
Racunska geometrija

December 18, 2024

1 Računska geometrija
Računska geometrije je področje algoritmov in podatkovnih struktur, ki se ukvarja z učinkovitim
reševanjem geometrijskih problemov. Ti vključujejo delo s točkami, daljicami, večkotniki in drugimi
geometrijskimi objekti ter relacijami med njimi, kot sta npr. razdalja ali vsebovanost. Računska
geometrija je očiten del računalniške grafike, vida, robotike. Manj očitno pa je prisotna tudi v
številnih drugih problemih, ki dopuščajo geometrijsko formulacijo.

Omejili se bomo na reševanje problemov v ravnini, saj se problemi v višjih dimenzijah običajno
dodatno zakomplicirajo. Poleg tega je reševanje ravninskih problemov enostavno za vizualizacijo.
Kljub temu pa moramo biti pri reševanju pozorni na številne posebne primere, kot so kolinearne
točke, sovpadanje točk, vzporedne daljice, … Pomembna ovira je tudi računska natančnost. Če
imamo opravka s celoštevilskimi objekti, želimo rešiti problem z uporabo celih števil, da ne vpeljemo
računske napake, ki bi lahko povzročila povsem napačen rezultat.

[1]: #include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;

typedef pair<int,int> PII;
typedef vector<PII> VII;

[2]: template<class A, class B>
ostream& operator<<(ostream& os, pair<A,B> &p) {

os << "(" << p.first << ", " << p.second << ")";
return os;

}

[3]: template<typename T>
void print(const vector<T> &sez) {

for (T x : sez) cout << x << " ";
cout << endl;

}

1

1.1 Razdalje in presečišča
Razdalje in presečišča so najbolj osnovni koncepti, ki jih moramo obvladati. Ne vključujejo kakšnih
novih algoritmičnih prijemov, vendar služijo kot ponovitev geometrije in linearne algebre. Za
naštete probleme seveda obstaja več formul. Ogledali si bomo najbolj enostavne, ki jih lahko
izpeljemo brez prepisovanja iz kakšnega učbenika. Glede na predstavitev premic imamo različne
pristope. Predpostavili bomo, da imamo premico 𝑃 predstavljeno s točko 𝑃0 in smernim vektorjem
𝑉𝑃 .

Razdalje:

• Točki 𝑆 in 𝑇 : Pitagorov izrek poznamo še iz osnovne šole.
• Točka 𝑆 in premica 𝑃 : Izračunamo projekcijo 𝑆′ točke 𝑆 na premico 𝑃 in izračunamo razdaljo

med 𝑆 in projekcijo 𝑆′. Projekcijo točke na premico izračunamo s pomočjo skalarnega
produkta: proj𝑏 𝑎 = 𝑎⋅𝑏

||𝑏||2 𝑏. Če delamo projekcijo na enotski smerni vektor premice, je
dolžina projekcije kar enaka skalarnemu produktu.

• Točka 𝑆 in daljica 𝐴𝐵: Izračunamo projekcijo točke na nosilko (premico) daljice. Če je
projekcija izven daljice, bo najkrajša razdalja do krajišča 𝐴 ali 𝐵, sicer pa do projekcije 𝑆′.

• Daljici 𝐴𝐵 in 𝐶𝐷: Predpostavimo, da se daljici ne sekata, sicer je odgovor 0. Najkrajša
razdalja med daljicama bo enaka razdalji med enim izmed krajišč in drugo daljico. Izberemo
najmanjšo izmed štirih možnosti.

Presečišča:

• Točka 𝑆 in premica 𝑃 : Če je vektorski produkt vektorja 𝑃0𝑆 in smernega vektorja premice
𝑃 enak 0, leži točka na premici.

• Točka 𝑆 in daljica 𝐴𝐵: Preverimo, ali točka leži na nosilki daljice in znotraj očrtanega
pravokotnika (bounding box).

• Premici 𝑃 in 𝑅: Če sta premici vzporedni, imamo neskončno ali nobenega presečišča. Sicer
rešimo sistem enačb 𝑃0 + 𝑎𝑉𝑃 = 𝑅0 + 𝑏𝑉𝑅 za obe koordinati.

• Premica in daljica: Izračunamo presečišče premice in nosilke daljice ter preverimo, ali leži
presečišče na daljici.

• Daljici 𝐴𝐵 in 𝐶𝐷: Ugotoviti moramo, ali se daljici sploh sekata, nato pa uporabimo rešitev
za izračun presečišča nosilk obeh daljic. Daljici se sekata natanko takrat, ko sta krajišči prve
daljice 𝐴 in 𝐵 na nasprotnih straneh nosilke daljice 𝐶𝐷 in obratno. Stran/smer ugotovimo
s pomočjo vektorskega produkta. Točka 𝐴 je na levi strani vektorja 𝐶𝐷 (v pozitivni smeri
oz. nasprotni smeri urinega kazalca), če je vektorski produkt 𝐶𝐷 × 𝐶𝐴 pozitiven (na drugi
strani bi bil negativen). Posebej pozorni moramo biti na primere, ko se daljici dotikata, kjer
je vektorski produkt lahko 0.

1.2 Površina večkotnika
Začnimo s trikotnikom 𝐴𝐵𝐶. Če imamo podane koordinate oglišč, si lahko izberemo oglišče 𝐴 za
izhodišče in izračunamo polovico absolutne vrednost vektorskega produkta 𝑝 = 1

2 |𝐴𝐵 × 𝐴𝐶|.
Konveksen večkotnik lahko enostavno razbijemo na trikotnike in uporabimo prejšnji rezultat.

Na težave naletimo pri večkotnikih, ki niso nujno konveksni. Uporabimo formulo s predznačenimi
vsotami trapezov 𝑝 = | ∑𝑛

𝑖=1
1
2(𝑦𝑖 + 𝑦𝑖+1)(𝑥𝑖 − 𝑥𝑖+1)|. Predpostavimo lahko, da se večkotnik v

celoti nahaja nad x-osjo (formula deluje tudi brez te predpostavke). Postavimo se nekam na x-
os in opazujmo ozek vertikalen stolpec. Vsakič, ko bomo pri obhodu večkotnika prečkali stolpec

2

v desno stran, bomo območje pod njim odšteli, pri prehodu v levo pa prišteli. Marsikaj se bo
izničilo in ostala bodo samo območja, ki imajo nad seboj liho število prečkanj (ta se izmenjujejo v
levo in desno), kar je ravno notranjost večkotnika. Če naredimo obhod v drugo smer, bo rezultat
negativen, po absolutni vrednosti pa enak.

Omenimo še, da deluje enak argument, če si izberemo poljubno izhodišče (npr. (0,0)) in sešte-
vamo predznačene površine trikotnikov, ki jih z izbranim izhodiščem formirajo stranice na robu
večkotnika.

1.3 Vsebovanost točke
Začnimo z najenostavnejšim primerom točke 𝑇 , ki se nahaja v trikotniku 𝐴𝐵𝐶 ali pač ne. Točka
se nahaja v trikotniku, če se pri obhodu trikotnika ves čas nahaja na isti strani, kar preverimo z
vektorskim produktom. Ali je to pozitivna ali negativna stran, je odvisno od smeri obhoda. Sledeči
vektorski produkti morajo imeti enak predznak: 𝐴𝐵×𝐴𝑇 , 𝐵𝐶 ×𝐵𝑇 in 𝐶𝐴×𝐶𝑇 . Pozorni moramo
biti, kaj problem zahteva v primeru, da se točka nahaja točno na robu trikotnika.

Naslednji primer je vsebovanost točke v konveksnem večkotniku. Enostavno ga lahko razbijemo
na trikotnike (ki imajo skupno izbrano oglišče) in prevedemo problem na vsebovanost točke v
trikotniku. Deluje pa tudi prej omenjeni pristop z lokacijo točke na isti strani obhoda večkotnika.

Kako pa rešimo problem za poljuben večkotnik (point in polygon), ki ni nujno konveksen? V
tem primeru uporabimo tehniko metanja žarka (ray casting). Če sledimo poltraku iz točke 𝑇 v
poljubno smer, se ob vsakem križanju z robom večkotnika spremeni lokacija znotraj/zunaj. Če je
število križanj liho, je točka znotraj večkotnika, sicer je izven. Pomembna podrobnost je, kaj se
zgodi, če žarek seka večkotnik v enem od oglišč. Sprememba je namreč odvisna od sosednjih oglišč.
Če več sosednjih oglišč leži na žarku, nas zanima prvo oglišče, ki ne. Če sta obe na isti strani žarka,
ni spremembe, sicer pa je. Prikladna izbira smeri je npr. 𝑧 = (−1, 0). Lahko pa se tej komplikaciji
izognemo s tako izbiro smeri (naključno), da do tega ne pride.

V spodnji implementaciji bomo predpostavili, da se točka ne nahaja na robu večkotnika. Če to ni
res, bi lahko to posebej preverili. Pretvarjali se bomo, da ima točka za 𝜖 večjo y koordinato. To
ne spremeni rešitve, vendar poenostavi razmislek, ker so vsa oglišča nad ali pod njo, ne pa na isti
višini (oglišča z enako višino bodo obravnavana kot nižja). Problem bi z malo več truda lahko rešili
tudi v celih številih, vendar zaradi preglednosti ne bomo dodatno komplicirali.

[4]: #define OPERATOR_SUBTRACT operator- // workaround for a bug of cling

[5]: PII OPERATOR_SUBTRACT(PII a, PII b) {
return {a.first-b.first, a.second-b.second};

}

[6]: int point_in_polygon(vector<PII> poly, PII t) {
int n=poly.size(), cnt=0;
auto [x,y] = t;
for (int i=0;i<n;i++) {

int j=(i+1)%n;
if ((poly[i].second<=y) != (poly[j].second<=y)) { // stranica seka␣

↪vodoravno premico
PII s = poly[j]-poly[i]; // vektor stranice: i -> i+1

3

PII v = t-poly[i]; // vektor do tocke: i -> t
double k = (double)v.second/s.second;
double xp = poly[i].first + k*s.first; // presecisce z vodoravno␣

↪premico
if (xp < x) cnt++;

}
}
return cnt%2;

}

[7]: vector<PII> poly = {{0,0}, {1,1}, {3,1}, {4,2}, {5,1}, {6,2}, {7,0}, {8,1},␣
↪{9,0}, {10,1}, {10,3}, {0,3}};

cout << point_in_polygon(poly, {9,1}) << endl;
cout << point_in_polygon(poly, {9,2}) << endl;
cout << point_in_polygon(poly, {6,1}) << endl;
cout << point_in_polygon(poly, {5,0}) << endl;

1
1
0
0

1.4 Konveksna ovojnica
Konveksna ovojnica/ogrinjača/lupina (convex hull) množice točk v ravnini je najmanjša konveksna
množica, ki vsebuje vse podane točke. Običajno nas zanima rob konveksne ovojnice, ki je najkrajša
sklenjena črta, ki vsebuje vse točke. Včasih tudi lomljeni črti, ki predstavlja rob konveksne ovojnice,
rečemo kar konveksna ovojnica. Predstavljamo si jo lahko kot elastiko, ki se skrči okoli množice
točk.

Iščemo ekstremne (robne) točke na robu ovojnice, ki jo definirajo. V primeru več kolinearnih točk
na robu, je stvar definicije problema, ali želimo poročati samo oglišča ali tudi točke vzdolž stranic
konveksne ovojnice. V nadaljevanju se bomo omejili na primere, kjer ni treh kolinearnih točk.

Ogledali si bomo par najbolj klasičnih algoritmov, obstaja pa jih še veliko več. Problem seveda
postane težji, če ga rešujemo v treh ali še več dimenzijah.

[8]: vector<PII> points = {{4,0}, {2,3}, {5,2}, {6,1}, {8,4}, {6,6}, {5,4}, {4,5},␣
↪{2,6}, {1,1}, {1,5}, {3,2}};

1.4.1 Identifikacija stranic

Rob konveksne ovojnice je sestavljen iz daljic med pari točk. Če lahko za posamezen par točk oz.
daljico med njima ugotovimo, ali je del konveksne ovojnice, lahko zgradimo konveksno ovojnico.
Daljica je del roba konveksne ovojnice, če se vse ostale točke nahajajo na isti strani (recimo na
levi/pozitivni). Časovna zahtevnost takega postopka je 𝑂(𝑛3), kjer je 𝑛 število točk.

[9]: int cross(PII u, PII v) {
return u.first*v.second - u.second*v.first;

4

}

[10]: int n=points.size();
for (int i=0;i<n;i++) {

for (int j=0;j<n;j++) if (i!=j) { // vektor daljice i-j
PII d=points[j]-points[i];
int ok=1;
for (int k=0;k<n;k++) if (k!=i && k!=j) {

PII v=points[k]-points[i];
if (cross(d,v)<0) ok=0;

}
if (ok) cout << char('A'+i) << " " << char('A'+j) << endl;

}
}

A D
D E
E F
F I
I K
J A
K J

Stranice seveda niso izpisane v vrstnem redu, kot si sledijo na konveksni ovojnici, vendar bi jih
lahko uredili, če bi bilo treba.

1.4.2 Zavijanje darila

Pri iskanju konveksne ovojnice smo lahko bolj učinkoviti. Naraven pristop zavijanja darila (gift
wrapping, Jarvis march) začne z izbiro točke, ki je gotovo del konveksne ovojnice. V ta namen
lahko izberemo npr. najbolj levo točko 𝐴 (najnižjo med najbolj levimi) in raztegnemo ovojni papir
navzgor. Papir ovijamo v smeri urinega kazalca dokler se ne dotakne naslednje točke. Postopek
ovijanja ponavljamo, dokler ne pridemo do začetne točke.

Naslednjo točko, ki se jo dotakne papir pri ovijanju, lahko poiščemo na več načinov. Ker so med
gradnjo konveksne ovojnice vedno vse točke na isti strani zadnje točke A (del neke polravnine skozi
A), lahko med njimi poiščemo najbolj levo z uporabo vektorskega produkta 𝐴𝐶×𝐴𝐵 za primerjavo,
ali je točka C bolj levo (oz. v nasprotni smeri urinega kazalca) od točke B.

[11]: VII gift_wrapping(VII points) {
int n=points.size();
PII start=*min_element(points.begin(), points.end());
vector<PII> hull;
PII a=start;
while (a!=start || hull.empty()) {

hull.push_back(a);
PII b = (a!=points[0])?points[0]:points[1]; // katerakoli tocka, ki ni␣

↪a
for (PII c : points) if (c!=a) {

5

PII ac=c-a, ab=b-a; // vektorja AC, AB
if (cross(ab,ac)>0) b=c;

}
a = b;

}
return hull;

}

[12]: auto hull = gift_wrapping(points);
print(hull);

(1, 1) (1, 5) (2, 6) (6, 6) (8, 4) (6, 1) (4, 0)

Časovno zahtevnost algoritma lahko analiziramo v odvisnosti od velikosti rezultata (output-
sensitive) - število točk ℎ na konveksni ovojnici. V tem primeru je časovna zahtevnost 𝑂(ℎ𝑛).
Če pa velikosti rezultata ne upoštevamo, so lahko v najslabšem primeru vse točke na robu ovojnice,
zato je časovna zahtevnost 𝑂(𝑛2).

1.4.3 Grahamov pregled

Konveksno ovojnico točk v ravnini lahko poiščemo bolj učinkovito kot v kvadratnem času in sicer z
uporabo Grahamovega pregleda (Graham scan). Ponovno si izberimo neko ekstremno točko 𝑇 , ki
je zagotovo del konveksne ovojnice (npr. najnižjo med najbolj levimi točkami). Uredimo preostale
točke glede na kote vektorjev iz točke 𝑇 (od tistih, ki kažejo navzdol, proti vodoravnim in tistim,
ki kažejo navzgor). Naj bo ta urejen seznam točk 𝑃1, 𝑃2, … Če jih povežemo, dobimo ovojnico, ki
vsebuje vse točke (kar v ogliščih), vendar ni konveksna. Vemo tudi, da bo konveksna ovojnica neka
podmnožica tega seznama točk. Vrstni red točk je že pravilen, samo izbrati moramo prave.

Algoritem gradi konveksno ovojnico postopno z dodajanjem novih točk v izbranem vrstnem redu
po kotih. Po vsaki dodani točki popravi konveksnost zgrajene ovojnice, če je nova točka podrla
konveksnost z obratom v napačno smer. To naredi z odstranjevanjem točk s konca zgrajene ovojnice,
dokler zaključek ovojnice z novo točko ni konveksen.

Grahamov pregled pravzaprav gradi vedno večjo konveksno ovojnico z dodajanjem posameznih točk
po kotih. V 𝑖-tem koraku doda točko 𝑃𝑖 in iz konveksne ovojnice točk 𝑇 , 𝑃1, 𝑃2, … , 𝑃𝑖−1 izračuna
konveksno ovojnico točk 𝑇 , 𝑃1, 𝑃2, … , 𝑃𝑖.

Časovna zahtevnost algoritma je zaradi urejanja 𝑂(𝑛 log 𝑛). Preostanek algoritma vključuje doda-
janje in odstranjevanje točk z ovojnice, vendar je vsaka točka lahko dodana in odstranjena kvečjemu
enkrat. Zato je ta del algoritma linearen v odvisnosti od števila točk.

[13]: VII graham_scan(VII points) {
int n=points.size();

PII t=*min_element(points.begin(), points.end());

vector<pair<double,PII>> angles;
for (PII p : points) if (p!=t) {

PII v = p-t;
angles.push_back({atan2(v.second, v.first), p});

}

6

sort(angles.begin(), angles.end());

vector<PII> hull = {t}; // stack
for (auto [_,c] : angles) {

while (hull.size()>=2) { // restore convexity
PII a=hull[hull.size()-2], b=hull[hull.size()-1];
PII ab=b-a, ac=c-a;
if (cross(ab,ac)>0) break;
hull.pop_back();

}
hull.push_back(c);

}
return hull;

}

[14]: auto hull2 = graham_scan(points);
print(hull2);

(1, 1) (4, 0) (6, 1) (8, 4) (6, 6) (2, 6) (1, 5)

7

	Računska geometrija
	Razdalje in presečišča
	Površina večkotnika
	Vsebovanost točke
	Konveksna ovojnica
	Identifikacija stranic
	Zavijanje darila
	Grahamov pregled

