[1]7:

[2]:

[3]:

Racunska geometrija
December 18, 2024

1 Racunska geometrija

Racunska geometrije je podrocje algoritmov in podatkovnih struktur, ki se ukvarja z uc¢inkovitim
resevanjem geometrijskih problemov. Ti vkljucujejo delo s tockami, daljicami, veckotniki in drugimi
geometrijskimi objekti ter relacijami med njimi, kot sta npr. razdalja ali vsebovanost. Rac¢unska
geometrija je oCiten del racunalniske grafike, vida, robotike. Manj ocitno pa je prisotna tudi v
stevilnih drugih problemih, ki dopuscajo geometrijsko formulacijo.

Omejili se bomo na resevanje problemov v ravnini, saj se problemi v visjih dimenzijah obic¢ajno
dodatno zakomplicirajo. Poleg tega je resevanje ravninskih problemov enostavno za vizualizacijo.
Kljub temu pa moramo biti pri reSevanju pozorni na stevilne posebne primere, kot so kolinearne
tocke, sovpadanje tock, vzporedne daljice, .. Pomembna ovira je tudi racunska natancnost. Ce
imamo opravka s celostevilskimi objekti, zelimo resiti problem z uporabo celih stevil, da ne vpeljemo
racunske napake, ki bi lahko povzrocila povsem napacen rezultat.

#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;

typedef pair<int,int> PII;
typedef vector<PII> VII;

template<class A, class B>

ostream& operator<<(ostream& os, pair<A,B> &p) {
os << "(" << p.first << ", " << p.second << ")";
return os;

template<typename T>

void print(const vector<T> &sez) {
for (T x : sez) cout << x << " ",
cout << endl;

1.1 Razdalje in presecisca

Razdalje in presecisca so najbolj osnovni koncepti, ki jih moramo obvladati. Ne vkljucujejo kaksnih
novih algoritmic¢nih prijemov, vendar sluzijo kot ponovitev geometrije in linearne algebre. Za
nastete probleme seveda obstaja ve¢ formul. Ogledali si bomo najbolj enostavne, ki jih lahko
izpeljemo brez prepisovanja iz kaksnega ucbenika. Glede na predstavitev premic imamo razli¢ne
pristope. Predpostavili bomo, da imamo premico P predstavljeno s tocko P, in smernim vektorjem
Vp.

Razdalje:

o Tocki S in T: Pitagorov izrek poznamo Se iz osnovne Sole.

o Tocka S in premica P: Izra¢unamo projekcijo S’ tocke S na premico P in izra¢unamo razdaljo
med S in projekcijo S’. Projekcijo tocke na premico izracunamo s pomocjo skalarnega
produkta: proj, a = ﬁb. Ce delamo projekcijo na enotski smerni vektor premice, je
dolzina projekcije kar enaka skalarnemu produktu.

o Tocka S in daljica AB: Izra¢unamo projekcijo tocke na nosilko (premico) daljice. Ce je
projekcija izven daljice, bo najkrajsa razdalja do krajiséa A ali B, sicer pa do projekcije S’.

e Daljici AB in CD: Predpostavimo, da se daljici ne sekata, sicer je odgovor 0. Najkrajsa
najmanjso izmed stirih moznosti.

Presecisca:

o Tocka S in premica P: Ce je vektorski produkt vektorja P,S in smernega vektorja premice
P enak 0, lezi tocka na premici.

o Tocka S in daljica AB: Preverimo, ali tocka lezi na nosilki daljice in znotraj ocrtanega
pravokotnika (bounding bozx).

e« Premici P in R: Ce sta premici vzporedni, imamo neskonéno ali nobenega preseciséa. Sicer
reSimo sistem enacb Py + aVp = R, + bVy za obe koordinati.

e Premica in daljica: Izracunamo presecis¢e premice in nosilke daljice ter preverimo, ali lezi
presecisce na daljici.

e Daljici AB in CD: Ugotoviti moramo, ali se daljici sploh sekata, nato pa uporabimo resitev
daljice A in B na nasprotnih straneh nosilke daljice C'D in obratno. Stran/smer ugotovimo
s pomocjo vektorskega produkta. Tocka A je na levi strani vektorja C'D (v pozitivni smeri
oz. nasprotni smeri urinega kazalca), e je vektorski produkt C'D x C'A pozitiven (na drugi
strani bi bil negativen). Posebej pozorni moramo biti na primere, ko se daljici dotikata, kjer
je vektorski produkt lahko 0.

1.2 Povrsina veckotnika

Zaénimo s trikotnikom ABC. Ce imamo podane koordinate oglis¢, si lahko izberemo oglisce A za
izhodisce in izracunamo polovico absolutne vrednost vektorskega produkta p = %|AB x AC|.

Konveksen veckotnik lahko enostavno razbijemo na trikotnike in uporabimo prejsnji rezultat.

Na tezave naletimo pri veckotnikih, ki niso nujno konveksni. Uporabimo formulo s predznacenimi
vsotami trapezov p = |Z?:1 5(Y; + Yip1)(@; — x541)|. Predpostavimo lahko, da se veckotnik v
celoti nahaja nad x-osjo (formula deluje tudi brez te predpostavke). Postavimo se nekam na x-
os in opazujmo ozek vertikalen stolpec. Vsaki¢, ko bomo pri obhodu veckotnika preckali stolpec

[4] :

[5]:

[6]:

v desno stran, bomo obmocje pod njim odsteli, pri prehodu v levo pa pristeli. Marsikaj se bo
iznicilo in ostala bodo samo obmo¢ja, ki imajo nad seboj liho Stevilo preckanj (ta se izmenjujejo v
levo in desno), kar je ravno notranjost veckotnika. Ce naredimo obhod v drugo smer, bo rezultat
negativen, po absolutni vrednosti pa enak.

Omenimo Se, da deluje enak argument, ¢e si izberemo poljubno izhodis¢e (npr. (0,0)) in seSte-
vamo predznacene povrsine trikotnikov, ki jih z izbranim izhodis¢em formirajo stranice na robu
veckotnika.

1.3 Vsebovanost tocke

Zacnimo z najenostavnejSim primerom tocke 7', ki se nahaja v trikotniku ABC' ali pa¢ ne. Tocka
se nahaja v trikotniku, ¢e se pri obhodu trikotnika ves cas nahaja na isti strani, kar preverimo z
vektorskim produktom. Ali je to pozitivna ali negativna stran, je odvisno od smeri obhoda. Sledeci
vektorski produkti morajo imeti enak predznak: ABx AT, BC x BT in CA x CT. Pozorni moramo
biti, kaj problem zahteva v primeru, da se tocka nahaja tocno na robu trikotnika.

Naslednji primer je vsebovanost tocke v konveksnem veckotniku. Enostavno ga lahko razbijemo
na trikotnike (ki imajo skupno izbrano oglis¢e) in prevedemo problem na vsebovanost tocke v
trikotniku. Deluje pa tudi prej omenjeni pristop z lokacijo tocke na isti strani obhoda veckotnika.

Kako pa resimo problem za poljuben veckotnik (point in polygon), ki ni nujno konveksen? V
tem primeru uporabimo tehniko metanja zarka (ray casting). Ce sledimo poltraku iz tocke T v
poljubno smer, se ob vsakem krizanju z robom veckotnika spremeni lokacija znotraj/zunaj. Ce je
stevilo krizanj liho, je tocka znotraj veckotnika, sicer je izven. Pomembna podrobnost je, kaj se
zgodi, Ce zarek seka veckotnik v enem od oglis¢. Sprememba je namre¢ odvisna od sosednjih oglisc.
Ce ve¢ sosednjih oglis¢ lezi na zarku, nas zanima prvo oglisce, ki ne. Ce sta obe na isti strani zarka,
ni spremembe, sicer pa je. Prikladna izbira smeri je npr. z = (—1,0). Lahko pa se tej komplikaciji
izognemo s tako izbiro smeri (nakljuc¢no), da do tega ne pride.

V spodnji implementaciji bomo predpostavili, da se tocka ne nahaja na robu veckotnika. Ce to ni
res, bi lahko to posebej preverili. Pretvarjali se bomo, da ima tocka za € ve¢jo y koordinato. To
ne spremeni resitve, vendar poenostavi razmislek, ker so vsa ogliséa nad ali pod njo, ne pa na isti
visini (oglisc¢a z enako visino bodo obravnavana kot nizja). Problem bi z malo ve¢ truda lahko resili
tudi v celih S$tevilih, vendar zaradi preglednosti ne bomo dodatno komplicirali.

#define OPERATOR_SUBTRACT operator- // workaround for a bug of cling

PII OPERATOR_SUBTRACT(PII a, PII b) {
return {a.first-b.first, a.second-b.second};

}

int point_in_polygon(vector<PII> poly, PII t) {
int n=poly.size(), cnt=0;
auto [x,y] = t;
for (int i=0;i<n;i++) {
int j=(i+1)%n;
if ((polyl[i].second<=y) != (polyl[j].second<=y)) { // stranica seka,
wvodoravno premico
PII s = polyl[jl-polylil; // wektor stranice: i -> i+1

[7]1:

[8]:

[9]:

PII v = t-polylil; // vektor do tocke: © -> t
double k = (double)v.second/s.second;
double xp = poly[il.first + k*s.first; // presecisce z vodoravno,
<PTemico
if (xp < x) cnt++;
}
}
return cnt%2;

}

vector<PII> poly = {{0,0}, {1,1}, {3,1}, {4,2}, {5,1}, {6,2}, {7,0}, {8,1},,
-{9,0}, {10,1}, {10,3}, {0,3}};

cout << point_in_polygon(poly, {9,1}) << endl;

cout << point_in_polygon(poly, {9,2}) << endl;

cout << point_in_polygon(poly, {6,1}) << endl;

cout << point_in_polygon(poly, {5,0}) << endl;

O O - =

1.4 Konveksna ovojnica

Konveksna ovojnica/ogrinjaca/lupina (convez hull) mnozice tock v ravnini je najmanjsa konveksna
mnozica, ki vsebuje vse podane tocke. Obicajno nas zanima rob konveksne ovojnice, ki je najkrajsa
sklenjena ¢rta, ki vsebuje vse tocke. Vcéasih tudi lomljeni ¢rti, ki predstavlja rob konveksne ovojnice,
re¢emo kar konveksna ovojnica. Predstavljamo si jo lahko kot elastiko, ki se skréi okoli mnozice
tock.

Is¢emo ekstremne (robne) tocke na robu ovojnice, ki jo definirajo. V primeru ve¢ kolinearnih tock
na robu, je stvar definicije problema, ali Zelimo porocati samo oglisca ali tudi tocke vzdolz stranic
konveksne ovojnice. V nadaljevanju se bomo omejili na primere, kjer ni treh kolinearnih tock.

Ogledali si bomo par najbolj klasi¢nih algoritmov, obstaja pa jih Se veliko ve¢. Problem seveda
postane tezji, ¢e ga reSujemo v treh ali Se ve¢ dimenzijah.

vector<PII> points = {{4,0}, {2,3}, {5,2}, {6,1}, {8,4}, {6,6}, {5,4}, {4,5},,
-{2,6}, {1,1}, {1,5}, {3,2}};

1.4.1 Identifikacija stranic

Rob konveksne ovojnice je sestavljen iz daljic med pari to¢k. Ce lahko za posamezen par tock oz.
daljico med njima ugotovimo, ali je del konveksne ovojnice, lahko zgradimo konveksno ovojnico.
Daljica je del roba konveksne ovojnice, ¢e se vse ostale tocke nahajajo na isti strani (recimo na
levi/pozitivni). Casovna zahtevnost takega postopka je O(n?), kjer je n stevilo tock.

int cross(PII u, PII v) {
return u.first*v.second - u.second*v.first;

[10]:

[11]:

}

int n=points.size();
for (int i=0;i<n;i++) {
for (int j=0;j<n;j++) if (i!'=j) { // vektor daljice i-j
PII d=points[j]l-points[il;
int ok=1;
for (int k=0;k<n;k++) if (k!=i && k!=j) {
PIT v=points[k]-points[i];
if (cross(d,v)<0) ok=0;
}

if (ok) cout << char('A'+i) << " " << char('A'+j) << endl;

N G H T | O
G o= X H T mo

Stranice seveda niso izpisane v vrstnem redu, kot si sledijo na konveksni ovojnici, vendar bi jih
lahko uredili, ¢e bi bilo treba.

1.4.2 Zavijanje darila

Pri iskanju konveksne ovojnice smo lahko bolj uéinkoviti. Naraven pristop zavijanja darila (gift
wrapping, Jarvis march) zaéne z izbiro tocke, ki je gotovo del konveksne ovojnice. V ta namen
lahko izberemo npr. najbolj levo to¢ko A (najnizjo med najbolj levimi) in raztegnemo ovojni papir
navzgor. Papir ovijamo v smeri urinega kazalca dokler se ne dotakne naslednje tocke. Postopek
ovijanja ponavljamo, dokler ne pridemo do zacetne tocke.

Naslednjo tocko, ki se jo dotakne papir pri ovijanju, lahko pois¢emo na vec¢ nacinov. Ker so med
gradnjo konveksne ovojnice vedno vse tocke na isti strani zadnje tocke A (del neke polravnine skozi
A), lahko med njimi pois¢emo najbolj levo z uporabo vektorskega produkta AC' x AB za primerjavo,
ali je tocka C bolj levo (oz. v nasprotni smeri urinega kazalca) od tocke B.

VII gift_wrapping(VII points) {
int n=points.size();
PII start=+min_element(points.begin(), points.end());
vector<PII> hull;
PII a=start;
while (a!=start || hull.empty()) {
hull.push_back(a);
PII b = (a!=points[0])7?points[0] :points[1]; // katerakolsi tocka, ki ni

for (PII c : points) if (c!=a) {

PII ac=c-a, ab=b-a; // wvektorja AC, AB
if (cross(ab,ac)>0) b=c;

return hull;

}

[12]: auto hull = gift_wrapping(points);
print (hull);

1, 1) (1, 5 (2, 6) (6, 6) (8, 4) (6, 1) (4, 0)

Casovno zahtevnost algoritma lahko analiziramo v odvisnosti od velikosti rezultata (output-
sensitive) - Stevilo tock h na konveksni ovojnici. V tem primeru je ¢asovna zahtevnost O(hn).
Ce pa velikosti rezultata ne upostevamo, so lahko v najslabsem primeru vse tocke na robu ovojnice,
zato je asovna zahtevnost O(n?).

1.4.3 Grahamov pregled

Konveksno ovojnico tock v ravnini lahko pois¢emo bolj uc¢inkovito kot v kvadratnem casu in sicer z
uporabo Grahamovega pregleda (Graham scan). Ponovno si izberimo neko ekstremno tocko T', ki
je zagotovo del konveksne ovojnice (npr. najnizjo med najbolj levimi tockami). Uredimo preostale
tocke glede na kote vektorjev iz tocke T' (od tistih, ki kazejo navzdol, proti vodoravnim in tistim,
ki kazejo navzgor). Naj bo ta urejen seznam tock P, P,, ... Ce jih povezemo, dobimo ovojnico, ki
vsebuje vse tocke (kar v oglis¢ih), vendar ni konveksna. Vemo tudi, da bo konveksna ovojnica neka
podmnozica tega seznama tock. Vrstni red tock je ze pravilen, samo izbrati moramo prave.

Algoritem gradi konveksno ovojnico postopno z dodajanjem novih tock v izbranem vrstnem redu
po kotih. Po vsaki dodani tocki popravi konveksnost zgrajene ovojnice, ¢e je nova tocka podrla
konveksnost z obratom v napac¢no smer. To naredi z odstranjevanjem tock s konca zgrajene ovojnice,
dokler zakljucek ovojnice z novo tocko ni konveksen.

Grahamov pregled pravzaprav gradi vedno vec¢jo konveksno ovojnico z dodajanjem posameznih tock
po kotih. V i-tem koraku doda tocko P; in iz konveksne ovojnice to¢k T', P, P,, ..., P,_; izra¢una

konveksno ovojnico tock T', P}, Py, ..., P,.

Casovna zahtevnost algoritma je zaradi urejanja O(nlogn). Preostanek algoritma vkljucuje doda-
janje in odstranjevanje tock z ovojnice, vendar je vsaka tocka lahko dodana in odstranjena kvecjemu
enkrat. Zato je ta del algoritma linearen v odvisnosti od Stevila tock.

[13]: VII graham_scan(VII points) {
int n=points.size();
PII t=*min_element(points.begin(), points.end());

vector<pair<double,PII>> angles;
for (PII p : points) if (p!=t) {
PITI v = p-t;
angles.push_back({atan2(v.second, v.first), p});

sort(angles.begin(), angles.end());

vector<PII> hull = {t}; // stack
for (auto [_,c] : angles) {
while (hull.size()>=2) { // restore convexity
PII a=hullf[hull.size()-2], b=hull[hull.size()-1];
PIT ab=b-a, ac=c-a;
if (cross(ab,ac)>0) break;
hull.pop_back();
}
hull.push_back(c);
}
return hull;

}

[14]: auto hull2 = graham_scan(points);
print (hull2);

(1, 1) (4, 0) (6, 1) (8, 4 (6, 6) (2, 6) (1, 5)

	Računska geometrija
	Razdalje in presečišča
	Površina večkotnika
	Vsebovanost točke
	Konveksna ovojnica
	Identifikacija stranic
	Zavijanje darila
	Grahamov pregled

