
Grafi

December 18, 2024

1 Grafi
Graf 𝐺 je abstraktni podatkovni tip, ki ga sestavljata množica vozlišč (nodes, vertices, points)
𝑉 in množica povezav (edges, links) 𝐸, ki predstavljajo relacije med pari vozlišč. Vozliščema, ki
sestavljata povezavo, rečemo krajišči (endpoints). Vozlišča in povezave lahko hranijo tudi kakšne
dodatne lastnosti.

Običajne operacije, ki jih želimo izvajati na grafu so:

• dodajanje/odstranjevanje vozlišča/povezave
• nastavljanje/ugotavljanje lastnosti vozlišča/povezave
• ugotavljanje sosednosti dveh vozlišč
• iskanje vseh sosednjih vozlišč
• …

Kadar z grafom modeliramo nek resničen pojav ali proces, namesto grafa pogosto uporabimo izraz
omrežje (network). Grafe lahko uporabimo za modeliranje številnih procesov, kot so razna družbena
ali komunikacijska omrežja, omrežja soavtorstev ali celo biološka omrežja, ki modelirajo razne
kemijske procese. Mi pa se bomo ukvarjali samo s strukturami brez njihovega ozadja, torej z grafi.

1.1 Terminologija
Glavni lastnosti grafa sta število vozlišč 𝑛 = |𝑉 | in število povezav 𝑒 = |𝐸| (za število povezav
bomo včasih uporabljali tudi 𝑚).

Poznamo več vrst grafov glede na njihove lastnosti:

• Neusmerjeni (undirected) grafi vsebujejo same neusmerjene povezave, ki predstavljajo
simetrične relacije, kjer vrstni red krajišč ni pomemben, npr. med dvema bratoma. Us-
merjeni (directed) grafi (digraphs) pa so sestavljeni iz usmerjenih povezav, ki predstavljajo
asimetrično relacijo, npr. od otroka k staršu. Te običajno ponazorimo z puščicami.

• Glede na lastnost povezav ločimo med neuteženimi (unweighted) in uteženimi (weighted)
grafi. V neuteženih grafih so vse povezave enakovredne, v uteženih pa vsaki povezavi prired-
imo neko numerično vrednost, ki ji rečemo utež, in lahko predstavlja npr. dolžino, ceno,
…

• Enostavni (simple) grafi ne vsebujejo zank (loop), ki povezujejo vozlišče s samim seboj, in
vzporednih povezav (multiple/parallel edges) med istimi pari vozlišč.

• Glede na prisotnost ciklov v grafih poznamo aciklične (acyclic) in ciklične (cyclic) grafe.
• Grafe precej grobo ločujemo tudi po razmerju med številom povezav in številom vozlišč. V

gostih (dense) grafih je število vozlišč velikostnega reda, ki je blizu maksimalnemu številu

1

možnih povezav, 𝑒 = 𝑂(𝑛2). V redkih (sparse) grafih pa je število povezav linearno odvisno
od števila vozlišč 𝑒 = 𝑂(𝑛).

Oglejmo si še nekaj drugih terminov povezanih z grafi:

• Tako kot pri drevesih, tudi v grafih poznamo stopnjo (degree) vozlišča, ki je enaka številu
povezav, ki vključujejo to vozlišče. Če govorimo o stopnji grafa (kar bomo označevali z 𝑑),
pa mislimo največjo stopnjo njegovega vozlišča. V usmerjenih grafih ločujemo vhodno in
izhodno stopnjo (indegree/outdegree), ki sta število povezav, ki kažejo v vozlišče oz. izven
njega.

• Dve vozlišči sta sosednji (adjacent) oz. soseda, če ju povezuje katera izmed povezav v grafu.
Množici sosednjih vozlišč izbranega vozlišča rečemo tudi soseščina (neighbourhood).

Poleg že omenjenih splošnih vrst grafov, poznamo tudi več razredov grafov, ki imajo podobne
strukturne lastnosti. Poznamo:

• drevesa (trees), ki so v kontekstu novih terminov pravzaprav aciklični povezani neusmerjeni
graf

• polne grafe (complete graph), ki vsebujejo vse možne povezave
• regularne grafe (regular graph), v katerih imajo vsa vozlišča enako stopnjo
• dvodelne grafe (bipartite graph), ki so sestavljeni iz dveh skupin vozlišč, povezave pa

potekajo samo med obema skupinama
• …

Na grafih nas pogosto zanimajo premiki med sosednjimi vozlišči:

• Sprehod (walk) je poljubno zaporedje vozlišč, med katerimi se premikamo po povezavah v
grafu. Če obstaja sprehod med dvema vozliščema, bomo rekli, da sta povezani. Spomnimo
se, da če sta povezani neposredno z eno samo povezavo, jima rečemo tudi sosednji.

• Obhod (closed walk) je sprehod, ki se začne in konča v istem vozlišču.
• Steza (trail) je sprehod brez ponovljenih povezav.
• Pot (path) je sprehod brez ponovljenih vozlišč. Uporablja se nekoliko nekonsistentno, npr.

za sprehod. V nekaterih primerih pa je to celo nepomembno - najkrajša pot v pozitivno
uteženem grafu bo zagotovo pot in ne sprehod, kjer bi se kaj ponavljalo.

• Cikel (cycle) je obhod brez ponovljenih vmesnih vozlišč (z izjemo začetnega in končnega, ki
sta enaka).

• V angleščini se pojavlja tudi termin tour, ki pa nima poenotene definicije (npr. knight’s tour,
Euler tour). Običajno pomeni, da zaporedje premikov obišče celoten graf (npr. vsa vozlišča,
vse povezave) ob možnih dodatnih omejitvah (npr. vsako povezavo samo enkrat, vrne se na
izhodišče).

1.2 Predstavitve
Strukturo grafa, ki jo definirajo vozlišča in povezave, moramo nekako predstaviti oz. shraniti, da
bomo lahko na njej izvajali kakšne izračune. Glede na funkcionalnost, ki jo potrebujemo, poznamo
tri pogoste načine predstavitve grafov. Če je treba, pa si lahko pomagamo kar z več različnimi
predstavitvami sočasno.

[1]: #include <iostream>
#include <fstream>
#include <vector>

2

#include <queue>
#include <algorithm>
using namespace std;

typedef pair<int,int> PII;
typedef vector<int> VI;
typedef vector<pair<int,int>> VII;
typedef vector<vector<int>> VVI;

[2]: template<typename T>
void print(const vector<T> &sez) {

for (T x : sez) cout << x << " ";
cout << endl;

}

• Seznam povezav (edge list) je najbolj enostavna predstavitev. Vse povezave v grafu pre-
prosto shranimo v seznam. Ta predstavitev bo primerna, če želimo obravnavati vse povezave
ne glede na vrstni red.

[3]: VII read_graph(string fname, int &n, int &m) {
ifstream fin(fname);
fin >> n >> m;
vector<PII> povezave;
for (int i=0;i<m;i++) {

int a,b;
fin >> a >> b;
povezave.push_back({a,b});

}
fin.close();
return povezave;

}

[4]: int n,m;
vector<PII> povezave = read_graph("graph.txt",n,m);
for (auto [a,b] : povezave) cout << '(' << a << ',' << b << ')' << ' ';
cout << endl;

(0,1) (0,4) (1,3) (1,4) (1,5) (1,7) (2,3) (2,5) (4,5) (6,7)

• Seznam sosedov (adjacency list) hrani za vsako vozlišče seznam njegovih sosedov. Kadar
se premikamo po grafih od enega vozlišča k drugemu, nam to pride zelo prav.

[5]: VVI adjacency_list(VII &edge_list, int n, bool dir=false) {
vector<VI> adj(n);
for (auto [a,b] : edge_list) {

adj[a].push_back(b);
if (!dir) adj[b].push_back(a);

}
return adj;

3

}

[6]: vector<VI> sosedi = adjacency_list(povezave, n);
for (int i=0;i<n;i++) {

cout << i << ": ";
print(sosedi[i]);

}

0: 1 4
1: 0 3 4 5 7
2: 3 5
3: 1 2
4: 0 1 5
5: 1 2 4
6: 7
7: 1 6

• Matrika sosednosti (adjacency matrix) je namenjena učinkovitemu preverjanju sosednosti
dveh vozlišč. Sestavimo namreč matriko 𝑀 , kjer na mestu 𝑀𝑥,𝑦 hranimo informacijo o
prisotnosti ali teži povezave med vozliščema 𝑥 in 𝑦.

[7]: VVI adjacency_matrix(VII &edge_list, int n) {
vector<VI> mat(n, vector<int>(n));
for (auto [a,b] : edge_list) {

mat[a][b] = 1;
mat[b][a] = 1;

}
return mat;

}

[8]: vector<VI> sosednost = adjacency_matrix(povezave, n);
for (int i=0;i<n;i++) {

print(sosednost[i]);
}

0 1 0 0 1 0 0 0
1 0 0 1 1 1 0 1
0 0 0 1 0 1 0 0
0 1 1 0 0 0 0 0
1 1 0 0 0 1 0 0
0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0

Predstavitev s seznami povezav ali sosedov bi lahko nadgradili z uporabo množic. Namesto v
seznamu hranimo povezave ali sosede v množicah, ki so implementirane z razpršeno tabelo ali
kakšno uravnotežene drevesno strukturo.

Omenjene predstavitve imajo svoje prednosti in slabosti. Primerjajmo jih med seboj glede na
prostorsko zahtevnost in časovne zahtevnosti nekaterih operacij na enostavnih grafih.

4

seznam povezav

seznam sosedov

matrika sosednosti

Prostorska zahtevnost

𝑂(𝑒)
𝑂(𝑛 + 𝑒)
𝑂(𝑛2)
Dodajanje povezave

𝑂(1)
𝑂(1)
𝑂(1)
Brisanje povezave

𝑂(𝑒)
𝑂(𝑛)
𝑂(1)
Dodajanje vozlišča

𝑂(1)
𝑂(1)
𝑂(𝑛2)
Brisanje vozlišča

𝑂(𝑒)
𝑂(𝑒)
𝑂(𝑛2)
Sosednost vozlišč

𝑂(𝑒)
𝑂(𝑛)
𝑂(1)

1.3 Preiskovanje grafov
Preiskovanje grafa (graph traversal/search) je sistematičen postopek, ki obišče vsa vozlišča grafa v
nekem vrstnem redu. Poznamo dve pogosti vrsti preiskovanj.

5

1.3.1 Preiskovanje v širino (breadth-first search, BFS)

Preiskovanje v širino preiskuje vozlišča podobno kot nivojski obhod v drevesih, le da se izogiba
povezavam, ki vodijo do že obiskanih vozlišč. Najprej obišče začetno vozlišče, nato njegove sosede,
njihove sosede, itd.

[9]: void BFS(int x, vector<VI> &adj, vector<int> &vis, vector<int> &seq) {
queue<int> q;
q.push(x); vis[x]=1;
while (!q.empty()) {

x=q.front(); q.pop();
seq.push_back(x);
for (int y : adj[x]) if (vis[y]==0) {

q.push(y); vis[y]=1;
}

}
}

[10]: vector<int> visB(n), seqB;
BFS(0,sosedi,visB,seqB);
print(seqB);

0 1 4 3 5 7 2 6

Iskanje v širino ima to lepo lastnost, da obiskuje vozlišča po nivojih od bližjih proti bolj oddaljenim.
Z minimalno prilagoditvijo ga lahko uporabimo za računanje najkrajših poti iz začetnega vozlišča
do vseh ostalih vozlišč v neuteženem grafu, kjer je dolžina poti definirana s številom povezav na
njej!

1.3.2 Preiskovanje v globino (depth-first search, DFS)

Preiskovanje v globino je podobno prememu obhodu v drevesu, ki se izogiba povezam do že
obiskanih vozlišč. Najprej obišče začetno vozlišče. Nato izvede preiskovanje v globino na prvem
otroku. Ko se to zaključi in če drugi otrok še ni bil obiskan, izvede preiskovanje v globino še iz
drugega otroka itd.

[11]: void DFS(int x, vector<VI> &adj, vector<int> &vis, vector<int> &seq) {
seq.push_back(x);
vis[x]=1;
for (int y : adj[x]) if (vis[y]==0) {

DFS(y, adj, vis, seq);
}

}

[12]: vector<int> visD(n), seqD;
DFS(0,sosedi,visD,seqD);
print(seqD);

0 1 3 2 5 4 7 6

6

Oba opisana postopka obiščeta samo del grafa, ki je dosegljiv iz začetnega vozlišča. Tej množici
vozlišč v neusmerjenem grafu, ki so vsa povezana med seboj, rečemo povezana komponenta
grafa (connected component). Za iskanje povezanih komponent lahko uporabimo kateregakoli od
omenjenih postopkov za preiskovanje.

Prostorska zahtevnost obeh preiskovanj je 𝑂(𝑛). Časovno zahtevnost bi lahko ocenili z 𝑂(𝑛2),
vendar smo lahko bolj natančni z 𝑂(𝑒), ker bomo vsako povezavo obravnavali največ dvakrat
(enkrat iz vsakega krajišča).

Drevo preiskovanja v globino Tudi iskanje v globino ima svoje lepe lastnosti. Prva je jedr-
natost. Druga pa je v strukturi povezav, ki jih postopek obišče med preiskovanjem. Prehojene
povezave bodo imele obliko drevesa (to sicer velja tudi za iskanje v širino). Poleg tega pa bodo vse
ostale povezave v grafu vedno povezovale vozlišča z nekim svojim prednikom (back-edge) ali potom-
cem (forward-edge) v drevesu. Nemogoče je, da bi obstajala povezava med dvema poddrevesoma
(cross-edge). Razmislite, zakaj je temu tako. To lastnost izkoriščajo pomembni algoritmi za iskanje
mostov, prereznih vozlišč in močno povezanih komponent. Razmislite tudi, kakšne povezave lahko
nastopajo v drevesu preiskovanja v globino na usmerjenem grafu.

1.4 Detekcija ciklov
Podan imamo graf, za katerega ne vemo, ali vsebuje kakšen cikel ali ne. Ugotovili bi radi prisotnost
cikla in tudi našli konkreten primer cikla v grafu. Problem se nekoliko razlikuje med neusmerjenimi
in usmerjenimi grafi. Če bi vsako neusmerjeno povezavo modelirali z dvema nasproti usmerjenima,
bi vsaka povezava predstavljala cikel, česar nočemo.

Oglejmo si najprej primer neusmerjenega grafa. Pri razmisleku nam bo prav prišlo drevo preisko-
vanja v globino. Cikel bo v tem drevesu izgledal tako, da bo obstajala povezava med dvema
vozliščema, ki imata relacijo prednik-potomec. To povezavo bomo pri preiskovanu v globino našli
takrat, ko bomo obravnavali neko vozlišče 𝑥 in našli povezavo do nekega že obiskanega prednika 𝑦.
Vozlišča na poti od 𝑥 proti 𝑦 bodo formirala cikel, ker med njima obstaja pot po drevesu poleg tega
pa še novo odkrita direktna povezava. Prav nam bo prišlo, če bi drevo preiskovanja v globino hranili
v obliki tabele staršev za vsako vozlišče. Če je ta vrednost nenastavljena (npr. -1), je vozlišče še
neobiskano, koren pa naj ima za starša kar samega sebe. Tako lahko za izgradnjo cikla preprosto
sledimo tem starševskim povezavam od 𝑥 do 𝑦.

[13]: int cycle(int x, vector<VI> &adj, vector<int> &par, vector<int> &cyc) {
if (par[x]==-1) par[x]=x;
for (int y : adj[x]) if (y!=par[x]) {

if (par[y]!=-1) { // cikel
for (int z=x; z!=y; z=par[z]) cyc.push_back(z);
cyc.push_back(y);
return 1;

}
par[y]=x;
if (cycle(y,adj,par,cyc)) return 1;

}
return 0;

}

7

[14]: vector<int> vis(n), par(n,-1), cyc;
cout << cycle(0,sosedi,par,cyc) << endl;
print(cyc);

1
5 2 3 1

V usmerjenem grafu je situacija nekoliko drugačna. Povezave na ciklu morajo kazati v isto smer. Če
ponovno razmislimo o situaciji na drevesu preiskovanja v globino, bo cikel tudi tu nastal s povezavo
od nekega vozlišča 𝑥 do njegovega prednika 𝑦. Povezave iz vozlišča 𝑥 do nekega drugega dela
drevesa, ki je že bil obiskan, ne vzpostavijo cikla zaradi usmerjenosti. Poleg obiskanosti vozlišč
bomo hranili še informacijo o vozliščih na poti od korena do trenutnega vozlišča. S tem lahko
učinkovito ugotovimo, ali je vozlišče prednik 𝑥-a. Pri sestavljanju cikla bomo zaradi premikanja
proti prednikom cikel sestavili v obratnem vrstnem redu.

[15]: int cycleDir(int x, vector<VI> &adj, vector<int> &par, vector<int> &path,␣
↪vector<int> &cyc) {

if (par[x]==-1) par[x]=x;
path[x]=1;
for (int y : adj[x]) if (y!=par[x]) {

if (path[y]) { // prednik (cikel)
for (int z=x; z!=y; z=par[z]) cyc.push_back(z);
cyc.push_back(y);
reverse(cyc.begin(), cyc.end());
return 1;

}
if (par[y]==-1) { // neobiskano

par[y]=x;
if (cycleDir(y,adj,par,path,cyc)) return 1;

}
}
path[x]=0;
return 0;

}

Za testiranje si bomo izposodili spodnji usmerjeni graf z dodatno povezavo 5 → 4, da ustvarimo
cikel. Paziti moramo tudi na to, od kod začnemo iskanje. Če cikel ni dosegljiv iz začetnega vozlišča,
ga ne bomo našli. V tem primeru bi morali začeti iskanje na novo iz nekega neobiskanega vozlišča,
dokler niso obiskana vsa in šele takrat lahko zagotovimo, da cikla ni.

[16]: povezave = read_graph("directed.txt",n,m);
povezave.push_back({5,4});
vector<VI> sosediDir = adjacency_list(povezave, n, true);

[17]: vector<int> visDir(n), parDir(n,-1), path(n), cycDir;
cout << cycleDir(2,sosediDir,parDir,path,cycDir) << endl;
print(cycDir);

1

8

1 5 4 0

1.5 Topološko urejanje
Naj usmerjeni graf predstavlja medsebojne odvisnosti izvedbe opravil. Vozlišča ustrezajo opravilom,
povezava 𝑥 → 𝑦 pa pomeni, da je treba opravilo 𝑥 izvesti pred opravilom 𝑦. V kakšnem vrstnem
redu naj izvajamo opravila, da bomo lahko izvedli vsa oz. je to sploh mogoče?

Topološki vrstni red vozlišč v usmerjenem grafu je tak vrstni red, da vse povezave v grafu kažejo od
zgodnejšega proti kasnejšemu vozlišču v topološkem vrstnem redu. Topološki vrstni red ni enoličen.
Za zgornji primer bi bil možen topološki vrstni red npr. [4,0,2,3,1,6,5]. Ker v grafu nastopa
povezava 0 → 5, se v topološkem vrstnem redu 0 pojavi pred 5. Preverimo lahko, da to velja za
vse povezave.

[18]: povezave = read_graph("directed.txt",n,m);
sosedi = adjacency_list(povezave, n, true);
for (int i=0;i<n;i++) {

cout << i << ": ";
print(sosedi[i]);

}

0: 1 3 5
1: 5
2: 3
3: 1 6
4: 0 3
5:
6:

Razmislimo o algoritmu za izgradnjo topološkega vrstnega reda. Vozlišča brez predhodnikov lahko
postavimo na začetek topološkega vrstnega reda. Če je takih vozlišč več, njihov medsebojni vrstni
red ni pomemben. Za povezave, ki izhajajo iz njih, je torej poskrbljeno. Zato lahko ta vozlišča
in njihove povezave odstranimo iz grafa ter ponovimo postopek z morebitnimi novimi vozlišči brez
predhodnikov. Postopek se ne zaključi, če topološki vrstni red ne obstaja zaradi prisotnosti cikla
v grafu. Usmerjeni aciklični grafi (directed acyclic graph - DAG) so svoj razred grafov, ki jih je
mogoče topološko urediti.

Kako naj opisani postopek učinkovito implementiramo? Odstraniti moramo 𝑛 vozlišč in na vsakem
koraku iščemo med preostalimi vozlišči kakšnega z vhodno stopnjo 0. Direktna implementacija
takega postopka bo imela kvadratno časovno zahtevnost. To pa lahko izboljšamo v vodenjem
seznama vozlišč z vhodno stopnjo 0. Vsakič, ko odstranimo vozlišče in njegove izhodne povezave,
dodamo v seznam morebitna novo nastala začetna vozlišča. Tako dobimo algoritem s časovno
zahtevnostjo 𝑂(𝑛 + 𝑒). Običajno je število povezav vsaj tolikšno kot število vozlišč, zato lahko brez
večje škode poenostavimo na 𝑂(𝑒).

[19]: VI toposort(vector<VI> &sosedi, int n) {
vector<int> indeg(n);
for (int x=0;x<n;x++) {

for (int y : sosedi[x]) indeg[y]++;
}

9

queue<int> q;
for (int x=0;x<n;x++) {

if (indeg[x]==0) q.push(x);
}
vector<int> seq;
while (!q.empty()) {

int x=q.front(); q.pop();
seq.push_back(x);
for (int y : sosedi[x]) {

indeg[y]--;
if (indeg[y]==0) q.push(y);

}
}
return seq;

}

[20]: vector<int> topo = toposort(sosedi, n);
print(topo);

2 4 0 3 1 6 5

1.6 Kritična pot
Potek izvajanja projekta lahko modeliramo z mejniki in aktivnostmi, ki doprinesejo k izpolnjevanju
teh mejnikov. Mejnike predstavimo z vozlišči, aktivnosti pa s povezavami v usmerjenem grafu. Ko
so končane vse potrebne aktivnosti, je mejnik dosežen. Poleg tega poznamo čas 𝑤(𝑥, 𝑦) za izvedbo
določene aktivnosti med mejnikoma 𝑥 in 𝑦. Očitno mora biti graf acikličen. Kakšen je najkrajši čas
za izvedbo projekta ob “neomejeni” količini resursov, pri čemer lahko vsako aktivnost izvaja ena
oseba, vendar imamo na voljo poljubno število oseb? Ta čas predstavlja najdaljša pot v uteženem
usmerjenem acikličnem grafu, ki ji rečemo tudi kritična pot.

Kako pa jo izračunamo? Vozlišča naprej topološko uredimo v linearnem času. Nato pa lahko raču-
namo najdaljše poti 𝑑(𝑥), ki se začnejo v v posameznem vozlišču 𝑥, v obratnem topološkem vrstnem
redu. Če vozlišče nima naslednikov, je 𝑑(𝑥) = 0. Sicer pa velja 𝑑(𝑥) = max𝑦∶ 𝑥<𝑦 ∧ (𝑥,𝑦)∈𝐸 (𝑤(𝑥, 𝑦) +
𝑑(𝑦)).
Opravka imamo z uteženim grafom, ki ga moramo najprej prebrati. V seznamu sosedov bomo
poleg sosednjega vozlišča hranili še težo povezave, ki vodi do njega.

[21]: ifstream fin("critical.txt");
fin >> n >> m;
vector<VI> adj(n);
vector<VII> adjw(n);
for (int i=0;i<m;i++) {

int a,b,c;
fin >> a >> b >> c;
adj[a].push_back(b);
adjw[a].push_back({b,c});

}

10

fin.close();

Algoritem za izračun topološkega vrstnega reda že imamo, samo obrnemo ga.

[22]: vector<int> ord = toposort(adj, n);
reverse(ord.begin(), ord.end());

V tem obratnem topološkem vrstem redu lahko izračunamo dolžino najdaljše poti iz vsakega vo-
zlišča, saj bo vsaka vrednost odvisna samo od naslednikov, za katere imamo rezultat že izračunan.
Zapomnimo si tudi vozlišče z največjim rezultatom, ki je začetek najdaljše poti.

[23]: vector<int> d(n);
int start = ord[0];
for (int x : ord) {

for (auto [y,w] : adjw[x]) {
d[x] = max(d[x], w+d[y]);

}
if (d[x]>d[start]) start=x;

}
cout << "dolzina = " << d[start] << endl;

dolzina = 10

Izračunane vrednosti so dovolj, da lahko pot tudi rekonstruiramo. Iz trenutnega vozlišča nadalju-
jemo tam, kjer je izračunana najdaljša pot ravno za dolžino povezave krajša. Druga možnost bi
bila, da si pri računanju najdaljših poti za vsako vozlišče poleg razdalje shranjujemo tudi naslednje
vozlišče, ki je vodilo do te maksimalne vrednosti.

[25]: cout << start;
int x=start;
while (d[x]!=0) {

for (auto [y,w] : adjw[x]) {
if (d[x]==w+d[y]) {

cout << " " << y;
x = y;
break;

}
}

}
cout << endl;

4 6 0 5 2

1.7 Eulerjev obhod
Dobro znan problem na neusmerjenih grafih je iskanje Eulerjevega obhod (Eulerian
tour/cycle/circuit). Pri tem iščemo obhod, ki obišče vse povezave v grafu (vsako povezavo natanko
enkrat, vozlišča pa morda tudi večkrat). Podoben problem je iskanje Eulerjevega sprehoda (Eule-
rian trail/path/walk). Pravzaprav iščemo stezo (sprehod brez ponovljenih povezav vendar morda s

11

ponovljenimi vozlišči), ki obišče vse povezave v grafu. Za razliko od obhoda pa se lahko začne in
konča na različnih mestih.

S tem problemov ste se najbrž že srečali pri risanju oblik z eno potezo (npr. odprtega
pisma/ovojnice). Euler pa pri problemu sedmih mostov v Königsbergu (danes Kaliningrad). Zani-
malo ga je, kako bi lahko na sprehodu prehodil vsak most natanko enkrat.

Eulerjev izrek pravi, da v povezanem grafu obstaja Eulerjev obhod natanko takrat, ko so vsa
vozlišča sode stopnje. Eulerjev sprehod pa natanko takrat, ko so vsa vozlišča sode stopnje razen
morda točno dveh vozlišč, kjer se začne in konča. Dokažimo to trditev za primer obhoda (za
sprehod velja podobno).

• Recimo, da obstaja Eulerjev obhod. Potem ta obhod na prehodu skozi vsako vozlišče zmanjša
stopnjo tega vozlišča za 2. Če sproti odstranjujemo prehojene povezave, imajo na koncu vsa
vozlišča stopnjo 0. Torej morajo biti na začetku vsa sode stopnje.

• Obratna smer je bolj kompleksna in jo lahko dokažemo kar s konstrukcijo Eulerjevega obhoda
na povezanem grafu z vozlišči sodih stopenj. Začnemo v poljubnem vozlišču 𝑥 in sledimo
povezavam, dokler se ne vrnemo v začetno vozlišče 𝑥. Pri tem se ne moremo zatakniti v
nekem drugem vozlišču 𝑦, ker bi že porabili vse njegove povezave. V vsakem prehodu skozi
vozlišče namreč porabimo dve povezavi - če je na voljo vsaj ena za vstop, bo tudi druga za
izstop, ker so vsa vozlišča sode stopnje. Morda pa smo se vrnili v začetno vozlišče, pri tem
pa še nismo obiskali vseh povezav. Postopek ponovimo na enem od že obiskanih vozlišč, ki
ima še kakšne neobiskane povezave. Od tam na enak način zgradimo obhod in ga združimo s
prejšnjim. To ponavljamo dokler niso obiskane vse povezave. To je Hierholzerjev algoritem,
ki ga lahko implementiramo v linearnem času.

12

	Grafi
	Terminologija
	Predstavitve
	Preiskovanje grafov
	Preiskovanje v širino (breadth-first search, BFS)
	Preiskovanje v globino (depth-first search, DFS)

	Detekcija ciklov
	Topološko urejanje
	Kritična pot
	Eulerjev obhod

