Grafi
December 18, 2024

1 Grafi

Graf G je abstraktni podatkovni tip, ki ga sestavljata mnozica vozliS¢ (nodes, vertices, points)
V' in mnozica povezav (edges, links) E, ki predstavljajo relacije med pari vozlis¢. Vozliséema, ki
sestavljata povezavo, reCemo krajisci (endpoints). Vozlis¢a in povezave lahko hranijo tudi kaksne
dodatne lastnosti.

Obicajne operacije, ki jih Zelimo izvajati na grafu so:

+ dodajanje/odstranjevanje vozlis¢a/povezave
 nastavljanje/ugotavljanje lastnosti vozlis¢a/povezave
o ugotavljanje sosednosti dveh vozlis¢

 iskanje vseh sosednjih vozlis¢

Kadar z grafom modeliramo nek resnicen pojav ali proces, namesto grafa pogosto uporabimo izraz
omrezje (network). Grafe lahko uporabimo za modeliranje Stevilnih procesov, kot so razna druzbena
ali komunikacijska omrezja, omrezja soavtorstev ali celo bioloska omrezja, ki modelirajo razne
kemijske procese. Mi pa se bomo ukvarjali samo s strukturami brez njihovega ozadja, torej z grafi.

1.1 Terminologija

Glavni lastnosti grafa sta stevilo vozlis¢ n = |V| in Stevilo povezav e = |E| (za Stevilo povezav
bomo v¢asih uporabljali tudi m).

Poznamo vec¢ vrst grafov glede na njihove lastnosti:

o Neusmerjeni (undirected) grafi vsebujejo same neusmerjene povezave, ki predstavljajo
simetricne relacije, kjer vrstni red krajis¢ ni pomemben, npr. med dvema bratoma. Us-
merjeni (directed) grafi (digraphs) pa so sestavljeni iz usmerjenih povezav, ki predstavljajo
asimetri¢no relacijo, npr. od otroka k starsu. Te obic¢ajno ponazorimo z puscicami.

o Glede na lastnost povezav lo¢imo med neutezenimi (unweighted) in utezenimi (weighted)
grafi. V neutezenih grafih so vse povezave enakovredne, v utezenih pa vsaki povezavi prired-
imo neko numeri¢no vrednost, ki ji recemo utez, in lahko predstavlja npr. dolzino, ceno,

o Enostavni (simple) grafi ne vsebujejo zank (loop), ki povezujejo vozlisée s samim seboj, in
vzporednih povezav (multiple/parallel edges) med istimi pari vozlisc.

 Glede na prisotnost ciklov v grafih poznamo acikli¢ne (acyclic) in cikli¢ne (cyclic) grafe.

o Grafe precej grobo locujemo tudi po razmerju med Stevilom povezav in Stevilom vozlis¢. V
gostih (dense) grafih je Stevilo vozlis¢ velikostnega reda, ki je blizu maksimalnemu Stevilu

[1]:

moznih povezav, e = O(n?). V redkih (sparse) grafih pa je Stevilo povezav linearno odvisno
od stevila vozlis¢ e = O(n).

Oglejmo si se nekaj drugih terminov povezanih z grafi:

Tako kot pri drevesih, tudi v grafih poznamo stopnjo (degree) vozlis¢a, ki je enaka Stevilu
povezav, ki vkljucujejo to vozlisée. Ce govorimo o stopnji grafa (kar bomo oznacevali z d),
pa mislimo najvecjo stopnjo njegovega vozlis¢a. V usmerjenih grafih lo¢ujemo vhodno in
izhodno stopnjo (indegree/outdegree), ki sta Stevilo povezav, ki kazejo v vozlis¢e oz. izven
njega.

Dve vozlisci sta sosednji (adjacent) oz. soseda, ¢e ju povezuje katera izmed povezav v grafu.
Mnozici sosednjih vozlis¢ izbranega vozliséa recemo tudi soseséina (neighbourhood).

Poleg Ze omenjenih splosnih vrst grafov, poznamo tudi ve¢ razredov grafov, ki imajo podobne
strukturne lastnosti. Poznamo:

drevesa (trees), ki so v kontekstu novih terminov pravzaprav acikliéni povezani neusmerjeni
graf

polne grafe (complete graph), ki vsebujejo vse mozne povezave

regularne grafe (regular graph), v katerih imajo vsa vozlis¢a enako stopnjo

dvodelne grafe (bipartite graph), ki so sestavljeni iz dveh skupin vozlis¢, povezave pa
potekajo samo med obema skupinama

Na grafih nas pogosto zanimajo premiki med sosednjimi vozliSci:

1.2

Sprehod (walk) je poljubno zaporedje vozlisé, med katerimi se premikamo po povezavah v
grafu. Ce obstaja sprehod med dvema vozlis¢ema, bomo rekli, da sta povezani. Spomnimo
se, da ce sta povezani neposredno z eno samo povezavo, jima recemo tudi sosednji.

Obhod (closed walk) je sprehod, ki se zacne in konc¢a v istem vozliscu.

Steza (trail) je sprehod brez ponovljenih povezav.

Pot (path) je sprehod brez ponovljenih vozlis¢é. Uporablja se nekoliko nekonsistentno, npr.
za sprehod. V nekaterih primerih pa je to celo nepomembno - najkrajSa pot v pozitivno
utezenem grafu bo zagotovo pot in ne sprehod, kjer bi se kaj ponavljalo.

Cikel (cycle) je obhod brez ponovljenih vmesnih vozlis¢ (z izjemo zacetnega in konc¢nega, ki
sta enaka).

V anglescini se pojavlja tudi termin tour, ki pa nima poenotene definicije (npr. knight’s tour,
Euler tour). Obic¢ajno pomeni, da zaporedje premikov obisce celoten graf (npr. vsa vozlisca,
vse povezave) ob moznih dodatnih omejitvah (npr. vsako povezavo samo enkrat, vrne se na
izhodisce).

Predstavitve

Strukturo grafa, ki jo definirajo vozlis¢a in povezave, moramo nekako predstaviti oz. shraniti, da
bomo lahko na njej izvajali kaksne izracune. Glede na funkcionalnost, ki jo potrebujemo, poznamo
tri pogoste nacine predstavitve grafov. Ce je treba, pa si lahko pomagamo kar z veé¢ razli¢nimi
predstavitvami socasno.

#include <itostream>

#include <fstream>
#include <vector>

#include <queue>
#include <algorithm>
using namespace std;

typedef pair<int,int> PII;

typedef vector<int> VI;

typedef vector<pair<int,int>> VII;
typedef vector<vector<int>> VVI;

[2]: | template<typename T>
void print(const vector<T> &sez) {
for (T x : sez) cout << x << " ",
cout << endl;

o Seznam povezav (edge list) je najbolj enostavna predstavitev. Vse povezave v grafu pre-
prosto shranimo v seznam. Ta predstavitev bo primerna, ¢e zelimo obravnavati vse povezave
ne glede na vrstni red.

[3]: VII read_graph(string fname, int &n, int &m) {
ifstream fin(fname);
fin >> n >> m;
vector<PII> povezave;
for (int i=0;i<m;i++) {
int a,b;
fin >> a >> b;
povezave.push_back({a,b});
}
fin.close();
return povezave;

[4]: int n,m;
vector<PII> povezave = read_graph('"graph.txt",n,m);
for (auto [a,b] : povezave) cout << '(' << a << ',;!' << b << ") <<y
cout << endl;

(0,1) (0,4) (1,3) (1,4) (1,5 (1,7) (2,3) (2,5) (4,5) (6,7)

o Seznam sosedov (adjacency list) hrani za vsako vozlis¢e seznam njegovih sosedov. Kadar
se premikamo po grafih od enega vozliséa k drugemu, nam to pride zelo prav.

[6]: VVI adjacency_list(VII &edge_list, int n, bool dir=false) {
vector<VI> adj(n);
for (auto [a,b] : edge_list) {
adj[a] .push_back(b) ;
if (!dir) adj[b].push_back(a);
}

return adj;

[6]:

[7]:

[8]:

vector<VI> sosedi = adjacency_list(povezave, n);
for (int i=0;i<n;i++) {

cout << i << " "y,

print(sosedilil);

(-

3457

N~ N

~N OO W RO
PNk, OR WO R
> o,

6

Matrika sosednosti (adjacency matriz) je namenjena ucinkovitemu preverjanju sosednosti

dveh vozlis¢. Sestavimo namre¢ matriko M, kjer na mestu M, , hranimo informacijo o
b

prisotnosti ali tezi povezave med vozliS¢ema z in y.

VVI adjacency_matrix(VII &edge_list, int n) {
vector<VI> mat(n, vector<int>(n));
for (auto [a,b] : edge_list) {
mat [a] [b] 1;
mat [b] [a] 1;

¥

return mat;

vector<VI> sosednost = adjacency_matrix(povezave, n);
for (int i=0;i<n;i++) {
print (sosednost[i]);

}
01001000
10011101
00010100
01100000
11000100
01101000
00000O0OO01
01000010

Predstavitev s seznami povezav ali sosedov bi lahko nadgradili z uporabo mnozic. Namesto v
seznamu hranimo povezave ali sosede v mnozicah, ki so implementirane z razprseno tabelo ali
kaksno uravnotezene drevesno strukturo.

Omenjene predstavitve imajo svoje prednosti in slabosti. Primerjajmo jih med seboj glede na
prostorsko zahtevnost in ¢asovne zahtevnosti nekaterih operacij na enostavnih grafih.

seznam povezav
seznam sosedov
matrika sosednosti
Prostorska zahtevnost
O(e)

O(n+e)

O(n?)

Dodajanje povezave
0(1)

0(1)

0(1)

Brisanje povezave
O(e)

O(n)

0(1)

Dodajanje vozlisca
0(1)

0(1)

O(n?)

Brisanje vozlisca
O(e)

O(e)

O(n?)

Sosednost vozlis¢
O(e)

O(n)

o(1)

1.3 Preiskovanje grafov

Preiskovanje grafa (graph traversal/search) je sistematicen postopek, ki obis¢e vsa vozlis¢a grafa v
nekem vrstnem redu. Poznamo dve pogosti vrsti preiskovanj.

1.3.1 Preiskovanje v Sirino (breadth-first search, BFS)

Preiskovanje v Sirino preiskuje vozliséa podobno kot nivojski obhod v drevesih, le da se izogiba
povezavam, ki vodijo do ze obiskanih vozlis¢. Najprej obisce zacetno vozlisce, nato njegove sosede,
njihove sosede, itd.

[9]: void BFS(int x, vector<VI> &adj, vector<int> &vis, vector<int> &seq) {
queue<int> q;
q.push(x); vis[x]=1;
while (!q.empty()) {
x=q.front(); q.popQ);
seq.push_back(x);
for (int y : adjlx]) if (vislyl==0) {
q.push(y); visl[yl=1;
}

}

[10]: lvector<int> visB(n), seqB;
BFS(0,sosedi,visB,seqB);
print(seqgB);

01435726

Iskanje v Sirino ima to lepo lastnost, da obiskuje vozliséa po nivojih od blizjih proti bolj oddaljenim.
Z minimalno prilagoditvijo ga lahko uporabimo za racunanje najkrajsih poti iz zacetnega vozlisca
do vseh ostalih vozlis¢ v neutezenem grafu, kjer je dolzina poti definirana s Stevilom povezav na
njej!

1.3.2 Preiskovanje v globino (depth-first search, DFS)

Preiskovanje v globino je podobno prememu obhodu v drevesu, ki se izogiba povezam do ze
obiskanih vozlis¢. Najprej obisce zacetno vozlisce. Nato izvede preiskovanje v globino na prvem
otroku. Ko se to zakljuci in ¢ée drugi otrok Se ni bil obiskan, izvede preiskovanje v globino Se iz
drugega otroka itd.

[11]: void DFS(int x, vector<VI> &adj, vector<int> &vis, vector<int> &seq) {
seq.push_back(x);
vis[x]=1;
for (int y : adjlx]) if (vislyl==0) {
DFS(y, adj, vis, seq);
}
}

[12]: vector<int> visD(n), seqD;
DFS(0,sosedi,visD,seqD);
print (seqD);

0132547€6

[13]:

Oba opisana postopka obisceta samo del grafa, ki je dosegljiv iz zacetnega vozlisca. Tej mnozici
vozlis¢ v neusmerjenem grafu, ki so vsa povezana med seboj, re¢emo povezana komponenta
grafa (connected component). Za iskanje povezanih komponent lahko uporabimo kateregakoli od
omenjenih postopkov za preiskovanje.

Prostorska zahtevnost obeh preiskovanj je O(n). Casovno zahtevnost bi lahko ocenili z O(n?),
vendar smo lahko bolj natanéni z O(e), ker bomo vsako povezavo obravnavali najve¢ dvakrat
(enkrat iz vsakega krajisca).

Drevo preiskovanja v globino Tudi iskanje v globino ima svoje lepe lastnosti. Prva je jedr-
natost. Druga pa je v strukturi povezav, ki jih postopek obiS¢e med preiskovanjem. Prehojene
povezave bodo imele obliko drevesa (to sicer velja tudi za iskanje v Sirino). Poleg tega pa bodo vse
ostale povezave v grafu vedno povezovale vozlis¢a z nekim svojim prednikom (back-edge) ali potom-
cem (forward-edge) v drevesu. Nemogoce je, da bi obstajala povezava med dvema poddrevesoma
(cross-edge). Razmislite, zakaj je temu tako. To lastnost izkoris¢ajo pomembni algoritmi za iskanje
mostov, prereznih vozlis¢ in mocno povezanih komponent. Razmislite tudi, kaksne povezave lahko
nastopajo v drevesu preiskovanja v globino na usmerjenem grafu.

1.4 Detekcija ciklov

Podan imamo graf, za katerega ne vemo, ali vsebuje kaksen cikel ali ne. Ugotovili bi radi prisotnost
cikla in tudi nasli konkreten primer cikla v grafu. Problem se nekoliko razlikuje med neusmerjenimi
in usmerjenimi grafi. Ce bi vsako neusmerjeno povezavo modelirali z dvema nasproti usmerjenima,
bi vsaka povezava predstavljala cikel, ¢esar no¢emo.

Oglejmo si najprej primer neusmerjenega grafa. Pri razmisleku nam bo prav prislo drevo preisko-
vanja v globino. Cikel bo v tem drevesu izgledal tako, da bo obstajala povezava med dvema
vozlis¢ema, ki imata relacijo prednik-potomec. To povezavo bomo pri preiskovanu v globino nasli
takrat, ko bomo obravnavali neko vozlis¢e = in nasli povezavo do nekega zZe obiskanega prednika y.
Vozlisca na poti od x proti y bodo formirala cikel, ker med njima obstaja pot po drevesu poleg tega
pa Se novo odkrita direktna povezava. Prav nam bo prislo, ¢e bi drevo preiskovanja v globino hranili
v obliki tabele starsev za vsako vozlisée. Ce je ta vrednost nenastavljena (npr. -1), je vozlisce Se
neobiskano, koren pa naj ima za starsa kar samega sebe. Tako lahko za izgradnjo cikla preprosto
sledimo tem starsevskim povezavam od x do y.

int cycle(int x, vector<VI> &adj, vector<int> &par, vector<int> &cyc) {
if (par[x]==-1) par[x]=x;
for (int y : adjlx]) if (y!=par[x]) {
if (parlyl!=-1) { // cikel
for (int z=x; z!=y; z=par[z]) cyc.push_back(z);
cyc.push_back(y);

return 1;
}
par [yl=x;
if (cycle(y,adj,par,cyc)) return 1;
}
return O;

[14]:

[15]:

[16]:

[17]:

vector<int> vis(n), par(n,-1), cyc;
cout << cycle(0,sosedi,par,cyc) << endl;
print(cyc);

1
5231

V usmerjenem grafu je situacija nekoliko druga¢na. Povezave na ciklu morajo kazati v isto smer. Ce
ponovno razmislimo o situaciji na drevesu preiskovanja v globino, bo cikel tudi tu nastal s povezavo
od nekega vozliséa x do njegovega prednika y. Povezave iz vozlis¢a x do nekega drugega dela
drevesa, ki je ze bil obiskan, ne vzpostavijo cikla zaradi usmerjenosti. Poleg obiskanosti vozlis¢
bomo hranili Se informacijo o vozlis¢ih na poti od korena do trenutnega vozlis¢a. S tem lahko
ucéinkovito ugotovimo, ali je vozlis¢e prednik z-a. Pri sestavljanju cikla bomo zaradi premikanja
proti prednikom cikel sestavili v obratnem vrstnem redu.

int cycleDir(int x, vector<VI> &adj, vector<int> &par, vector<int> &path,,
wvector<int> &cyc) {

if (par[x]==-1) par[x]=x;

path[x]=1;

for (int y : adjlx]) if (y!=par[x]) {

if (pathl(yl) { // prednik (cikel)

for (int z=x; z!=y; z=par[z]) cyc.push_back(z);
cyc.push_back(y);
reverse(cyc.begin(), cyc.end());

return 1;
}
if (parl[yl==-1) { // neobiskano
par [yl=x;
if (cycleDir(y,adj,par,path,cyc)) return 1;
}
}
path[x]=0;
return O;

3

Za testiranje si bomo izposodili spodnji usmerjeni graf z dodatno povezavo 5 — 4, da ustvarimo
cikel. Paziti moramo tudi na to, od kod za¢nemo iskanje. Ce cikel ni dosegljiv iz zacetnega vozlisca,
ga ne bomo nasli. V tem primeru bi morali zaceti iskanje na novo iz nekega neobiskanega vozlisca,
dokler niso obiskana vsa in Sele takrat lahko zagotovimo, da cikla ni.

povezave = read_graph("directed.txt",n,m);
povezave.push_back({5,4});
vector<VI> sosediDir = adjacency_list(povezave, n, true);

vector<int> visDir(n), parDir(m,-1), path(n), cycDir;
cout << cycleDir(2,sosediDir,parDir,path,cycDir) << endl;
print(cycDir);

1

[18]:

[19]:

1540

1.5 Topolosko urejanje

Naj usmerjeni graf predstavlja medsebojne odvisnosti izvedbe opravil. Vozlis¢a ustrezajo opravilom,
povezava x — y pa pomeni, da je treba opravilo x izvesti pred opravilom y. V kaksnem vrstnem
redu naj izvajamo opravila, da bomo lahko izvedli vsa oz. je to sploh mogoce?

Topoloski vrstni red vozlis¢ v usmerjenem grafu je tak vrstni red, da vse povezave v grafu kazejo od
zgodnejsega proti kasnejSemu vozlis¢u v topoloskem vrstnem redu. Topoloski vrstni red ni enoli¢en.
Za zgornji primer bi bil mozen topoloski vrstni red npr. [4,0,2,3,1,6,5]. Ker v grafu nastopa
povezava 0 — 5, se v topoloskem vrstnem redu 0 pojavi pred 5. Preverimo lahko, da to velja za
vse povezave.

povezave = read_graph("directed.txt",n,m);
sosedi = adjacency_list(povezave, n, true);
for (int i=0;i<n;i++) {

cout << i << ": "y

print (sosedil[i]);

+

0: 135
1: 5
2: 3
3: 16
4: 0 3
5:

6:

Razmislimo o algoritmu za izgradnjo topoloskega vrstnega reda. Vozlisc¢a brez predhodnikov lahko
postavimo na zacetek topoloskega vrstnega reda. Ce je takih vozlis¢ ve¢, njihov medsebojni vrstni
red ni pomemben. Za povezave, ki izhajajo iz njih, je torej poskrbljeno. Zato lahko ta vozlisca
in njihove povezave odstranimo iz grafa ter ponovimo postopek z morebitnimi novimi vozlis¢i brez
predhodnikov. Postopek se ne zakljuci, ¢e topoloski vrstni red ne obstaja zaradi prisotnosti cikla
v grafu. Usmerjeni acikliéni grafi (directed acyclic graph - DAG) so svoj razred grafov, ki jih je
mogoce topolosko urediti.

Kako naj opisani postopek uc¢inkovito implementiramo? Odstraniti moramo n vozlis¢ in na vsakem
koraku iS¢emo med preostalimi vozlis¢i kaksnega z vhodno stopnjo 0. Direktna implementacija
takega postopka bo imela kvadratno ¢asovno zahtevnost. To pa lahko izboljSamo v vodenjem
seznama vozlis¢ z vhodno stopnjo 0. Vsaki¢, ko odstranimo vozlis¢e in njegove izhodne povezave,
dodamo v seznam morebitna novo nastala zacetna vozliséa. Tako dobimo algoritem s ¢asovno
zahtevnostjo O(n + e). Obicajno je Stevilo povezav vsaj toliksno kot Stevilo vozlisé, zato lahko brez
vecje skode poenostavimo na O(e).

VI toposort(vector<VI> &sosedi, int n) {
vector<int> indeg(n);
for (int x=0;x<n;x++) {
for (int y : sosedil[x]) indegly]++;

[20]:

[21]:

queue<int> q;
for (int x=0;x<n;x++) {
if (indeglx]==0) q.push(x);
}
vector<int> seq;
while (!q.empty()) {
int x=q.front(); q.popQ);
seq.push_back(x) ;
for (int y : sosedil[x]) {
indeglyl--;
if (indegly]l==0) q.push(y);

by

return seq;

vector<int> topo = toposort(sosedi, n);
print (topo);

2403165

1.6 Kriticna pot

Potek izvajanja projekta lahko modeliramo z mejniki in aktivnostmi, ki doprinesejo k izpolnjevanju
teh mejnikov. Mejnike predstavimo z vozlis¢i, aktivnosti pa s povezavami v usmerjenem grafu. Ko
so konc¢ane vse potrebne aktivnosti, je mejnik dosezen. Poleg tega poznamo ¢as w(z,y) za izvedbo
dolocene aktivnosti med mejnikoma z in y. Oc¢itno mora biti graf aciklicen. Kaksen je najkrajsi ¢as
za izvedbo projekta ob “neomejeni” koli¢ini resursov, pri ¢emer lahko vsako aktivnost izvaja ena
oseba, vendar imamo na voljo poljubno stevilo oseb? Ta c¢as predstavlja najdaljSa pot v utezenem
usmerjenem aciklicnem grafu, ki ji recemo tudi kriticna pot.

Kako pa jo izracunamo? Vozlis¢a naprej topolosko uredimo v linearnem c¢asu. Nato pa lahko racu-
namo najdaljSe poti d(x), ki se za¢nejo v v posameznem vozlis¢u x, v obratnem topoloskem vrstnem
redu. Ce vozlisée nima naslednikov, je d(z) = 0. Sicer pa velja d(z) = max,, ,_, (@wyer (W@, y) +

d(y))-

Opravka imamo z utezenim grafom, ki ga moramo najprej prebrati. V seznamu sosedov bomo
poleg sosednjega vozlisca hranili Se tezo povezave, ki vodi do njega.

ifstream fin("critical.txt");
fin >> n >> m;
vector<VI> adj(n);
vector<VII> adjw(n);
for (int i=0;i<m;i++) {
int a,b,c;
fin >> a >> b >> c;
adj[al .push_back(b);
adjw[al .push_back({b,c});

10

[22]:

[23]:

[25] :

fin.close();

Algoritem za izrac¢un topoloskega vrstnega reda ze imamo, samo obrnemo ga.

vector<int> ord = toposort(adj, n);
reverse(ord.begin(), ord.end());

V tem obratnem topoloskem vrstem redu lahko izracunamo dolzino najdaljse poti iz vsakega vo-
zlis¢a, saj bo vsaka vrednost odvisna samo od naslednikov, za katere imamo rezultat ze izracunan.
Zapomnimo si tudi vozlis¢e z najvecjim rezultatom, ki je zacetek najdaljSe poti.

vector<int> d(n);

int start = ord[0];

for (int x : ord) {
for (auto [y,w] : adjwlx]) {

dlx] = max(d[x], w+dlyl);

}
if (d[x]>d[start]) start=x;

}

cout << "dolzina = " << d[start] << endl;

dolzina = 10

Izra¢unane vrednosti so dovolj, da lahko pot tudi rekonstruiramo. Iz trenutnega vozlis¢a nadalju-
jemo tam, kjer je izracunana najdaljSsa pot ravno za dolzino povezave krajSa. Druga moznost bi
bila, da si pri racunanju najdaljsih poti za vsako vozlisée poleg razdalje shranjujemo tudi naslednje
vozlisce, ki je vodilo do te maksimalne vrednosti.

cout << start;

int x=start;

while (d[x]!=0) {

for (auto [y,w] : adjwlx]) {
if (d[x]==wt+dlyl) {

cout << " " <K< y;
X =Yy;
break;

3

cout << endl;

46052

1.7 Eulerjev obhod

Dobro znan problem na neusmerjenih grafih je iskanje FEulerjevega obhod (Eulerian
tour/cycle/circuit). Pri tem iS¢emo obhod, ki obis¢e vse povezave v grafu (vsako povezavo natanko
enkrat, vozlis¢a pa morda tudi veckrat). Podoben problem je iskanje Eulerjevega sprehoda (FEule-
rian trail/path/walk). Pravzaprav iS¢emo stezo (sprehod brez ponovljenih povezav vendar morda s

11

ponovljenimi vozlis¢i), ki obisce vse povezave v grafu. Za razliko od obhoda pa se lahko zacne in
konca na razliénih mestih.

S tem problemov ste se najbrz ze srecali pri risanju oblik z eno potezo (npr. odprtega
pisma/ovojnice). Euler pa pri problemu sedmih mostov v Kénigsbergu (danes Kaliningrad). Zani-
malo ga je, kako bi lahko na sprehodu prehodil vsak most natanko enkrat.

Eulerjev izrek pravi, da v povezanem grafu obstaja Eulerjev obhod natanko takrat, ko so vsa
vozlisca sode stopnje. Eulerjev sprehod pa natanko takrat, ko so vsa vozlisca sode stopnje razen
morda toéno dveh vozlis¢, kjer se zacne in konca. Dokazimo to trditev za primer obhoda (za
sprehod velja podobno).

e Recimo, da obstaja Fulerjev obhod. Potem ta obhod na prehodu skozi vsako vozlis¢e zmanjsa
stopnjo tega vozlis¢a za 2. Ce sproti odstranjujemo prehojene povezave, imajo na koncu vsa
vozliséa stopnjo 0. Torej morajo biti na zacetku vsa sode stopnje.

e Obratna smer je bolj kompleksna in jo lahko dokazemo kar s konstrukcijo Eulerjevega obhoda
na povezanem grafu z vozliséi sodih stopenj. Zacnemo v poljubnem vozlis¢u z in sledimo
povezavam, dokler se ne vrnemo v zacetno vozlisSée z. Pri tem se ne moremo zatakniti v
nekem drugem vozliséu y, ker bi ze porabili vse njegove povezave. V vsakem prehodu skozi
vozlis¢e namre¢ porabimo dve povezavi - ¢e je na voljo vsaj ena za vstop, bo tudi druga za
izstop, ker so vsa vozlis¢a sode stopnje. Morda pa smo se vrnili v zacetno vozlisée, pri tem
pa Se nismo obiskali vseh povezav. Postopek ponovimo na enem od ze obiskanih vozlis¢, ki
ima Se kaksne neobiskane povezave. Od tam na enak nacin zgradimo obhod in ga zdruzimo s
prejsnjim. To ponavljamo dokler niso obiskane vse povezave. To je Hierholzerjev algoritem,
ki ga lahko implementiramo v linearnem casu.

12

	Grafi
	Terminologija
	Predstavitve
	Preiskovanje grafov
	Preiskovanje v širino (breadth-first search, BFS)
	Preiskovanje v globino (depth-first search, DFS)

	Detekcija ciklov
	Topološko urejanje
	Kritična pot
	Eulerjev obhod

