Racunska zahtevnost

December 18, 2024

1 Racunska zahtevnost

Poskusimo odgovorit na par vprasanj, ki si jih lahko zastavimo v zvezi s prejsnjimi urejevalnimi
algoritmi.

o Kateri algoritmi so dobri in kateri slabi?
o Kateri algoritem je najboljsi oz. kateri izmed dveh je boljsi?
e Kako merimo uc¢inkovitost oz. rac¢unsko zahtevnost algoritma?

Za algoritma s permuacijami lahko brez skode reéemo, da sta slaba. Poznamo precej hitrejse
postopke urejanja, ki niso bistveno kompleksnejsi (morda celo enostavnejsi). Za ostale osnovne
algoritme urejanja pa zZe ni povsem jasnega odgovora. Poznamo namreé¢ uéinkovitejSe vendar tudi
kompleksnejse algoritme. Tudi osnovni pristopi so lahko povsem primerni.

Pri iskanju najboljsega algoritma naletimo na podobno dilemo. Poleg tega ni jasno, na kaksnih
podatkih zelimo, da je algoritem najboljsi - povsem nakljucnih, kaksnih posebnih, kako velikih?

To nas pripelje do tretjega vprasanja, kako sploh merimo uc¢inkovitost algoritma?

e Lahko merimo Cas izvajanja, vendar je te ¢ase problemati¢no primerjati na razli¢nih racu-
nalnikih.

e Lahko merimo $tevilo operacij, ki jih potrebuje algoritem. Dogovoriti pa se moramo, katere
operacije bomo Steli (primerjave, aritmetic¢ne, logi¢ne, pomnilniske, ...)

o Dogovoriti se moramo, kaksen primer podatkov bomo obravnavali (najboljSem, najslabsem,
povpreénem).

e Dogovoriti se moramo o velikosti primerov, s katerimi imamo opravka. En algoritem je
lahko boljsi za manjse primere, drugi pa se izkaze pri vecjih.

Kot bomo videli v nadaljevanju, obi¢ajno ocenjujemo asimptoti¢no zgornjo mejo stevila operacij v
najslabsem primeru.

Racunska zahtevnost (kompleksnost) je koli¢ina virov, ki jih potrebuje algoritem za reSitev
problema dane velikosti. Pri virih se obicajno osredotoc¢amo na c¢as in prostor, zato govorimo o
casovni in prostorski zahtevnosti.

Ker imamo lahko razlicne podatke enake velikosti, moramo definirati, ali gre za najboljsSo, najs-
labso ali povpreéno racunsko zahtevnost. Obic¢ajno se osredoto¢amo na najslabso (worst-case),
¢e ni doloc¢eno drugace.

Natancéno kolié¢ino virov je pogosto tezko izracunati, poleg tega pa ni pretirano prakti¢no uporabna.
Na rac¢unalniku z malenkost drugac¢no arhitekturo je ze lahko druga¢na. Poleg tega pa nas za majhne
probleme obi¢ajno ne zanima, ker je takrat preglednost bolj pomembna od uc¢inkovitosti. Zato se

obicajno ukvarjamo z asimptotiéno zahtevnostjo, ki opisuje porabo virov algoritma pri zelo
velikih problemih. Pri tem pogosto ocenjujemo neko mejo asimptoti¢ne zahtevnosti. Najpogosteje
ocenjujemo zgornjo mejo, za kar se uporablja notacija z velikim O-jem (Big O notation).
Recemo, da ima funkcija f(n) kompleksnost reda g(n), kar zapisemo kot O(g(n)) ali f(n) € O(g(n))
ali celo kar f(n) = O(g(n)) (¢eprav ne gre za enakost). Formalno to pomeni:

Jk > 03n, Yn >ny: f(n) <kg(n)

ali enakovredno z limitami
f(n)

lim,, o) < 0
Poleg zgornje meje asimptoti¢ne zahtevnosti (veliki O) poznamo Se notacije za druge meje (velika
omega - (2, velika theta - O, ..). Ve¢ o njih pa pri drugih algoritmi¢nih predmetih. Omenjene
definicije lahko posplosimo tudi na funkcije z ve¢ spremenljivkami, ¢e opazujemo ¢asovno zahtevnost

algoritma v odvisnosti od ve¢ parametrov velikosti problema.

Najpogostejsi primer je analiza zgornje meje asimptoti¢ne racunske zahtevnosti v na-
jslabsem primeru. S tem postavimo pesimisticno oceno za najbolj neugoden primer
velikih podatkov. Kadar govorimo o casovni zahtevnosti, obi¢ajno mislimo kar zgornjo
mejo asimptoticne ¢asovne zahtevnosti v najslabsem primeru, ¢e seveda ni pojasnjeno
drugace.

Recimo, da smo izra¢unali ¢as izvajanja oz. Stevilo operacij za resitev problema velikost n s funkcijo
f(n) = 3(n—1)(n+2) log n++/n. Ce izraz razsirimo, dobimo f(n) = $n?logn+inlogn—logn+/n.
Casovno zahtevnost takega algoritma bi lahko ocenili kot O(2n?), kar je sicer pravilno, vendar precej
nenatan¢na meja. BoljSa ocena ¢asovne zahtevnosti bi bila O(n?logn). Vsi ostali ¢leni so namre¢
zanemarljivi v primerjavi z n?logn, ko gre n proti neskonénosti (za potrebe zgornje meje bi jih
lahko nadomestili z n? logn), konstantni ¢len pred njim pa po definiciji ni relevanten. Primeren (ne
pa edini) izbor konstant v zgornji definiciji bi bil npr. ny = 2 in k = 3, ker so vsi trije pozitivni
¢leni mangi ali enaki n?logn pri n >= 2. V praksi to pomeni, da:

e pri vsoti obdrzimo samo najhitreje rastoci ¢len,
e pri produktu pa lahko zanemarimo konstantne faktorje.

Tipiéne ¢asovne zahtevnosti so:

), konstantna (neodvisna od velikosti problema n)
logn), logaritemska

v/n), korenska

n), linearna

nlogn) loglinearna, linearitmicna

nlog®n) za konstanto ¢ > 0, npr. O(nlog®n) kvazilinearna
n?), kvadratna
n
n

OQOQQQQ

3), kubi¢na
¢) za konstanto ¢ > 0, npr. O(n®), polinomska
o O(c") za konstanto ¢ > 1, npr. O(2"), eksponentna

o(1
(
(
(
(
(
(
(
O(

Kako velike probleme lahko resujemo z algoritmi dolofene ¢asovne zahtevnosti, npr. O(n?)? Ker
ta sintaksa skriva konstantni faktor, tega ne moremo rec¢i natan¢no. Dobra prakticna ocena pa je,
da lahko na tipi¢nem osebnem racunalniku trenutno izvedemo priblizno 10® osnovnih operacij na
sekundo.

1.0.1 Primeri

Oglejmo si nekaj primerov funkeij, ki predstavljajo racunske zahtevnosti, in jih ocenimo z notacijo
z velikim O-jem.

o fi(n) =100+ 2n+3n? =0(n3) (ali O(n*logn), kar je sicer pravilna, vendar slaba meja)
* fa(n) =3ncos(2mn) + 2 + 2n = O(n)
o f3(n) = 1+ nlogn+n'5 = O(n'®) (da logaritem raste pocasneje kot koren, se lahko

prepricate z uporabo I’Hopitalovega pravila za izracun lim,,_, 1(\)%” =0)

Funkcija lahko vsebuje vsote kaksnih vrst.

e f(n)= 22:1 n/k = nzzzl 1/k =0O(nlogn) (Harmoni¢na vrsta)
Pogoste so tudi rekurzivne funkcije.

o f(n)=n+f(n/2)=n+n/2+n/4+..<2n=0(n)
Lahko imamo funkcije ve¢ spremenljivk.

o f(n,m)=an®+nym+blogm = O(n?+ny/m) (ain b sta konstanti)

Parametriziran algoritem Nacrtujemo algoritem, v katerem bomo problem velikosti n
enakomerno razbili na skupine velikosti k, ki jih bo torej n/k. Izracunali smo, da lahko prob-
lem za posamezno skupino resimo z algoritmom s korensko ¢asovno zahtevnostjo (v odvisnosti od
velikosti skupine), ¢asovna zahtevnost postopka zdruzevanja rezultatov ve¢ skupin pa je kubic¢na (v
odvisnosti od stevila skupin). Kako naj izberemo parameter k, da bo ¢asovna zahtevnost algoritma
¢im boljsa?

f(n;k) = n/k - O(VE) + O((n/k)?). Oglejmo si ekstremne primere. Pri k& = 1 dobimo f(n) =
n+n3=0(n3), pri k=nrpa f(n) =n+1=0(/n) =0(n">). V prvem primeru je veji drugi
¢len, v drugem primeru pa prvi élen. Zelimo, da noben od njiju ne dominira, torej naj bosta enaka.
Iz enacbe nvk/k = (n/k)3 lahko dolo¢imo k = n*® in f(n) = O(n?®) = O(n°*).

Analiza programa Ocenimo casovno zahtevnost spodnjega programa.

for (int x = 1; x <= n; x *= 2) {
for (dint 1 = 0; i < x; i++) {
for (int j = 0; j < m; j += 2) {
// konstantno Stevilo operacij
}
for (int j = 1; j < mn; j *= 2) {
// konstantno Stevilo operacij
b
}
+

Na for zanke se bomo sklicevali kar s prva, druga, tretja in cetrta, kot se pojavijo v programu.
Dolo¢imo, najve¢ kolikokrat se izvede katera od njih: prva logn-krat, druga: n-krat, tretja: n/2-
krat in ¢etrta: log n-krat. Tretja in Getrta se izvedeta zaporedno, pri éemer dominira tretja. Casovno
zahtevnost lahko zato ocenimo z O(logn - n - (n/2 + logn)) = O(n?logn).

Pri ocenjevanju ¢asovne zahtevnosti pa smo lahko bolj natanéni. Stevilo ponovitev druge zanke
je namre¢ odvisno od trenutne iteracije prve zanke (v prejSnjem odstavku smo vzeli kar najbolj
pesimisti¢no oceno). Stevilo izvedb druge zanke bo 1 +2+4+ 8 + ... +n = O(n), za vsako od teh
ponovitev pa tretja zanka prispeva Se O(n) operacij. Bolj natanéna ocena ¢asovne zahtevnosti je
torej O(n?).

	Računska zahtevnost
	Primeri

