↪neighbors
if (dist[y]==-1 || w<dist[y]) { // new or smaller distance

dist[y]=w; pq.push({w,y});
parent[y]=x;

}
}

}
for (int x=1;x<n;x++) { // skip root

mst.push_back({x,parent[x]});
}
return cost;

}

[7]: vector<PII> mst;
cout << Prim(n, adj, mst) << endl;
for (PII edge : mst) cout << edge.first << " " << edge.second << endl;

37
1 0
2 1
3 2
4 3
5 2
6 5
7 6
8 2

2.2 Kruskal
Kruskalov algoritem je prav tako požrešne narave. Začne z množico vozlišč in dodaja povezave
od manjših proti večjim povezavam glede na uteži. Pravzaprav postopoma pretvarja gozd z več
manjšimi drevesi v eno veliko drevo. Vsako povezavo (𝑥, 𝑦) doda, če njena vključitev ne ustvari cikla.
Povedano drugače, vozlišči 𝑥 in 𝑦 ne smeta pripadati istemu drevesu oz. povezani komponenti.

Vodi ta postopek res do optimalne rešitve? Tudi tu si lahko pomagamo s prerezno lastnostjo.
Recimo, da smo že sestavili nek gozd in želimo dodati povezavo (𝑥, 𝑦). Naj bo drevo z vozliščem
𝑥 množica 𝐴, vsa ostala vozlišča pa množica 𝐵. Povezava (𝑥, 𝑦) je globalno najcenejša nedodana
povezava in zato tudi najcenejša povezava med množicama 𝐴 in 𝐵. Torej jo lahko gotovo dodamo
v vpeto drevo in pri tem ne bomo zgrešili optimalne rešitve.

Za začetek moramo povezave urediti po velikosti, kar zahteva 𝑂(𝑚 log 𝑚) časa. Nato pa obrav-
navamo po vrsti vseh 𝑚 povezav in za vsako preverjamo, ali sta krajišči del iste povezane kom-

5

ponente. Povezano komponento lahko vsakič znova določimo z uporabo preiskovanja v širino
ali globino, ki ima časovno zahtevnost 𝑂(𝑚). Časovna zahtevnost celega postopka bi bila
𝑂(𝑚 log 𝑚 + 𝑚𝑚) = 𝑂(𝑚2).
Lahko pa uporabimo podatkovno strukturo disjunktnih množic, ki predstavljajo povezane kompo-
nente. Posamezna vozlišča združujemo v povezane komponente, da dobimo na koncu eno samo
komponento, ki je minimalno vpeto drevo. Operacije v strukturi disjunktnih množic so praktično
konstantne in zanemerljive v primerjavi z začetnim urejanjem povezav. Časovna zahtevnost je
𝑂(𝑚 log 𝑚 + 𝑚𝛼(𝑛)) = 𝑂(𝑚 log 𝑚) = 𝑂(𝑚 log 𝑛).

[8]: bool cmpW(VI e1, VI e2) { return e1[2] < e2[2]; }

[9]: int Kruskal(int n, vector<VI> &edges, vector<PII> &mst) {
sort(edges.begin(), edges.end(), cmpW); // sort by weights
DisjointSet ds(n);
int cost=0;
for (VI e : edges) {

int a=e[0], b=e[1], w=e[2];
if (ds.root(a)==ds.root(b)) continue; // same component?
ds.join(a,b);
cost+=w;
mst.push_back({a,b});

}
return cost;

}

[10]: vector<PII> mst;
cout << Kruskal(n, edges, mst) << endl;
for (PII edge : mst) cout << edge.first << " " << edge.second << endl;

37
7 6
8 2
6 5
0 1
2 5
2 3
0 7
3 4

2.3 Steinerjevo drevo v grafu
V problemu minimalnega vpetega drevesa smo morali poiskati podmnožico povezav z najmanjšo
vsoto, ki med seboj povezujejo vsa vozlišča grafa v obliki drevesa. Problem lahko posplošimo tako,
da zahtevamo, da je med seboj povezana samo neka izbrana podmnožica vozlišč (ki jim rečemo
terminali, njihovo število pa bomo označili s 𝑡), vključuje pa lahko tudi druga vozlišča

• 𝑡 = 𝑛: Če so vsa vozlišča terminali, imamo opravka s problemom minimalnega vpetega
drevesa.

• 𝑡 = 2: Če moramo povezati samo dve vozlišči, imamo opravka s problemom najkrajše poti.

6

• V splošnem se temu problemu reče Steinerjevo drevo v grafu. Vozliščem, ki so del rešitve
(drevesa), čeprav niso terminali, pa Steinerjeve točke.

Problem Steinerjevega drevesa spada med težke probleme, za katere ne poznamo algoritmov s
polinomsko zahtevnostjo v odvisnosti od števila terminalov 𝑡. Soroden geometrijski problem Stein-
erjevega drevesa v ravnini, kjer želimo povezati 𝑡 točk z ravnimi črtami, pri čemer lahko dodajamo
vmesne točke/križišča, je prav tako težek.

7

	Disjunktne množice
	Združevanje po velikosti
	Stiskanje poti
	Skupna rešitev

	Minimalno vpeto drevo
	Prerezna lastnost
	Prim
	Kruskal
	Steinerjevo drevo v grafu

