[1]1:

Pozresni algoritmi
December 18, 2024

1 PozZresni algoritmi

Pogosto lahko sestavimo resitev nekega problema z zaporedjem korakov, pri ¢emer se na vsakem
koraku odlo¢imo za eno izmed ve¢ moznih izbir. Pri pozresnem (greedy) pristopu reSevanje se na
vsakem koraku odlo¢imo za izbiro, ki v tistem trenutku izgleda najbolj obetavno. S takim nacinom
bomo najbrz nasli kar spodobno resitev, pa bo ta tudi optimalna? Odvisno od problema, zato
moramo znati razlikovati, kje in zakaj take strategije delujejo in kdaj ne.

Recimo, da zZelimo na spodnjem zemljevidu priti iz levega zgornjega vogala v desni spodnji vogal
s ¢im manj premiki. Na zemljevidu znaki . predstavljajo prosta polja, znaki # pa zasedena.
Ocitno bomo gradili resitev postopno po premikih. Na vsakem koraku se bomo odlocili za eno
izmed najve¢ 3 moznih smeri (ne bomo se premikali nazaj, od koder smo prisli). Smiselna mera
obetavnosti premika je razdalja sosednjega polja od cilja. Prvo dilemo imamo na polju (3,3), kjer
bolje izgleda premik navzdol, kar nas premakne blizje k cilju, kot premik navzgor. Vendar nas to
vodi do slabse resitve zaradi kasnejsih komplikacij na poti, ki jih v trenutku pozresne izbire ne
upostevamo. Ni si tezko zamisliti tudi primera, kjer taka izbira sploh ne bi vodila do resitve.

CHLLH.
B
R
#Ht.#.#

CHLOH
23
S

L HE

V nadaljevanju si bomo ogledali ve¢ primerov problemov ter dokazov (ne)pravilnosti pozresnih
strategij za njihovo resevanje, s ¢imer boste razvili nekaj intuicije in zdrave skepticnosti glede
uporabe pozresnih strategij. S pozresnimi strategijami se bomo ponovno srecali tudi kasneje pri
algoritmih na grafih (Dijkstra, Prim, Kruskal). Pozresne strategije se obicajno dobro obnesejo
na enostavnih problemih, medtem ko na kompleksnejsih z njimi dobimo neko suboptimalno oz.
nepravilno resitev. Posebej zanimivi pa so primeri, kjer nas v navidez kompleksnih problemih
pripeljejo pozresne resitve do optimalnega rezultata.

#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <queue>

[2]:

[3]:

[4]:

using namespace std;

typedef pair<int,int> PII;
typedef vector<pair<int,int>> VII;
typedef vector<vector<pair<int,int>>> VVP;

1.1 Bencinske ¢rpalke

Za¢nimo s potovalnim problemom polnjenja avta na bencinskih ¢rpalkah (car fueling). Z avtom
zelimo potovati do K kilometrov oddaljenega cilja. Pri tem vemo, da se vzdolz poti nahaja N
¢rpalk, ki so od nasega izhodisc¢a oddaljene 0 < z; < z, < -+ < z,, < K kilometrov. Velikost
posode za gorivo oz. doseg naSega avta s polnim tankom je 7' kilometrov (z delno polnim pa
sorazmerno manj). Pot bomo zaceli s polnim tankom goriva. Je cilj sploh dosegljiv? Kaksno je
najmanjse stevilo postankov na ¢rpalkah, da prisemo na cilj?

Primer: K = 950, T = 400, z = [200, 375, 550, 750, 950].
Ugotovitve:

o Na ¢rpalki je vedno smiselno povsem napolniti tank z gorivom. Ce ga ne bi napolnili do vrha,
bi lahko z bolj polnim tankom opravili enako pot do naslednje ¢rpalke. Morebiten ostanek
goriva pa “zlili stran” oz. tam dotocili temu primerno manj.

e Dosegljivost lahko preverimo tako, da tankamo na vsaki ¢rpalki.

. Cejernogoée(kmeéinaﬂednjoérpaﬂ«)Gﬂicﬂﬂ,lahkolneskoéhnotankankanalmenutniérpaﬂd.
Na naslednji ¢rpalki lahko namre¢ doto¢imo gorivo do nivoja, ki bi ga imeli, ¢e bi natocili
gorivo na trenutni.

int crpalke(int K, int T, vector<int> x) {

x.insert(x.begin(), 0);

x.insert(x.end(), K);

int doseg=T, postanki=0;

for (int i=0;i+1<x.size();i++) {
int razdalja=x[i+1]-x[i];
if (doseg<razdalja) { postanki++; doseg=T; } // po potrebi napolnt
if (doseg<razdalja) return -1; // tudi s polnim tankom ne gre
doseg-=razdalja;

}

return postanki;

3

Da si poenostavimo implementacijo bomo dodali zacetek in konec poti kot dve dodatni ¢rpalki. Nato
se premikamo med sosednjimi ¢rpalkami v skladu s prejsSnjimi ugotovitvami. Preverimo resitev na
zac¢etnem primeru in par drugih posebnih situacijah, kjer ne rabimo dolivati goriva, ga dolivamo
povsod ali je nemogoce doseci cilj.

cout << crpalke(950, 400, {200,375,550,750}) << endl;
cout << crpalke(950, 950, {200,375,550,750}) << endl;
cout << crpalke(950, 200, {200,375,550,750}) << endl;
cout << crpalke(950, 199, {200,375,550,750}) << endl;

> O N

-1

1.2 Izbira aktivnosti

Izbira med seboj neodvisnih aktivnosti iz nabora ponujenih (activity selection) je klasi¢en problem.
Podanih imamo N aktivnosti, kjer se i-ta aktivnost a; izvaja v obdobju (s;,e;). Izbrati moramo
¢im vecéjo podmnozico aktivnosti, za katero velja, da je presek poljubnih dveh aktivnosti prazen
(aktivnost se sicer lahko za¢ne v trenutku, ko se prejsnja konéa). Ker lahko aktivnosti predstavimo

z daljicami, je problem znan tudi kot interval scheduling.
Primer: [(1,3),(2,4),(2,5),(4,5),(4,7),(6,7),(6,8),(7,12),(8,12), (9,10), (9,11), (11, 12), (12, 13)]
Hitro pridemo na vec idej, kako bi se lahko lotili problema brez preverjanja vseh podmnozic. Katere
od njih pa so res pravilne?

o najzgodnejsi zacetek (earliest start)

Ne izgubljajmo ¢asa s ¢akanjem! Razpored aktivnosti lahko sestavljamo po korakih tako, da vsakic¢
dodamo aktivnost, ki se za¢ne prva po zakljuéku trenutnega razporeda.

Protiprimer: [(1,6),(2,3), (4,5)]

o najkrajsi (shortest)
Dolge aktivnosti zasedejo veliko casa, zato zaénimvo z majhnimi! Razpored sestavljamo tako, da
vanj dodajamo aktivnosti od krajsih proti vec¢jim. Ce za neko aktivnost ni prostora, jo preskocimo.
Protiprimer: [(4,7),(1,5), (6,10)]

« najmanj konflikten (fewest conflicts)

Tezave so s konflikti med aktivnostmi, zato zacnimo z najmanj konfliktnimi! Izra¢unajmo konflikt-
nost vsake aktivnosti in jih po vrsti poskusimo dodajati v razpored. Lahko konfliktnosti izracunamo
vnaprej ali jih moramo posodabljati, ko nekatere aktivnosti Ze dodamo v razpored?

Protiprimer: [(6,9), (1,3),(4,7),(8,11),(12,14),(2,5),(2,5), (2,5), (10, 13), (10, 13), (10,13)]. Prvi
interval ima samo dva konflikta, vendar njegova izbira vodi v reSitev s tremi intervali, primer pa
lahko resimo s Stirimi.

o najzgodnejsi konec (earliest finish)

Cim prej zaklju¢imo s prvo aktivnostjo, da bomo imeli ¢im ve¢ ¢asa za ostale! Med vsemi aktivnos-
tmi, ki se za¢nejo ob ali po koncu trenutno zadnje izberemo tisto z najzgodnejsim koncem.

Protiprimer: 7

To izgleda obetavno. Dokazimo, da je pravilno. Recimo, da obstaja boljsa optimalna resitev, ki se
na zacetku strinja s pozresno, pri i-ti aktivnosti v izbranem razporedu pa pride prvi¢ do razlike.
Optimalna izbere aktivnost o, pozresna pa p. Ker pozresna vedno izbere aktivnost z najzgodnejsim
koncem, velja e, <= e,. Zato se aktivnost p ne more pojaviti kje kasneje v predpostavljeni
optimalni razporeditvi. Obe aktivnosti nista konfliktni s predhodnimi. Ce v optimalnem razporedu

zamenjamo aktivnost o z p, bo preostanek razporeda ostal veljaven, resitev pa ne bo ni¢ slabsa.

[5]:

[6]:

[7]:

[8]:

Tako smo podaljsali del optimalne resitve, ki se se strinja s pozresno, ne da bi jo kako poslabsali. Ce
ta razmislek ponovimo veckrat, bomo predpostavljeno optimalno resitev lahko predelali v pozresno
brez poslabsanja rezultata. Tudi pozresna resitev nas torej pripelje do optimalnega rezultata.

VII aktivnosti(VII a) {

VII razpored;
int konec=0;
while (1) {

int j=-1;

for (int i=0;i<a.size();i++) {

if (konec<=al[i].first) { // relevanten?
if (j==-1 || ali].second<alj].second) j=i; // boljsi?

}
if (j==-1) break;
razpored.push_back(al[jl);
konec=al[j] .second;
a.erase(a.begin()+j);

}

return razpored;

VII a = {{1,3}, {2,4}, {2,5}, {4,5}, {4,7}, {6,7}, {6,8}, {7,12}, {8,12},,
-{9,10}, {9,11}, {11,12}, {12,13}};

VII r = aktivnosti(a);

printf ("%d:", (int)r.size());

for (auto [s,e]l : r) printf(" (%d,%d)",s,e);

printf("\n");

6: (1,3) (4,5) (6,7) (9,10) (11,12) (12,13)

Lahko to naredimo bolj uc¢inkovito? Aktivnosti uredimo po njihovih koncih in jih izbiramo po
vrsti, ¢e se zacetek ne seka s koncem trenutno zadnje aktivnosti. Casovna zahtevnost je tako
samo O(nlogn). Gre e hitreje? Ce so vrednosti majhna cela $tevila, bi lahko uporabili urejanje s
Stetjem.

bool cmpSecond(pair<int,int> a, pair<int,int> b) {
return a.second < b.second;

}

VII aktivnosti(VII a) {
sort(a.begin(), a.end(), cmpSecond);
VII razpored;
int konec=0;
for (auto [s,e] : a) {
if (konec<=s) {
razpored.push_back({s,e});
konec = e;

[9]:

¥

return razpored;

VII a = {{1,3}, {2,4}, {2,5}, {4,5}, {4,7}, {6,7}, {6,8}, {7,12}, {8,12},,
-+{9,10}, {9,11}, {11,12}, {12,13}};

VII r = aktivnosti(a);

printf("%d:", (int)r.size());

for (auto [s,e] : r) printf(" (%d,%d)",s,e);

printf("\n");

6: (1,3) (4,5) (6,7) (9,10) (11,12) (12,13)

Kaj pa utezena razli¢ica problema, kjer ima vsaka aktivnost poleg zaCetka in konca tudi svojo
pomembnost in Zelimo namesto Stevila aktivnosti v razporedu maksimizirati vsoto pomembnosti?
To se izkaze za malo tezji problem, h kateremu se bomo vrnili kasneje pri tehniki dinamicnega
programiranja.

1.3 Rezervacije ucilnic

Pri problemu rezervacije uéilnic (classroom scheduling, interval partitioning) moramo na fakulteti
izvesti N predavanj, kjer posamezno predavanje poteka v Casovnem intervalu (s;,e;). Kaksno je
najmanjse stevilo predavalnic, ki jih potrebujemo, da bomo lahko izvedli vsa predavanja?

V primerjavi s prej obravnavanim problemom izbire aktivnosti, smo morali tam izbrati ¢im vec
aktivnosti, ki jih lahko izvedemo z eno predavalnico. V tem primeru pa moramo izvesti vse, pri
¢emer nas zanima, najmanj koliko predavalnic potrebujemo.

Spodnji primer prikazuje razpored predavanj s stirimi predavalnicami, mogoce pa jih je izvesti tudi
samo s tremi.

P1: (4,10), (12,15)

pP2: (0,3), (4,7), (8,11)
P3: (0,7), (10,15)

P4: (0,3), (8,11), (12,15)

Ce v kaksnem trenutku soc¢asno poteka ve¢ predavanj, bomo zagotovo potrebovali vsaj toliko pre-
davalnic. Najvec¢jemu stevilu soc¢asnih predavanj bomo rekli globina (depth), ki predstavlja spodnjo
mejo resitve. Je to spodnjo mejo vedno mogoce dosedi, ali kdaj potrebujemo ve¢ predavalnic? Ce se
razporejanja lotimo slabo, jih bomo seveda potrebovali vec; kaj pa ce jih razporedimo optimalno?

S pozresnim algoritmom bomo predavanja po vrsti glede na njihov zacetek razporejali v pre-
davalnice. Na vsakem koraku preverimo, ali je kaksna od predavalnic Ze prosta in lahko vanjo
dodelimo trenutno predavanje. Ce je takih veé, izberemo katerokoli. Ce take predavalnice ni,
odpremo/dodamo novo predavalnico (zacnemo z 0 predavalnicami) in v njo dodelimo novo preda-
vanje.

Dokazimo, da prej opisani postopek doseze ravno globino mnozice predavanj, ki je spodnja meja

resitve. Recimo, da postopek potrebuje d predavalnic. Do tega pride, ko Zelimo nekam razporediti
predavanje ¢ z zacetkom ob casu t = s,, vendar so vse ostale predavalnice Se zasedene. To pomeni,

[10]:

[11]:

[12]:

da imamo d — 1 predavanj, ki se zakljucijo po ¢asu t. Vsa predavanja, ki potekajo v njih, so se
zacela prej ali takrat kot i¢-to, ker jih dodajamo po vrsti. Torej so vsi njihovi zacetki manjsi ali
enaki t. V trenutku t + € torej poteka socasno d predavanj. Ce je pozresen postopek uporabil d
predavalnic, je to zato, ker nekje socasno poteka d predavanj in torej doseze spodnjo mejo.

VVP predavalnice(VII predavanja) {
sort(predavanja.begin(), predavanja.end());
VVP urnik;
for (auto p : predavanja) {
auto [s,e]l = p;
int x=-1;
for (int i=0;i<urnik.size();i++) {
if (urnik[i].back() .second<=s) { x=i; break; }
}
if (x==-1) urnik.push_back({p}); // odpremo novo
else urnik[x].push_back(p);
}

return urnik;

VII predavanja = {{4,10}, {12,15}, {0,3}, {4,7}, {8,11}, {0,7}, {10,15}, {0,3},,
-+{8,11}, {12,15}};
VVP urnik = predavalnice(predavanja);
for (auto ucilnica : urnik) {
for (auto [s,e] : ucilnica) printf(" (%d,%d)",s,e);
printf("\n");
}

(0,3) (4,7) (8,11) (12,15)
(0,3) (4,10) (10,15)
(0,7) (8,11) (12,15)

Dokazali smo, da je resitev pravilna. Razmislimo Se o njeni uc¢inkovitosti. Razporediti moramo N
predavanj enega za drugim. Pri tem pa vsaki¢ preverimo vse odprte predavalnice. Lahko se nam
zgodi, da bo vsako predavanje v svoji predavalnici, zato jih je na vsakem koraku treba preveriti
O(N). Casovna zahtevnost zgornje implementacije je torej O(N?).

Kako bi lahko to izboljsali? Najbolj problematicen del je iskanje proste predavalnice. Predavalnice
bi lahko hranili urejene v prioritetni vrsti glede na cas zakljucka zadnjega predavanja. Namesto v
poljubno prosto predavalnico, bomo razporedili predavanje v tisto, ki je Ze najdlje prosta oz. se
je ¢im bolj zgodaj sprostila. Ce ta ni primerna, ne bo tudi nobena druga. Ce uporabimo dvojisko
kopico, je ¢asovna zahtevnost O(N log N).

VVP predavalnice(VII predavanja) {
sort (predavanja.begin(), predavanja.end());
VVP urnik;
priority_queue<PII, VII, greater<PII>> pq; // min-heap
pq.push({predavanja.back() .second, -1}); // dummy
for (auto p : predavanja) {

[13]:

[14]:

auto [s,e]l = p;

auto [konec, x] = pq.top();

if (konec<=s) {
pq.pop(); pq.push({e,x});
urnik[x] .push_back(p);

} else {
pq.push({e, urnik.size()});
urnik.push_back({p});

}

return urnik;

VII predavanja = {{4,10}, {12,15}, {0,3}, {4,7}, {8,11}, {0,7}, {10,153}, {0,3%},,
-{8,11}, {12,15}};
VVP urnik = predavalnice(predavanja);
for (auto ucilnica : urnik) {
for (auto [s,e] : ucilnica) printf(" (%d,%d)",s,e);
printf("\n");
+

(0,3) (4,7) (8,11) (12,15)
(0,3) (4,10) (10,15)
(0,7) (8,11) (12,15)

1.4 Datoteke na traku

Pred c¢asom trdih diskov so se podatki hranili na trakovih. Slaba stran trakov je, da je treba za
dostop do podatka na mestu x prevrteti celoten trak od zacetka do tega mesta. Oglejmo si problem
optimalnega shranjevanja datotek na traku (storing files on tape). Podanih imamo N datotek, ki
so opisane s pari Stevil d; = (s,, f;), kjer s; velikost datoteke, f;, pa pogostost dostopa do nje.
Ceno zapisa datotek na trak bomo ocenili z Zl x,; f;, kjer je x; zacetno mesto zapisa datoteke. Pri
tem se zapisi datotek seveda ne smejo prekrivati. Kaksen je optimalen razpored datotek in z njim
povezana minimalna cena?

Primer: d = [(60,5), (27, 3), (1, 20), (32,4)]
Ugotovitve:

e Datoteke je smiselno zapisovati v strnjenem zaporedju, saj morebiten prazen prostor med
njimi samo skodi.
o Ni enostavno.
Preizkusimo najprej obnasanje problema na manjsih razlicicah. S tem dobimo tudi obcutek za

glavne ovire pri resevanju. Pripravimo si funkcijo za ocenjevanje razporeda in preizkusimo razlicne
permutacije.

int score(vector<pair<int,int>> d) {
int x=0, sc=0;
for (auto [s,f] : d) { sc+=xx*f; x+=s; }

[15]:

[16]:

[17]:

return sc;

}

VII d = {{60,5}, {27,3}, {1,20}, {32,4}};
cout << score(d) << endl;
sort(d.begin(),d.end());
do {
cout << score(d) << ' ';
} while (next_permutation(d.begin(),d.end()));

2272
415 495 403 448 540 528 952 1032 1588 2783 2227 2863 1039 1084 1576 2771 2279
2816 1735 1723 2272 2908 2359 2896

Problem deluje zapleteno, zato najprej resimo poenostavljene razlicice.

Recimo, da so vse datoteke enako dolge, npr. s; = 1. Intuitivno bi rekli, da morajo biti bolj pogosto
dostopane datoteke na zacetku, da bo dostop do njih hiter. Naj bosta sosednji datoteki ¢ in j, pred
njima pa se nahaja x datotek. K ceni prispevata xf; +(z+1) f;. Ce ju med seboj zamenjamo, bosta
prispevali zf; + (z + 1) f;, kar je sprememba za f; — f;. Ce je negativna (kar zmanjsa ceno), ko je
Ji < [, ju je smiselno zamenjati, da bo bolj pogosto dostopana datoteka pred manj dostopano. S
tem lahko utemeljimo, da je optimalen narasc¢ajo¢ vrstni red po pogostosti dostopa.

Recimo, da imajo vse datoteke tocno en dostop, torej f; = 1. Intuitivno bi Zeleli imeti kratke
datoteke na zacetku, saj naredijo manj “Skode” kot daljse. S podobnim argumentom o zamenjavi
lahko dokazemo, da morajo biti datoteke na traku urejene naraséajoce po velikosti. Ce primerjamo
oba mozna vrstna reda dveh sosednjih datotek 7 in j sta njuna doprinosa k ceni x + (z + s;) in
x+ (z+ sj). Na ceno ostalih njuna medsebojna zamenjava nima vpliva. Vrstni red, kjer je ¢ pred
J, je torej boljsi, ce je s; < s;.

Obravnavajmo sedaj sploSen primer, kjer opazujemo mozna vrstna reda dveh sosednjih datotek na
traku. Ceni dostopa sta xf; + (z + s;)f; in zf; + (¥ + s;)f;, ¢e bi bila datoteka j pred . Hitro
lahko izra¢unamo, kdaj je cena ureditve ¢ pred j manjSa od obratne. Tako pridemo do zakljucka,
da morajo biti v optimalnem vrstnem redu datoteke urejene narascajoce glede na razmerje med
velikostjo in pogostostjo dostopa s,/ f;- Torej jih lahko v resitev pozresno zlozimo po vrsti od tistih
z nizjim proti tistim z visjim razmerjem.

af; +(x+s)f; <af;+ (v +s5)f;
sif; < 8;f;
Si/figsj/fj

bool cmpRatio(pair<int,int> a, pair<int,int> b) {
return a.first*b.second < b.first*a.second; // a.first/a.second < b.first/
<b.second ... racunska napaka?

}

int trak(vector<pair<int,int>> d) {
sort(d.begin(), d.end(), cmpRatio);

[18]:

[19]:

[20]:

return score(d);

}
cout << trak(d) << endl;

403

1.5 Minimizacija zamude

Pri razvrs¢anju z minimizacijo najvecje zamude (minimum lateness scheduling) imamo opravka z N
opravili, ki jih moramo izvesti na enem rac¢unalniku. Vsako opravilo je opisano s parom o, = (¢;,d,),
ki predstavlja ¢as izvajanja in rok, do katerega mora biti opravilo zaklju¢eno. Ce je s, ¢as zacetka
izvajanja, se konca ob Casu f; = s; +t;. Zamuda opravila je z; = max(0, f;, — d;). Cilj razvrscanja
opravil je minimizirati najvecjo zamudo opravila v razporedu. Minimiziramo torej Z = max z,.

Primer: o = [(2,5),(1,2),(3,6),(2,7)]

Ocitno ni koristi od tega, da bi imel urnik kaksne proste luknje. 7 odstranitvijo lukenj zago-
tovo ne moremo poslabsati urnika oz. maksimalne zamude, morda pa ga izboljsamo. Odlociti se
moramo samo za vrstni red opravil. Namesto preverjanja vseh permutacij, se ponovno ponuja nekaj
pozresnih strategij.

int late(VII o) {
int Z=0,now=0;
for (auto [t,d] : o) {
now+=t;
int z=max(0, now-d);
if (z>Z2) Z=z;
}

return Z;

VII o = {{2,5}, {1,2}, {3,6}, {2,7}};
sort(o.begin(),o0.end());
do {
cout << late(o) << ' ';
} while (next_permutation(o.begin(),o0.end()));

21231321364623364623464©6
o najkrajsi ¢as izvajanja (shortest processing time)

Kratka opravila izvedemo prej, da ne bodo zamujala zaradi dolgih opravil! Kaj pa, ¢e imajo dolga
opravila kratke roke in obratno?

Protiprimer: [(1,100), (10, 10)]
» najkrajsi prosti ¢as (smallest slack)

Poleg casa izvajanja t; moramo upostevati tudi rok opravila d;. Opravila izvajamo glede na narasca-
jo¢ prosti ¢as oz. “manevrski prostor” d; —t,!

Protiprimer: [(1,2), (10, 10)]

[21]:

[22]:

o najzgodnejsi rok (earliest deadline)
Opravila izvajamo samo glede na rok za zakljucek opravila d,!
Protiprimer: ?

Izgleda ok, pa je res optimalno? Naj bodo opravila urejena narascajoce po rokih, torej d; < dy <
... < dp. Recimo, da obstaja neka optimalna resitev, ki je boljsa od pozresne. V njej se zagotovo
pojavljata dve sosednji opravili j in i, kjer ima prvo kasnejsi rok od drugega (d; > d;); sicer bi
bila ta resitev enaka pozresni. Ob njuni zamenjavi se nova zamuda (z”) vseh drugih opravil razen
1 in j ne spremeni. Zamuda opravila ¢ se kveé¢jemu zmanjsa, ker se opravilo po zamenjavi zakljuci
prej. Ce opravilo j po zamenjavi ne zamuja, ni problema. Recimo torej, da zamuja in sicer za
zi=f;—d; = f;—d; < f; —d; = 2; (koncata se ob enakem ¢asu; j ima manjsi rok).

Vemo torej, 2, =z, Vk & {i,j}, 2z <z, 2;<z. lztegasledi, daje Z' = maxzj, < maxz, =
Z. Ce ti dve opravili zamenjamo med seboj, ne bomo povecali najve¢je zamude. Ce to ponavljamo,
bomo prisli do lepo urejene pozresne resitve, ne da bi povecali zamudo, kar pa je v protislovju s
predpostavko, da pozresna resitev ni optimalna. Skonstruiramo lahko namre¢ pozresno resitev, ki
je tako dobra ali celo boljsa od predpostavljene optimalne.

int zamuda(VII o) {
sort (o.begin() ,o0.end() ,cmpSecond) ;
return late(o);

}
cout << zamuda(o) << endl;

1

1.6 Dokazovanje pravilnosti

Za dokazovanje pravilnosti pozresnih strategij smo uporabiljali naslednje pogosto uporabljene vrst
argumentov, ki pa seveda niso edini.

Prednost (stay ahead) Dokazemo, da je po vsakem koraku resitev pozresne strategije vsaj tako
dobra kot katerakoli druga. Kot primer smo obravnavali bencinske ¢rpalke.

Zamenjava (exchange argument) Dokazemo, da lahko z dolo¢enimi spremembami pretvorimo
predpostavljeno boljso resitev v tako, ki bi jo nasla tudi pozresna metoda, pri tem pa ne poslabsamo
njene kvalitete. Pravilnost pozresnega algoritma smo dokazali s protisloviem po naslednjem prin-
cipu:

1. Predpostavimo, da obstaja optimalna resitev, ki je boljsa od pozresne resitve. Med njimi
izberemo tisto, ki se ¢im bolj strinja s pozresno. Torej ima mesto i, kjer se prvic¢ razlikuje
od pozresne, ¢im vecje. Lahko bi ji rekli najbolj ekstremen protiprimer (najveéji, najmanjsi,
najkasnejsi, ..) Cilj je pokazati, da obstaja Se ekstremnejsi, ki pa je vsaj tako dober, ¢e ne
boljsi.

2. Argumentiramo, da bi lahko na tem mestu izbrali tudi pozresno potezo in zato resitev ne bi
bila nic¢ slabsa, morda pa celo boljsa.

10

3. Nasli smo protislovje, ker smo lahko skonstruirali resitev, ki se ujema s pozresno na prvih ¢
mestih in je enako dobra ali celo boljsa od predpostavljene “optimalne”, hkrati pa se od nje
razlikuje kasneje. Predpostavljena optimalna resitev torej ni bila najbolj ekstremna.

4. Predpostavka, da obstaja drugacna resitev, ki je boljSa od pozresne, torej ne drzi in je pozresna
reSitev zato optimalna.

Kot primer smo obravnavali izbiro aktivnosti, datoteke na traku in minimizacijo zamude.

Struktura (structural argument) Dokazemo neko strukturno lastnost (vrednost) optimalne
resitve, ki predstavlja mejo in dokazemo, da jo pozresna resitev res doseze. Kot primer smo obrav-
navali rezervacijo ucilnic.

1.7 Menjava kovancev

V blagajni imamo kovance (in bankovce) razli¢nih vrednosti v evrih: 1, 2, 5, 10, 20, 50, 100, 200 in
500 €. Predpostavimo, da je blagajna dobro zaloZena z vsemi vrednostmi. Blagajniki se obicajno
posluzujejo pozresne strategije za vrnitev dolocene vrednosti X s ¢im manjsim stevilom kovancev.
Uporabijo najveéji kovanec, ki ne presega vrednosti X in nato ponovijo postopek na zmanjsani
vrednosti.

Ali s tem za vsako mozno vrednost X res uporabijo najmanjse Stevilo kovancev? Izkaze se, da v
primeru evrskih kovancev to drzi.

Ali to velja za poljuben nabor vrednosti kovancev? Hitro najdemo protiprimer, npr. placilo 6 s
kovanci [1, 3,4]. Pozresna metoda bi uporabila tri kovance (6 =4 + 14 1), optimalna pa zgolj dva
(6 =3+ 3).

Kako bi lahko dokazali, da za podan nabor kovancev pozresna strategija deluje za poljubno vred-
nost, ki jo moramo sestaviti? Tega se bomo lotili tako, da bomo preverili pravilnost pozresne
strategije do neke meje in dokazali, da Ce deluje do tja, bo delovala tudi za vse vecje. Za velike
vrednosti bo optimalna resitev izbirala najvecje kovance, kar pa je enako kot pri pozresni resitvi,
torej mora priti do razlike med njima pri neki manjsi vrednosti.

Najprej moramo znati izracunati optimalno Stevilo kovancev za menjavo neke vrednotsi X, da lahko
primerjamo, ali to Stevilo pozresna strategija doseze. To lahko naredimo s preverjanjem vseh moznih
kombinacij, ali pa malo u¢inkoviteje, kot se bomo naucili v poglavju o dinami¢nem programiranju.
Predpostavimo torej, da imamo postopek, ki zna izracunati optimalno stevilo kovancev za menjavo
dane vrednosti.

Naj bodo kovanci urejeni po velikosti a; < ay < ... < a,. Naj bo S najmanjsi protiprimer, kjer
pozresna strategija ne najde optimalne resitve. Razmislimo, kaj lahko povemo o optimalni strategiji
pri menjavi vrednosti S.

« Optimalna resitev ne uporabi a,,. Ce bi ga uporabila optimalna, bi ga tudi pozresna, zato bi
se na prvem koraku resitvi strinjali in bi moral obstajati manjsi protiprimer S — a,,.

« Optimalna regitev uporabi kovanec a; manj kot a,,-krat. Ce bi optimalna resitev vzela kovanec
a; kar a,-krat (ali Se veckrat), bi bilo bolje vzeti kovanec a,, zgolj a,;-krat, s ¢imer dosezemo
enako vrednosti.

Iz tega sledi, da je najvecja vrednost, ki jo optimalna strategija lahko zamenja (in se pri tem
razlikuje od pozresne) enaka U = (a; + ... + a,,_;)(a,, —1). Vemo torej, da mora biti najmanjsi
protiprimer S < U. Ce preverimo resitve do U in ne najdemo razlike, bo to veljalo tudi za vsa

11

vecja Stevila. Meja U je za nabor vrednosti v evrih dovolj nizka. Obstajajo pa tudi boljse (in bolj
zapletene) zgornje meje U' < U.

12

	Požrešni algoritmi
	Bencinske črpalke
	Izbira aktivnosti
	Rezervacije učilnic
	Datoteke na traku
	Minimizacija zamude
	Dokazovanje pravilnosti
	Menjava kovancev

