[1]1:

[2]:

Osnovno urejanje
December 18, 2024

1 Urejanje

V tem poglavju si bomo ogledali razli¢ne algoritme urejanja (sortiranja), od povsem neuporabnih,
do enostavnih in vse do najbolj naprednih.

Pri urejanju imamo podano neko zaporedje elementov, ki ga zelimo preurediti v vrstni red, ki bo
ustrezal neki meri urejenosti. Ce imamo opravka s stevili, nam je Ze na pogled takoj o¢itno, kako
jih je treba urediti, racunalniku pa zal ne. Zato si oglejmo primer s seznamom imen Tine, Ana,
Miha, Mojca. Imena lahko uredimo po abecedi (Ana, Miha, Mojca, Tine), lahko pa jih uredimo
po dolzini od krajsih proti daljSim (Ana, Miha, Tine, Mojca). V tem drugem primeru vrstni red
niti ni enoli¢no dolo¢en. Enako dober bi bil vrstni red, kjer bi zamenjali Miho in Tineta. Lahko pa
imena oseb uredimo glede na njihovo starost in dobimo ¢isto drugacen vrstni red.

Najprej se bomo posvetili algoritmom, ki temeljijo na medsebojnih primerjavah elementov. Tak
urejevalni algoritem si lahko za dolocanje vrstnega reda elementov v urejenem seznamu pomaga
samo s primerjavami dveh elementov (npr. A in B), kjer dobi odgovor, ali se mora element A
nahajati pred elementom B v iskanem urejenem vrstem redu.

1.1 Neuporabni urejevalni algoritmi

Pri urejanju pravzaprav is¢emo neko preureditev elementov seznama, ki bo zadosScala pogojem
urejenosti. Zanima nas torej neka permutacija, ki nam da urejen seznam. En zelo neuc¢inkovit nacin
je, da enostavno preverimo vse permutacije. Temu postopku bomo rekli urejanje s permutacijami,
znan pa je tudi kot bogosort, permutation sort, snail sort.

Za preverjanje vseh permutacij nam bo prisla prav funkcija za generiranje naslednje permutacije
next_permutation iz knjiznice algorithm. Kasneje pa nam bo za generiranje naklju¢nih per-
mutacij prav prisla funkcija shuffle iz iste knjiznice in generator nakljucnih Stevil iz knjiznice
random.

#include <iostream>
#include <string>
#include <algorithm>
#include <random>
using namespace std;

int uredi_perm(vector<string> &sez) {
vector<int> p; // permutacija
for (int i=0;i<sez.size();i++) p.push_back(i);
int st=0;

[3]:

[4]:

// preizkusimo vse permuacije
do {
st++;
// iz permutacije sestavimo pripadajoc "urejen' seznam
vector<string> urejen(sez.size());
for (int i=0;i<sez.size();i++) {
urejen[i] = sez[pl[ill;
}
// preverimo urejenost seznama
bool je_urejen = true;
for (int i=0;i+l1<sez.size();i++) {
if (urejen[i] > urejen[i+1]) je_urejen = false;
}
// ustavimo iskanje, ce smo nasli resitev
if (je_urejen) {
sez = urejen;

break;
}
} while (next_permutation(p.begin(),p.end()));
return st;

}

vector<string> sez={"Tine", "Ana", "Miha", "Mojca"};
uredi_perm(sez);
for (string ime : sez) cout << ime << endl;

Ana
Miha
Mojca
Tine

Funkcijo uredi_perm smo dopolnili tako, da vraca Se stevilo obravnavanih permutacij st, ki nam bo
prislo prav kasneje. Kako pa deluje next_permutation? Permutacije bi lahko generirali rekurzivno,
obstaja pa tudi lep iterativen postopek, ki sestavi naslednjo permutacijo. Kogar zanima, si lahko
ogleda blog in stran na wikipediji, mi pa nadaljujemo z urejanjem.

Namesto sistemati¢nega preverjanja vseh moznih permutacij, bi lahko generirali naklju¢ne per-
mutacije. Ce je na$ naklju¢éni generator posten, bomo zagotovo nekoé¢ nasli pravo permutacijo
(povsem slucajno). Tokrat bomo preurejali kar vhodni seznam brez uporabe pomozne permutacije.

int uredi_rand(vector<string> &sez) {
default_random_engine rnd; // generator nakljucnih stevil
int st=0;
while (1) {
st++;
// makljucno premesamo seznam
shuffle(sez.begin(),sez.end(),rnd) ;
// preverimo urejenost seznama
bool je_urejen = true;

https://wordaligned.org/articles/next-permutation
https://en.wikipedia.org/wiki/Permutation#Generation_in_lexicographic_order

[5]:

[15]:

for (int i=0;i+1<sez.size();i++) {
if (sez[i] > sez[i+1]) je_urejen = false;

}

if (je_urejen) break;
}
return st;

}

vector<string> sez={"Tine", "Ana", "Miha", "Mojca"};
uredi_rand(sez);
for (string ime : sez) cout << ime << endl;

Ana
Miha
Mojca
Tine

Razmislite, kako bi napisali svojo funkcijo shuffle, ki bo naklju¢no premesala seznam. Idealno bi
bilo, ¢e so vse permutacije enako verjetne.

Kateri izmed zgornjih algoritmov je boljsi - deterministi¢ni ali naklju¢ni? V najslabsem primeru
se nam lahko zgodi, da bo imel nakljuc¢ni algoritem res nesreco in zelo dolgo ne bo odkril pravega
vrstnega reda. Ali pa bo ravno obratno in ga bo uganil zelo hitro. Kaj pa v povprecju? Tega se
lahko lotimo eksperimentalno in prestejemo Stevilo permutacij, ki jih oba algoritma obravnavata.
Ce imamo n imen, je vseh moznih permutacij n! (n fakulteta). Poskusimo z n = 7 in naredimo 100
poskusov urejanja naklju¢no premesanega seznama z obema algoritmoma.

vector<string> sez={"Tine", "Ana", "Miha", "Mojca", "Joze", "Katja", "Vid"};
default_random_engine rnd(123);
int st_p=0, st_r=0;
int k=100;
for (int it=0; it<k; it++) {
shuffle(sez.begin(), sez.end(), rnd);
vector<string> sezl = sez, sez2 = sez; // kopiji seznama za urejanje
st_p += uredi_perm(sezl);
st_r += uredi_rand(sez2);
assert(sezl==sez2);

b
cout << "deterministicni: " << (double)st_p/k << endl;
cout << "nakljucni: " << (double)st_r/k << endl;

deterministicni: 2671.32
nakljucni: 4929.98

Zanimivo, deterministi¢ni se v povprecju izkaze za boljSega. Vseh permutacij je 7! = 5040. De-
terministiéni po v povpreéju nasel pravo permutacijo nekje na polovici, kakSne prej, kaksne pa
kasneje. Nakljucni pa jih obravnava dvakrat vec¢, priblizno toliko, kolikor je vseh permutacij. Zakaj
je temu tako? Razmislite, koliko metov kocke potrebujete v povpredju, da boste vrgli 6 pik. Ce je
x pricakovano stevilo metov, velja x = 1+ % -0+ % -, torej x = 6. Tu imamo opravka z n!-strano
kocko. Do rezultata bi se lahko torej dokopali tudi analitiéno namesto eksperimentalno.

[2]:

[3]:

[4]:

1.2 Osnovni urejevalni algoritmi

Oglejmo si nekatere osnovne urejevalne algoritme, ki bodo sluzili tudi kot primeri za vajo prej
obravnavanih konceptov racunske zahtevnosti. Pri urejevalnih algoritmih se vcasih posebej obrav-
nava ra¢unsko zahtevnost glede na stevilo narejenih primerjav med elementi. To je Se posebej
smiselno, ¢e je primerjava netrivialna. Mi se bomo omejili na primerjanje enostavnih tipov, in
bomo ocenjevali ¢asovno zahtevnost glede na stevilo osnovnih operacij.

Veliko bomo izpisovali vsebino seznamov, zato si pripravimo pomozno funkcijo.

void print(const vector<int> &s) {
for (int x : s8) cout << x << " ";
cout << endl;

1.2.1 Urejanje z izbiranjem (selection sort)

Gre za najbolj enostavno strategijo, ki jo obicajno izberejo ljudje. Iz seznama, ki ga zelimo urediti,
bomo izbrali najmanjsi element, ga odstranili in ga postavili na prvo mesto urejenega seznama, ki
ga tako gradimo. To ponavljamo, dokler nam ne zmanjka vhodnega seznama, pri tem pa smo po
vrsti od najmanjSega do najvecjega elementa zgradili urejen seznam.

Urejanje na mestu Hitro lahko ugotovimo, da nam ni treba vzdrzevati dveh seznamov, ampak
lahko na podoben nacin prerazporedimo elemente kar v vhodnem seznamu. Temu rec¢emo urejanje
na mestu. Najmanjsi element zamenjamo s prvim in ga tako premaknemo na prvo mesto. Ponovimo
postopek samo s seznamom od drugega mesta naprej itd.

Vzdrzujemo invarianto, da je v i-tem koraku na zacetku seznama postavljenih prvih ¢ elementov
urejenega zaporedja, preostali elementi pa so Se neurejeni. V vsakem koraku urejeni del poveéamo
za en element, ki ga postavimo na indeks 3.

void selection_sort(vector<int> &s) {

int n=s.size();

print(s);

for (int i=0; i<n; i++) { // iscemo i-ti najmanjsi element
int m=i; // indeks najmanjsega elementa med neurejenimsi
for (int j=i+1; j<mn; j++) {

if (s[jl<s[m]) m=j;

}
swap(s[i], s[m]);
print(s);

vector<int> sez = {7,2,5,1,2,9,3};
selection_sort(sez);

7251293
12657293
12567293

[7]:

1227593
1223597
1223597
1223579
1223579

Pri prostorski zahtevnosti lahko opazujemo celotno porabo prostora, ki je O(n), ali pa samo koli¢ino
dodatnega prostora (poleg vhodnih podatkov), ki je O(1). V nadaljevanju se bomo drzali prve
interpretacije.

Casovna zahtevnost (najslabsa, povpre¢na, najboljsa): O(n?), O(n?), O(n?)

Stabilnost Zanimivo vprasanje je, ali algoritem ohranja vrstni red enakih elementov, kar imenu-
jemo stabilnost. To postane smiselno v primeru urejanja npr. imen oseb po njihovi starosti. Kaksen
bo vrsti red Ane in Jana, ¢e sta enako stara? Bo tak, kot je bil v vhodnem seznamu, ali se lahko
zgodi, da ju algoritem premesa?

Urejanje z izbiranje je v zgornji obliki nestabilen algoritem, ker lahko pri zamenjavi najmanjsega
elementa (na indeksu m) z elementom, ki mu je v napoto (na mestu i), pokvarimo ta vrstni red.

Stabilnost lahko vedno dosezemo s tem, da vhodni seznam elementov z; zamenjamo s seznamom
parov (x;,1), ki vkljucujejo Se indeks, in uredimo tega. Pri primerjavi parov pride najprej do
primerjave prvega dela para, v primeru enakosti pa se primerja drugi del.

1.2.2 Urejanje z vstavljanjem (insertion sort)

Tudi tu postopoma gradimo vedno vecje urejeno zaporedje. Namesto, da bi iskali element, ki pase
na naslednje mesto (kot smo to poceli pri urejanju z izbiranjem), bomo naslednji element postavili
na pravo mesto. Po vrsti bomo jemali elemente iz vhodnega zaporedja in vsakega posebej vstavili
v novo nastajajoce urejeno zaporedje.

Tako kot prej, lahko tudi to izvedemo na mestu. Na vsakem koraku imamo urejeno zaporedje na
prvih ¢ — 1 mestih, v preostanku pa je Se neurejeno vhodno zaporedje. V tem stanju bomo ¢-ti
element vstavili na pravo mesto tako, da bomo konec urejenega zaporedja, ki je vecji od i-tega
elementa, zamaknili in naredili prostor zanj.

Vzdrzujemo invarianto, da je v i-tem koraku urejenih prvih ¢ elementov (kar ni nujno tudi prvih
i elementov kon¢nega urejenega seznama). V vsakem koraku povecamo dolzino urejenega dela z
vstavljanjem naslednjega elementa v seznamu.

void insertion_sort(vector<int> &s) {
int n=s.size();
print(s);
for (int i=1; i<m; i++) {
int x=s[i];
int j=i-1;
while (j>=0 && s[jl>x) {
s[j+1]1=s[j];
j=—s
+
s[j+1]=x;

[8]:

[9]:

[14]:

print(s);

}

vector<int> sez = {7,2,5,1,2,9,3};
insertion_sort(sez);

i = = O I O BN |
NN NDNONN
NN N oo
W oo N =
O N NN NN
~N © © © © O ©
W W wwww

2 9

Prostorska zahtevnost: O(n)

Casovna zahtevnost (najslabsa, povpre¢na, najboljsa): O(n?), O(n?), O(n)

1.2.3 Mehurc¢no urejanje (bubble sort)

V tem algoritmu bomo zaporedje uredili samo z zamenjavami sosednjih elementov, zato je vcasih
imenovano tudi urejanje z zamenjavami. Pravzaprav je ideja zelo preprosta: dokler obstaja kaksen
par, ki je narobe urejen, ga najdemo in zamenjamo. Kljub temu bomo malo bolj sistemati¢ni. Pare
sosednjih elementov bomo pregledovali po vrsti. Ko pridemo do konca seznama, pa se bomo vrnili
nazaj na zacetek. Ce kdaj naredimo celoten prehod, ne da bi naredili kakino zamenjavo, lahko
zakljuc¢imo.

void bubble_sort(vector<int> &s) {
int n=s.size();
print(s);
bool change = true;
while (change) {
change = false;
for (int i=0;i+1<n;i++) {
if (s[il>s[i+11) {
swap(s[i],s[i+1]);
change = true;

}
print(s);

3

vector<int> sez = {7,2,5,1,2,9,3};
bubble_sort(sez);

7251293
2512739
2125379

[15]:

[16]:

1223579

1223579

Pravilnost tega postopka Ze ni ve¢ tako ocitna, kot v prejsnjih primerih. Bomo res vedno prisli
do urejenega seznama, ali se lahko algoritem zatakne v kaksnem neurejenem stanju? In koliko

prehodov potrebuje v najslabsem primeru?

Opazimo lahko, da algoritem v prvem prehodu z zamenjavami premakne na konec najvecji element,
nato drugega najvecjega na predzadnje mesto itd. Med tem premikanjem pa poskrbi za Se malo
sprotnega urejanja preostalih elementov. Sedaj je jasno, da je algoritem pravilen in da potrebuje
najve¢ n — 1 prehodov. Ce jih naredimo n, pa tudi ne bo $kode. Sedaj ga lahko Se nekoliko
skrajSamo, da je res enostaven, ¢eprav malo manj uéinkovit.

void bubble_sort_n(vector<int> &s) {
int n=s.size();
for (int it=0;it<n;it++) {
for (int i=0;i+1<n;i++) {
if (s[il>s[i+1]) swap(s[i],s[i+1]);
}
}
print(s);
+

vector<int> sez = {7,2,5,1,2,9,3};
bubble_sort n(sez);

1223579
Oglejmo si Se racunske zahtevnosti prve razli¢ice algoritma, ki zakljuci, ¢im je rezultat urejen.

Prostorska zahtevnost: O(n)

Casovna zahtevnost (najslabsa, povpre¢na, najboljsa): O(n?), O(n?), O(n)

	Urejanje
	Neuporabni urejevalni algoritmi
	Osnovni urejevalni algoritmi
	Urejanje z izbiranjem (selection sort)
	Urejanje z vstavljanjem (insertion sort)
	Mehurčno urejanje (bubble sort)

