[1]1:

[2]:

[3]:

[4] :

Napredno urejanje
December 18, 2024

1 Napredno urejanje

Kot smo videli do sedaj, so imeli vsi “naravni” algoritmi za urejanje kvadratno ¢asovno zahtevnost.
)

To pomeni, da imamo resno tezavo ze, ¢e bi zZeleli urediti dva milijona prebivalcev Slovenije. Izkaze

pa se, da lahko problem urejanja resimo veliko bolj uc¢inkovito.

#include <vector>
#include <iostream>
#include <algorithm>
#include <random>
using namespace std;

typedef vector<int> VectorlInt;
typedef array<VectorInt,3> VectorInt3;

Ker imajo zapiski tezave s kompleksnejSimi tipi, bomo uporabljali VectorInt kot drugo ime za
vector<int>. Prav nam bo prislo pa Se nekaj pomoznih funkcij.

Na tem mestu lahko demonstriramo Se enostavno uporabo predlog (template) v C++. Funkcija
print bi izgledala skoraj enako, ¢e imamo opravka s seznamom celih stevil, decimalnih Stevil ali
pa nizov, razlika bi bila samo v tipu. S spodnjo sintakso povemo prevajalniku, naj naredi kopije
funkcije in sicer po potrebi za vse tipe, ki bodo kdaj uporabljali to funkcijo.

template<typename T>

void print(const vector<T> &s) {
for (T x : s8) cout << x << " ";
cout << endl;

3

VectorInt concat(VectorInt a, VectorInt b) {
a.reserve(a.size()+b.size());
a.insert(a.end(), b.begin(), b.end());
return a;

}

VectorInt random_numbers(int n, int x=1000000) {
default_random_engine rnd(123);
VectorInt v;
for (int i=0;i<n;i++) v.push_back(rnd()%x);

return v;

1.1 Napredni urejevalni algoritmi

Se vedno se bomo ukvarjali z algoritmi, ki temeljijo na medsebojnih primerjavah elementov.
Ogledali si bomo primere algoritmov, ki dosezejo ¢asovno zahtevnost O(nlogn).

1.1.1 Urejanje z zlivanjem (mergesort)

Ta algoritem razdeli elemente seznama na prvo in drugo polovico. Rekurzivno uredi vsako polovico
na enak nacin, nato pa zdruzi dva urejena seznama (iz prve in druge polovice) v skupen urejen

seznai.

Najprej si oglejmo, kako bi zdruzili dva urejena seznama v enega samega. Na vsakem koraku
preverimo najmanjsa (prva) elementa v obeh seznamih in v zdruzen seznam dodamo manjsega od
njiju ter ga odstranimo iz seznama.

[5]: VectorInt merge(VectorInt a, VectorInt b) {
int i=0, j=0;
VectorInt c;
while (i<a.size() || j<b.size()) {
if (i<a.size() && j<b.size()) {
if (alil<=b[j]) c.push_back(al[i++]);
else c.push_back(b[j++]);
} else if (i<a.size()) c.push_back(ali++]);
else c.push_back(b[j++]);
}
return c;

}

Zlivanje seznamov je sicer pou¢no, vendar je dovolj pogosto, da je naslo svoje mesto tudi kot funkcija
merge v knjiznici algorithms.

Algoritem je od tu naprej precej enostaven. Seznam razdelimo na pol, rekurzivno uredimo vsako
polovico in zdruzimo rezultata.

[6]: VectorInt mergesort(VectorInt sez) {
int n=sez.size();
if (n<=1) return sez;
VectorInt levo(sez.begin(), sez.begin()+n/2);
VectorInt desno(sez.begin()+n/2, sez.end());
levo = mergesort(levo);
desno = mergesort(desno);
return merge(levo, desno);

}

[7]: vector<int> sez = {5,3,4,6,2,7,1};
sez = mergesort(sez);

[8]:

[9]:

print(sez);
1234567

vector<int> sez = random_numbers(1000000) ;
sez = mergesort(sez);
if (is_sorted(sez.begin(), sez.end())) cout << "urejeno" << endl;

urejeno

Ker seznam vsaki¢ razdelimo na pol, bo globina rekurzije O(logn). Na najglobljem nivoju se
bodo zdruzevali pari seznamov dolzine 1, en nivo visje pari seznamov dolzine 2, nato 4, itd. Za
zdruzevanjem bomo na posameznem nivoju potrebovali O(n) ¢asa.

Casovna zahtevnost (najslabsa, povpre¢na, najboljsa): O(nlogn), O(nlogn), O(nlogn).

Prostorska zahtevnost je odvisna od implementacije. Zgornja ima prostorsko zahtevnost O(nlogn),
ker na vsakem nivoju rekurzije obstaja ena kopija vsakega elementa. To lahko enostavno izboljsamo,
¢e ne ustvarjamo novih seznamov (ampak uporabljamo indekse za dolo¢itev podseznamov), za vse
korake zlivanja pa uporabimo isto pomozno tabelo velikosti O(n). Omenimo, da je mozno tudi
urejanje z zlivanjem izvesti povsem na mestu brez dodatnega pomnilnika, vendar je to Ze bolj
zakomplicirano.

1.1.2 Hitro urejanje (quicksort)

Algoritem hitrega urejanja se loti urejanja tako, da razdeli elemente seznama na majhne in velike.
Majhni bodo na zacetku seznama, veliki pa na koncu. Seznam majhnih in velikih pa lahko vsakega
zase rekurzivno uredimo na enak nacin. S tem smo v posameznem koraku opravili samo manjsi
del urejanja: elemente smo razdelili na majhne in velike. Ce to ponovimo rekurzivno, pa bomo na
koncu uspesno uredili seznam.

Kako naj razdelimo (partition) seznam na majhne in velike elemente? Idealno bi bilo, ¢e bi jih
lahko razbili na enako veliki skupini, vendar to izgleda kot ravno tako tezek problem. Izbrali bomo
enostavnejso strategijo. Iz seznama, ki ga urejamo, si izberimo neko (nakljucno) stevilo (pivot).
Lahko je to kar prvi element. Elemente, ki so manjsi, bomo razglasili za majhne, tiste, ki so veéji,
pa za velike. Imamo pa se tretjo skupino, in to so elementi, ki so enaki pivotu.

VectorInt3 partition(VectorInt sez) {

int pivot = sez[0];

VectorInt majhni, enaki, veliki;

for (int i=0; i<sez.size(); i++) {
if (sez[i]<pivot) majhni.push_back(sez[i]);
else if (sez[il>pivot) veliki.push_back(sez[i]);
else enaki.push_back(sez[i]);

}

VectorInt3 p = {majhni, enaki, veliki};

return p;

[10]:

[11]:

[7]:

[12]:

VectorInt quicksort(VectorInt sez) {
if (sez.size()<=1) return sez;
auto [majhni, enaki, veliki] = partition(sez);
VectorInt urejeni_majhni = quicksort(majhni);
VectorInt urejeni_veliki = quicksort(veliki);
return concat(concat(urejeni_majhni, enaki), urejeni_veliki);

vector<int> sez = {5,3,4,6,2,7,1};
sez = quicksort(sez);
print(sez);

1234567

Razmislimo, kako uc¢inkovit je ta postopek? Recimo, da imamo sreco, in izbiramo elemente tako,
da seznam vedno razpade na dve enako veliki skupini majhnih in velikih. V tem primeru bomo
imeli O(logn) nivojev rekurzije. Na vsakem nivoju pa se bomo ukvarjali z O(n) elementi. Na
prvem nivoju z eno skupino n elementov, na drugem nivoju z dve skupinama velikosti n/2 itd. S
posemezno skupino nimamo prav veliko dela, v enem prehodu jih razdelimo med manjse in vecje.
Skupaj bomo torej naredili O(nlogn) operacij.

vector<int> sez = random_numbers(1000000) ;
sez = quicksort(sez);
if (is_sorted(sez.begin(), sez.end())) cout << "urejeno" << endl;

urejeno

Izkaze se, da nasa predpostavka, da bomo imeli vedno sreco pri izbiri delilnega elementa, ni tako
slaba. Tudi pri nakljuénem izbiranju, bosta velikosti seznamov malih in velikih elementov v nekem
smiselnem razmerju. Ce bi bilo razmerje vedno npr. 1:2 (namesto 1:1), to $e vedno vodi do enake
¢asovne zahtevnosti. Tako je pri¢akovana (povprefna) ¢asovna zahtevnost enaka tisti v najboljSem
primeru.

Casovna zahtevnost (najslabsa, povpreéna, najboljsa): O(n?), O(nlogn), O(nlogn).

Prostorska zahtevnost je odvisna od implementacije. Zgornja koda zaradi preglednosti porabi
O(nlogn) prostora. Postopek pa lahko implementiramo tudi na mestu s prestavljanjem elementov
znotraj seznama, kar zmanjsa prostorsko zahtevnost na O(n). V slede¢em primeru bomo za pivot
izbrali zadnji element, nato pa preuredili preostale tako, da bodo na zacetku manjsi elementi, nji-
hovo stevilo pa bomo hranili v spremenljivki m. Funkcija quicksort?2 uredi seznam med indeksoma
i in 7, vkljuéno z ¢-tim in brez j-tega.

void quicksort2(VectorInt &sez, int i, int j) {
if (j-i<=1) return;
int m=0, pivot=sez[j-1];
for (int k=i;k<j;k++) {
if (sez[k]<pivot) {
swap(sez[i+m] ,sez[k]);
m++;

[13]:

}

swap(sez[i+m], sez[j-11);
quicksort2(sez, i, i+m);
quicksort2(sez, i+m+1l, j);

}

vector<int> sez = {5,3,4,6,2,7,1};
quicksort2(sez, 0, sez.size());
print(sez);

1234567

Pozor: zgornja implementacija ima resno tezavo v doloc¢enem primeru. Ce so vsa Stevila enaka, bo
namre¢ ¢asovna zahtevnost O(n?). Kako bi lahko odpravili?

Ce primerjamo algoritma mergesort in quicksort, prvi razdeli elemente na leve in desne in veéino
dela z zlivanjem naredi po zakljucku rekurzivnega urejanja, drugi pa jih razdeli na majhne in velike,
kar zahteva vecino dela z razdelitvijo pred rekurzivnim urejanjem manjsih delov.

1.1.3 Urejanje s kopico (heapsort)

Urejanje s kopico je pravzaprav izboljSava navadnega urejanja z izbiranjem (selection sort).
Namesto, da bi vsaki¢ znova iskali najmanjsi element med Se neurejenimi, lahko ta korak po-
hitrimo. To dosezemo tako, da hranimo neurejene elemente v posebni podatkovni strukturi, ki
nam omogoca ucinkovito iskanje in odstranjevanje najmanjsega elementa v njej. Tocéno temu je
namenjena kopica (heap). Ve¢ o tem kdaj drugic.

1.2 Praksa

Kateri algoritmi pa se uporabljajo v praksi, npr. v standardnih knjiznicah programskih jezikov, kot
so C, C++, Java, Python, itd. Obicajno gre za neke kombinacije pristopov, saj se razli¢ni algoritmi
obnesejo razlicno dobro na manjsih ali veéjih primerih.

e C ponuja funkcijo gsort, kjer je Ze iz imena ocitno, da gre za quicksort.

e C++ uporablja t.i. introsort, ki je pravzaprav quicksort v kombinaciji Se z dvema drugima
algoritmoma. Ce med urejanjem velikost seznama pade pod neko mejo, se uporabi navaden
insertion sort. Ce rekurzija preseze neko vnaprej definirano globino, pa se od tam naprej
uporabi heapsort.

e Python uporablja timsort, ki je kombinacija mergesorta in insertion sorta.

e Java uporablja razli¢cne pristope za urejanje primitivnih tipov in za urejanje drugih objektov.
Za prve uporablja razlicico quicksorta, za druge pa razli¢ico timsorta.

1.3 Urejanje brez primerjav

Do sedaj smo urejali elemente v okviru zelo splosnih omejitev, ki nam omogocajo samo primerjave
med pari elementov. Vcasih pa lahko izkoristimo tudi kaksno drugo lastnost podatkov, ki jih
urejamo.

[15]:

[16]:

1.3.1 Urejanje s Stetjem (counting sort)

Recimo, da moramo uredi seznam stevil, ki predstavljajo postne stevilke. Ne glede na to, kako dolg
bo seznam, je nabor razli¢nih postnih stevilk precej majhen. Tako lahko za vsako postno stevilko
prestejemo, kolikokrat se pojavi v seznamu, in jo na koncu temu primerno veckrat vnesemo v urejen
seznam.

void counting_sort(VectorInt &sez) {
int m = *max_element(sez.begin(), sez.end());
VectorInt f(m+1);
for (int x : sez) flx]++;
int i=0;
for (int x=0; x<=m; x++) {
for (int r=0;r<f[x];r++) sez[i++]=x;

vector<int> sez = {1000,2000,2000,4000,2000,1000};
counting_sort(sez) ;
print(sez);

1000 1000 2000 2000 2000 4000

Casovna zahtevnost je linearna, torej O(n + m), kjer je m najvecja mozna vrednost. Ne pozabite
na c¢len m, saj ustvarjanje tabele in iteracija ¢ez njo ni zastonj, sploh ¢e je Stevil malo, njihov
razpon pa velik. Neugodna je prostorska zahtevnost, ki je odvisna od najvecjega elementa. Kaj
pa, ¢e vrednosti niso prikladno majhna cela stevila? To tezavo bomo resili, ko se bomo pogovarjali
o slovarjih.

1.3.2 Urejanje s kosi (bucket/bin sort)

Urejanje s kosi (ali vedri) je zelo splosna tehnika, iz katere izhaja veliko razli¢nih algoritmov. Os-
novna ideja algoritma je, da razdeli elemente seznama v kose glede na njihovo vrednost. Med
kosi obstaja urejenost od kosev z manjSimi elementi proti tistim z veéjimi. Pri tem se zanasa na
enakomerno razporejenost elementov po kosih. Vsak kos lahko nato uredimo s poljubnim ureje-
valnim algoritmom, ali pa rekurzivno uporabimo enak postopek razdeljevanja elementov znotraj
kosa.

Na primer, ¢e uporabljamo dva kosa, kjer prvi vsebuje elemente z vrednostmi z obmocja [min, med],
drugi pa [med + 1, max] in uporabimo rekurzivno strategijo, dobimo nekaj podobnega algoritmu
quicksort, kjer je kot pivot (namesto nekega elementa iz seznama) izbrana srednja vrednost med =
(min 4+ max)/2 med najmanjSo (min) in najve¢jo (max) vrednostjo iz seznama.

Korensko urejanje (radix sort) Kot primer urejanja s kosi si oglejmo Se korensko urejanje.
V tem algoritmu razporejamo elemente v kose glede na stevke v primeru stevil ali ¢rke v primeru
nizov. Obstaja vec razli¢ic, mi si bomo ogledali urejanje od bolj pomembnih proti manj pomembnim
znakom (MSD - Most Significant Digit) in sicer na primeru urejanja nizov po abecedi.

Nize lahko razdelimo v kose glede na njihovo prvo ¢rko, nato pa posamezen kos uredimo po enakem
postopku, le da nize sedaj delimo v kose glede na drugo ¢érko itd. Ko so kosi urejeni, rezultate enos-

[8]:

[9]:

[4]:

tavno zlozimo skupaj. Vse kar potrebujemo je tabela kosev buckets, ki bo na mestu buckets[c]
hranila seznam nizov, ki imajo na trenutno relevantnem mestu ¢érko c. Relevantno mesto bomo
hranili v argumentu r in ga povecevali v rekurzivnih klicih. Dodatno pa hranimo sSe kos prekratkih
besed (done), ki sploh nimajo r-te ¢rke.

void radix_sort(vector<string> &sez, int r=0) {
if (sez.size()<=1) return;
vector<string> buckets['z'-'a'+1], done;
for (string x : sez) {
if (r>=x.size()) {
done.push_back(x) ;
} else {
int b = x[r]-'a’';
buckets[b] .push_back(x);

}
int i=0;
for (string s : done) sez[i++] = s;
for (int b=0; b<='z'-'a'; b++) {
radix_sort (buckets[b], r+1);
for (string s : buckets[b]) sez[i++] = s;

}

VeCtOr<String> sez = {llbabll , Ilall s ||all , Ilaababll , ||aa|| , llball s ||le , Ilazll};
radix_sort(sez);
print(sez);

a a aa aabab az ba bab z

Casovna zahtevnost zgornjega algoritma je O(nd), ¢e je d najvedja dolzina niza. Enako velja za
prostorsko zahtevnost, saj na vsakem izmed d nivojev hranimo v kosih vseh n elementov. Upostevati
pa moramo tudi prazne kose, ki zasedajo prostor. Teh je lahko precej. Zato je boljsa ocena
prostorske zahtevnosti O(nda), kjer je a velikost abecede (Ce je konstantna, to lahko zanemarimo).
V vsakem izmed O(nd) klicev funkcije namre¢ alociramo a kosev.

1.4 Dvojisko iskanje (binary search)

Zakaj bi sploh zeleli urejati sezname? Zato, da lahko v njih ucinkovito is¢emo stvari. To pa
po¢nemo z dvojiskim iskanje (bisekcijo). Ko iS¢emo neko vrednost v urejenem seznamu, jo lahko
primerjamo z nekim elementom in ¢e je iskana vrednost manjsa od izbranega elementa, moramo
nadaljevati na levi strani, sicer pa na desni. Ce vedno izberemo srednji element, bomo velikost
seznama na vsakem koraku prepolovili in tako potrebovali O(logn) korakov, da najdemo element
oz. ugotovimo, da ga ni v urejenem seznamu.

Ideja je zavajujoce enostavna in pogosto vodi do nepravilnih resitev. Oglejmo si eno tako.

bool bisekcija_narobe(VectorInt sez, int x) {
// nastavimo levo in desno mejo

[5]:

int levo=0, desno=sez.size()-1;
while (1) {
// primerjamo s srednjim elementom
int i = (levo+desno)/2;
// popravimo meje
if (x < sezl[i]) levo = i-1;
else desno = i+1;
// ce smo nasli element, ali so se meje prekrizale, ustavimo tiskanje
if (sez[i] == x || desno < levo) break;
b
// ce so meje smiselne, smo ga masli, sicer ga n%
return levo <= desno;

¥

S to resitvijo je narobe cel kup stvari:

« Popravljanje mej bi moralo biti ravno obratno. Ce je iskani element manjsi od srednjega,
moramo premakniti desno mejo in obratno.

o Iskanje v praznem seznamu se sesuje, ker se vedno izvede vsaj ena iteracija iskanja.

o Najvecjega elementa ne bomo nikoli nasli, ker se takrat, ko ga najdemo, tudi prekrizajo meje.
To pa je nase merilo, ali smo nasli element ali ne.

« Casovna zahtevnost ni O(logn), ampak O(n) zaradi kopiranja seznama, ko pokli¢emo
funkcijo.

bool bisekcija(VectorInt &sez, int x) {
int levo=0, desno=(int)sez.size()-1;
while (levo<=desno) {
int i = (levo+desno)/2;
if (sezl[i] == x) return true;
else if (x < sez[i]) desno = i-1;
else levo = i+1;
}
return false;

}

Oglejmo si malo tezjo razli¢ice naloge. V urejenem seznamu bomo iskali mesto, kamor bi morali
vanj vstaviti nek nov element, da se bo ohranjala urejenost. Ce obstaja ve¢ takih mest, ker imamo
ve¢ enakih stevil, ga Zelimo vstaviti na najmanjse mesto. Npr. v seznam {2,3,7,7,8,10,10,10%}
bi stevilo 7 Zeleli vstaviti na indeks 2.

Pri implementaciji bisekcije in tudi drugih algoritmov moramo biti bolj sistematicni, da se izognemo
napakam. To storimo tako, da v iteracijah vzdrzujemo neke lastnosti, ki jim reCemo ¢nvariante.
V nasem primeru imamo v urejenem seznamu nekaj Stevil, ki so manjsSa, nato pa Stevila, ki so
vecja ali enaka {<, <, >=, >=, >=, >=, >=, >=} ISCemo mejo med tema dvema obmocjema.
Uporabljali bomo indeksa loin hi, kjer bo prvi ves ¢as kazal na neko manjse, drugi pa na vecje ali
enako stevilo. Za inicializacijo teh dveh kazalcev, si lahko predstavljamo, da imamo pred seznamom
na indeksu -1 vrednost —oo, za njim pa co. Nato ju bomo v ve¢ korakih bisekcije blizali in ko bosta
sosednja, smo nasli iskano mejo, ki je takrat shranjena v hi.

[6]: int lokacija(VectorInt &sez, int x) {
int lo=-1, hi=sez.size();
while (hi-lo>1) {
int 1 = (lo+hi)/2;
if (sez[i] < x) lo = i;
else hi = i;
}

return hi;

¥

[7]: vector<int> sez = {2,3,7,7,8,10,10,10};
cout << lokacija(sez, 7) << endl;

2

Sedaj, ko to znamo, povejmo Se, da C++ to funkcionalnost Ze ponuja v knjiznici algorithm s
funkcijo lower_bound, ki vrne iterator na iskano meso. Funkcija upper_bound pa bi med enakovred-
nimi mesti za vstavljanje vrnila najvecje.

[8]: vector<int> sez = {2,3,7,7,8,10,10,10};
cout << lower_bound(sez.begin(), sez.end(), 7) - sez.begin() << endl;

2

K dvojiskemu iskanju se bomo ponovno vrnili, ko se bomo pogovarjali o tehniki deli in viladaj.

	Napredno urejanje
	Napredni urejevalni algoritmi
	Urejanje z zlivanjem (mergesort)
	Hitro urejanje (quicksort)
	Urejanje s kopico (heapsort)

	Praksa
	Urejanje brez primerjav
	Urejanje s štetjem (counting sort)
	Urejanje s koši (bucket/bin sort)

	Dvojiško iskanje (binary search)

