[1]:

[2]:

Najkrajse poti
December 18, 2024

1 Najkrajse poti

Klasi¢en problem na grafih je iskanje najkrajsih poti. Zanima nas na primer najkrajSa pot med
parom vozlis¢ A in B (single-pair shortest path). Naj bo ta najkrajSa pot sestavljena iz vozlisé
A, .. X, B, kjer je X predzadnje vozlis¢e na poti. V tem primeru mora biti tudi pot od A do X
najkrajsa, sicer bi lahko pot od A do B izboljsali. Pri iskanju najkrajse poti od A do B posledi¢no
izra¢unamo tudi najkrajse poti do ostalih vozlis¢ na tej poti.

Ce bomo Ze morali izra¢unati najkrajse poti iz A do veé¢ drugih vozlis¢, pa jih lahko izra¢unamo iz
zacetnega vozliséa kar do vseh (single-source shortest path). Opazimo tudi, da bodo te najkrajse
poti v grafu formirale drevo najkrajsih poti. Vsako vozlis¢e bo imelo namre¢ enega optimalnega
predhodnika/starsa na najkrajsi poti (npr. X bo predhodnik B-ja). Koren drevesa pa bo seveda v
vozliséu A.

Za problem iskanja najkrajsih poti med vsemi pari toc¢k, lahko N-krat pozenemo algoritem za
iskanje drevesa najkrajsih poti iz posameznega zacCetnega vozlisca. Obstajajo pa tudi drugi algo-
ritmi, ki si namenjeni prav iskanju poti med vsemi pari tock. Tak primer je Floyd-Warshall-ov
algoritem, ki ga tu ne bomo obravnavali.

Ukvarjali se bomo predvsem z neusmerjenimi grafi. V usmerjenih grafih je situacija namre¢ podobna
in lahko uporabimo enake razmisleke.

#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;

typedef pair<int,int> PII;

typedef vector<int> VI;

typedef vector<pair<int,int>> VII;
typedef vector<vector<int>> VVI;

template<typename T>

void print(const vector<T> &sez) {
for (T x : sez) cout << x << " ",
cout << endl;

[3]:

[3]:

[5]:

1.1 Neutezeni grafi

V neutezenih grafih ni potrebe po kompliciranju, saj ze poznamo metodo iskanja v Sirino (BFS),
ki obiskuje vozlis¢a od bliznjih proti bolj oddaljenim glede na sStevilo povezav. Potrebuje je
malenkostno dopolnitev, da bo poleg obiskovanja vozliS¢ belezila Se dolzine poti in prednike vozlis¢
v drevesu najkrajsih poti.

ifstream fin("graph.txt");
int n,m;
fin >> n >> m;
vector<vector<int>> sosedi(n);
for (int i=0;i<m;i++) {
int a,b;
fin >> a >> b;
sosedi [a] . push_back(b) ;
sosedi [b] .push_back(a) ;
}

void BFS_distance(vector<VI> &adj, int start, vector<int> &dist, vector<int>
~&prev) {
int n=adj.size();
dist=vector<int>(n,-1); prev=vector<int>(n);
vector<int> vis(n);
queue<int> q;
q.push(start); vis[start]=1;
dist[start]=0; prev[start]=-1;
while (!q.empty()) {
int x=q.front(); q.popQ);
for (int y : adj[x]) {
if (lvisl[yl) {
q.push(y); vis[yl=1;
dist[yl=dist[x]+1; prevlyl=x; // distance, previous node

vector<int> dist, prev;
BFS_distance(sosedi,0,dist,prev);
print(dist);

print (prev) ;

01321232
-10310171

1.2 UteZeni grafi

V utezenih grafih pa je situacija malo bolj zapletena. Omejili se bomo na grafe s pozitivnimi
(nenegativnimi) utezmi, s kakrsnimi imamo vecinoma opravka v praksi, kasneje pa se bomo

[4] :

[5]:

vrnili Se k negativnim utezem. Utez (ceno, dolzino) povezave med vozliséema X in Y bomo oznacili
zw(X,Y).

ifstream fin("weighted.txt");
int n,m;
fin >> n >> m;
vector<VII> adjw(n);
for (int i=0;i<m;i++) {
int a,b,w;
fin >> a >> b >> w;
adjwla] .push_back({b,w});
adjw[b] .push_back({a,w});

1.2.1 Dijkstrov algoritem

Tako kot smo v neutezenem primeru z iskanjem v Sirino racunali najkrajse poti od bliznjih proti
bolj oddaljenim vozlis¢em, bomo to storili tudi tu. Najblizje vozlisce je kar izhodiséno, d(A) =
0. Naslednje najblizje vozlisée pa bo eno od njegovih sosedov. Ker povezave niso negativne, je
nemogoce, da bi dosegli manjSo razdaljo po kaksni poti z ve¢ povezavami. Tem neizracunanim
sosedom do sedaj izracunanih vozlis¢ bomo rekli okolica. To so vozlisca, ki Se niso izracunana in so
iz ze izracunanih dosegljiva po eni povezavi. Za vsako od njih bomo hranili potencialno najkrajso
pot p(Y'): kaksna bi bila razdalja, ¢e bi se do njega premaknili z enega izmed Ze izracunanih vozlisc.
Ce iz okolice izberemo vozlisée X s trenutno najmanjso potencialno dolzino p(X), bo to zagotovo
dejanska najmanjsa dolzina poti do tega vozliséa (d(X) = p(X)). Zaradi odsotnosti negativnih
povezav, bi bila katerakoli druga pot od zZe izracunanih vozlis¢ do X sestavljena iz ve¢ povezav in
zato daljSa. Mnozico ze izra¢unanih vozlis¢ smo torej povecali z novim vozliSéem X. Poskrbeti
moramo Se za posodobitev okolice. Vse sosede Y vozliséa X dodamo v okolico, ¢e so ze v njej, pa
zgolj posodobimo njihovo potencialno oddaljenost z p(Y) = min(p(Y),d(X) + ¢(X,Y)). Postopek
ponavljamo, dokler nimamo izracunanih najkrajsih poti do vseh vozlis¢.

V postopku imamo opravka s tremi skupinami vozlis¢. V prvi skupini so tista, za katera imamo ze
izracunane najkrajse poti. V drugi skupini so vozlisca iz okolice, ki imajo samo potencialne dolzine.
Tretja skupina pa so Se povsem neobiskana vozlis¢a. Pri implementaciji bomo vse te informacije
hranili v tabeli potencialnih razdalj. Razdalja -1 bo oznacevala Se neobiskano vozlisce iz tretje
skupine, -2 pa ze izracunano iz prve.

void Dijkstra(vector<VII> &adjw, int start, vector<int> &dist, vector<int>
~&prev) {

int n=adjw.size();
dist=vector<int>(n,-1); prev=vector<int>(n,-1);
vector<int> p(n,-1); // provisional distance (-1=unvisited, -2=done)
plstart]=0;
while (1) {

int x=-1; // smallest provisional

for (int i=0;i<n;i++) if (p[il>=0) {

if (x==-1 || plil<plx]) x=i;
+

[11]:

[6]:

if (x==-1) break;
dist[x]=p[x]; plx]l=-2;
for (auto [y,w] : adjwlx]) { // update neighbors
int d=dist[x]+w;
if (plyl==-1 || (plyl>=0 && d<plyl)) {
plyl=d; prevlyl=x;
}

vector<int> dist, prev;
Dijkstra(adjw,0,dist,prev);
print(dist); print(prev);

04111792278 11
-104273067

Prostorska zahtevnost algoritma je O(n). Casovna zahtevnost pa je odvisna od iskanja najmanje
potencialne razdalje (O(n?)) in posodabljanja sosedov (O(e)). Ker je e = O(n?), je ¢asovna za-
htevnost take implementacije algoritma O(n?).

Razmislimo o izboljsavi. Tezavno je iskanje vozlis¢a z najmanjSo potencialno razdaljo. Hkrati pa
moramo biti sposobni posodabljati potencialne razdalje sosedov. Vozlis¢a iz okolice s potencialnimi
razdaljami bi lahko hranili v uravnotezenem iskalnem drevesu. Tako lahko v ¢asu O(logn) pois¢emo
najmanjsega in spremenimo potencialno razdaljo vozlis¢a. Casovna zahtevnost bi bila O(nlogn +
elogn) = O(elogn).

Iskanje najmanjsega elementa je namen prioritetne vrste, zato je to v praksi pogostejsi nacin imple-
mentacije, ki je tudi preprostejsi in zato bolj ué¢inkovit. Ce za prioritetno vrsto uporabimo dvojisko
kopico, mora ta omogocati tudi spremembo prioritete. Pravzaprav gre samo za zmanjsanje prior-
itete v minimalni dvojiski kopici, kar lahko dosezemo v logaritemskem casu. Tudi ta resitev ima
¢asovno zahtevnost O(elogn).

V spodnji implementaciji pa bomo malo “goljufali” in se izognili spreminjanju prioritet. Pri posod-
abljanju bomo v prioritetno vrsto samo vstavili novo manjso vrednost, stare pa ne bomo izbrisali.
Nova vrednost bo prisla iz vrsto prej, zato lahko stare neveljavne vrednosti, ki pridejo iz vrste
neko¢ kasneje, enostavno ignoriramo. V tabeli razdalj dist bomo hranili razdalje do vseh vozlis¢
(nekatere so pravilne, druge zgolj potencialne). Vozlis¢a, katerih razdalje so zgolj potencialne,
bomo hranili v prioritetni vrsti. Ko pride vozlisce iz prioritetne vrste, vemo, da je njegova razdalja
pravilna in posodobimo sosede. V prioritetni vrsti je lahko O(e) elementov, zato je taka tudi pros-
torska zahtevnost. Casovna zahtevnost pa je O(eloge) = O(elogn?) = O(e - 2logn) = O(elogn).
Goljufija torej ni bila prav huda.

Vso to kompliciranje pa ima smisel samo, ¢e je graf dovolj redek. Ce je graf gost in vsebuje skoraj
vse mozne povezave (e ~ n?), je ¢asovna zahtevnost O(elogn) pravzaprav O(n?logn), kar je slabse
od O(n?), s ¢imer smo zaceli.

void Dijkstra_PQ(vector<VII> &adjw, int start, vector<int> &dist, vector<int>
~&prev) {

[17]:

[7]1:

int n=adjw.size();
dist=vector<int>(n,-1); prev=vector<int>(n,-1);
priority_queue<PII, vector<PII>, greater<PII>> pq; // (distance, node)
dist[start]=0; pq.push({0,start});
while (!pg.empty()) {
auto [d,x]=pq.top(); pq.popO;
if (dist[x]!=d) continue; // ignore old values
for (auto [y,w] : adjwlx]l]) { // update neighbors
int d=dist[x]+w;
if (distlyl==-1 || d<distlyl) {
dist[yl=d; prevlyl=x;
pq.push({d,y});

vector<int> dist, prev;
Dijkstra_PQ(adjw,0,dist,prev);
print(dist); print(prev);

041117 9227 8 11
-104273067

Algoritem lahko v nekaterih primerih Se izboljsamo. Pogosto so utezi relativno majhna cela Stevila.
Naj bo ¢ najvecja utez v grafu. Najveéja oddaljenost vozlis¢a v grafu bo tako (n — 1)c. Namesto
v prioritetni vrsti lahko vozlis¢a s potencialnimi razdaljami hranimo “popredalckana” v tabeli, ki
na mestu ¢ hrani seznam vozlis¢ na razdalji i. Temu recemo tudi vrsta z vedri (bucket queue)
Podobno kot prej ne spreminjamo vrednosti, ampak dodajamo nove in po potrebi ignoriramo stare.
Prostorska in ¢asovna zahtevnost take resitve sta O(e + nc).

void Dijkstra_BQ(vector<VII> &adjw, int start, vector<int> &dist, vector<int>
~&prev) {
int n=adjw.size();
dist=vector<int>(n,-1); prev=vector<int>(n,-1);
int c=0; // mazimum weight
for (int x=0;x<n;x++) for (auto [y,w] : adjwlx]) c=max(c, w);
int maxd=(n-1)*c;
vector<VI> bq(maxd+1); // bucket queue
dist[start]=0; bql[0].push_back(start);
for (int d=0;d<=maxd;d++) {
for (int x : bqldl) {
if (dist[x]!=d) continue; // ignore old values
for (auto [y,w] : adjwlx]) { // update neighbors
int d=dist[x]+w;
if (dist[yl==-1 || d<distly]) {
dist[yl=d; prevlyl=x;
bq[d] . push_back(y) ;

[8]:

[10]:

vector<int> dist, prev;
Dijkstra_BQ(adjw,0,dist,prev);
print(dist); print(prev);

041117 9227 8 11
-104273067

1.2.2 Negativne utezi

Do sedaj smo se omejili na pozitivne oz. nenegativne utezi. Negativne utezi imajo smisel samo na
usmerjenih grafih. Sicer bi se lahko sprehajali tja in nazaj po isti negativni povezavi in imeli vedno
krajso pot.

Kje pa pride do tezave na usmerjenih grafih? Nasa predpostavka, da ima vozlis¢e v okolici z najman-
jSo potencialno razdaljo prav tako tudi dejansko razdaljo, ni vec¢ resni¢na. To lahko demonstriramo
s spodnjim primerom.

// (0,1,2), (0,2,3), (2,1,-2)

vector<VII> adjw = {{{1,2},{2,3}},{},{{1,-2}3}};
vector<int> dist, prev;
Dijkstra(adjw,0,dist,prev);

print(dist); print(prev);

023
-100

Situacija je lahko Se slabsa. V usmerjenem grafu se lahko pojavi negativen cikel (cikel z negativno
vsoto utezi). V takem primeru koncept najkrajsih poti tudi nima smisla, ker lahko krozimo po ciklu
in s tem poljubno krajSamo svojo pot.

Obstajajo algoritmi, ki uspesno resujejo probleme najkrajsih poti tudi v prisotnosti negativnih
povezav in zaznavajo prisotnost negativnih ciklov. Klasi¢en primer je Bellman-Fordov algoritem,
ki ga boste obravnavali kasneje.

1.3 Primeri

Grafi so zelo pogost na¢in modeliranja relacij, iskanje najkrajsih poti pa eden najobicajnejsih prob-
lemov na njih. V nadaljevanju si bomo ogledali nekaj primerov sorodnih problemov.

1.3.1 Najsirsa pot

Recimo, da z grafom modeliramo cestno omrezje. Povezave predstavljajo dvosmerne ceste, vozlisca

pa krizisca. Utezi povezav ustrezajo Sirini ceste. Kaksna je najvecja Sirina vozila, ki se lahko
pripelje od vozlisca A do B?

[14]:

Gre za problem iskanja najsirse poti (widest path, mazimum capacity path). Pri njem is¢emo pot
od A do B, za katero bo veljalo, da je najmanjsa utez na poti ¢im veéja. Za primerjavo nas je v
klasi¢cnem problemu najkrajsih poti zanimala tista pot, kjer je bila vsota utezi ¢im manjsa. Vsoto
smo torej zamenjali z minimumom, minimizacijo pa z maksimizacijo.

Uporabimo lahko povsem enak razmislek kot pri Dijkstrovem algoritmu. Poti do vozlis¢e bomo
racunali od $ir§ih proti ozjim. NajsirSa pot (oo Sirine) vodi do zacetnega vozlis¢a. Na vsakem
koraku bomo med izracunana vozlis¢a dodali vozlisce iz okolice, do katerega vodi trenutno najsirsa
potencialna pot. To ima zagotovo pravo vrednost, saj bi kakrsnakoli druga pot obiskala ve¢ povezav,
kar Sirine poti ne more povecati, temvec jo kveé¢jemu zmanjsa.

1.3.2 Najdaljsa pot

Kaj pa, Ce nas namesto najkrajSe poti zanima najdaljSa? Trivialno, utezi negiramo in je problem
reSen. Zal ne, ker s tem dobimo graf z negativnimi cikli. Pravzaprav je koncept najdaljse poti slabo
definiran - lahko bi se sprehajali sem in tja po isti povezavi in poljubno podaljsali pot.

V primeru najdaljSe poti nas zanimajo poti brez ponovljenih vozlisé. Pri najkrajsih poteh je bilo to
samoumevno, saj od veckratnega obiskovanja vozlis¢ ni nobene koristi ampak samo skoda. Izkaze
se, da gre za tezek problem, ki spada v razred NP-polnih (NP-complete) problemov. Ve¢ o tem pa
pri predmetu Izrac¢unljivost in racunska zahtevnost.

Izjema so usmerjeni acikli¢ni grafi (DAG), ki ne vsebujejo ciklov. Tam smo Ze resili prav ta problem,
le da smo mu rekli kriti¢na pot.

1.3.3 15 Puzzle

Verjetno poznate drsno sestavljanko prikazano na spodnji sliki. Igra se na mrezi velikosti 4x4, kjer
se na vsakem polju nahaja plosé¢ica z enim izmed Stevil od 1 do 15. Vsako stevilo se pojavi enkrat,
eno polje pa je prazno. Zanima nas, kako naj s premiki plosc¢ic na prazno sosednje polje uredimo
Stevila po velikosti (po vrsticah od zgoraj navzdol in znotraj vrstice od leve proti desni). Se bolje,
izracunajmo najmanjse potrebno stevilo potez.

V tem primeru nimamo opravka z grafom stanj. Vsako stanje sestavljanke ustreza nekemu vo-
zlis¢u. Za izracun najmanjsega Stevila potez bomo uporabili iskanje v Sirino (BFS). Seveda ne bomo
vnaprej zgradili celotnega grafa, ker bi bil ta prevelik, ampak ga bomo odkrivali sproti. Recemo,
da bo graf predstavljen implicitno s stanji sestavljanke. Za vsako stanje oz. vozlis¢e znamo namrec
izracunati njegove sosede. Pri tem upamo, da bomo dosegli resitev dovolj zgodaj, preden bomo
preiskali prevelik del grafa.

Obstajajo tudi izboljSave tega osnovnega preiskovanja, ki z uporabo hevristik usmerjajo iskanje
proti delom grafa, v katerih je bolj verjetno, da bomo nasli resitev. Primer nadgradnje iskanja
najkrajsih poti z uporabi hevristik je algoritem A *.

int puzzlel5(VVI start, vector<VVI> &seq) {
map<VVI, int> dist;
map<VVI, VVI> prev;
queue<VVI> q;
q.push(start); dist[start]=0;
VVI goal = {{1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,15,0}};
while (!q.empty()) {

[15]:

VVI state=q.front(); q.popQ);
if (state == goal) break;
// next states
for (int i=0;i<4;i++) for (int j=0;j<4;j++) if (statelil[jl==0) { //_
~find empty cell
for (auto [di,dj] : VII{{0,1},{0,-1},{1,0},{-1,0}}) { // possible,

smoves

int i2=i+di, j2=j+dj;

if (i2<0 || i2>=4 || j2<0 || j2>=4) continue;

VVI state2=state; // adjacent state

swap(state2[i] [j], state2[i2] [j2]);

if (dist.count(state2)==0) { // new?
dist[state2] = dist[state]+1;
prev[state2] = state;
q.push(state2);

}

}
}
}

// reconstruct sequence of states
VVI state=goal;
seq.push_back(state);
while (state!=start) {
state = prev[state];
seq.push_back(state) ;
}
reverse(seq.begin(),seq.end());
return dist[goall;

VVI state = {{5, 0, 2, 3},
{6, 1, 7, 4},
{9, 10,11,8},
{13,14,15,12}};
vector<VVI> seq;
cout << puzzlelb(state, seq) << endl;
for (VVI state : seq) {
cout << endl;
for (VI row : state) print(row);

5023
6174

9 10 11 8
13 14 15 12

5123

6 07 4

9 10 11 8
13 14 15 12

5123
0674

9 10 11 8
13 14 15 12

0123
5674

9 10 11 8
13 14 15 12

9 10 11 8
13 14 15 12

1203
5674

9 10 11 8
13 14 15 12

1230
5674

9 10 11 8
13 14 15 12

1234
5670

9 10 11 8
13 14 15 12

1234
5678
910 11 0
13 14 15 12

1234
56738
9 10 11 12
13 14 15 0

Za konec zgolj kot zanimivost omenimo se resevanje Rubikove kocke. Iskanje najkrajsih poti je
Se vedno predmet algoritmicnega raziskovanja. S precej rac¢unske moci so nedavno dokazali, da je
mogoce vsako stanje Rubikove kocke resiti v najve¢ 20 potezah oz. 26 potezah (¢e je ena poteza

http://www.cube20.org/
http://www.cube20.org/qtm/

rotacija ploskve samo za 90° in ne 180°).

10

	Najkrajše poti
	Neuteženi grafi
	Uteženi grafi
	Dijkstrov algoritem
	Negativne uteži

	Primeri
	Najširša pot
	Najdaljša pot
	15 Puzzle

