[1]:

[2]:

Dinamicno programiranje
December 18, 2024

1 Dinamicno programiranje

Dinami¢no programiranje je algoritmicen pristop, ki je podoben pristopu deli in vladaj. Tudi
pri uporabi dinamic¢nega programiranja bomo razbili problem na manjSe podprobleme, poiskali
optimalne resitve podproblemov in si z njimi pomagali pri resitvi zacetnega problema. Pomembne
lastnosti problema, pri katerem si lahko pomagamo z dinami¢nim programiranjem so:

e neodvisnost podproblemov: Posamezen podproblem lahko resujemo neodvisno od drugih pod-
problemov.

e optimalna podstruktura: Optimalna resitev problema vsebuje optimalne resitve podproble-
mov.

» prekrivanje/ponavljanje podproblemov: To je glavna lastnost, ki jo bomo izkoristili za
izboljsave in v ¢emer se pristop razlikuje od tehnike deli in vladaj.

Tehniko lahko enostavno povzamemo z nasvetom “ne racunaj enakih stvari veckrat”, v praksi pa
je kljub temu nekoliko bolj zapleteno - kako to doseci, katere stvari sploh so enake, ...

Pristop nima nobene veze z dinami¢no alokacijo pomnilnika. Poimenoval ga je njen avtor Richard
Bellman. “Programiranje” se nanasa na resevanje optimizacijskega problema, poodobno kot matem-
ati¢no programiranje/optimizacija. Pridevnik “dinami¢no” pa se nanasa na razli¢ne podprobleme.

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using namespace std;

1.1 Fibonaccijevo zaporedje

Osnovno idejo dinamic¢nega programiranja si oglejmo na trivialnem primeru Fibonacijevega za-
poredja, ki je definirano rekurzivno kot: F, =0, F, =1, F, =F, |+ F, 5. Zanima nas n-to
stevilo v zaporedju. Pri vecjih n-jih bodo vrednosti zaporedja precej velike, vendar se s tem ne
bomo ukvarjali in bomo zadovoljni z rezultatom, ki je posledica preliva (overflow).

int fib(int n) {
if (n<=1) return n;
return fib(n-1)+fib(n-2);

[3]:

[4]:

[5]:

[6]:

for (int n=0;n<10;n++) {

cout << n << ": " << fib(n) << endl;

}

0: 0
1: 1
2: 1
3: 2
4: 3
5: b
6: 8
7: 13
8: 21
9: 34

Vrednosti izgledajo pravilne. Hitro pa ugotovimo, da na ta nac¢in ne bomo mogli ra¢unati vrednosti
ze za malo vecje n-je. Tezava je v eksponentni velikosti drevesa rekurzivnih klicev. Listov tega
drevesa, kjer je rezultat funkcije 1, je natanko F),. Poleg tega pa imamo Se liste z vrednostjo 0 in
vsa notranja vozlis¢a. Skratka, ogromno Stevilo vozlis¢ oz. klicev funkcije.

//cout << fib(100) << endl; // prepocast

Opazimo lahko, da se bo funkcija izvedla veckrat z istim argumentom n. Ce se nismo kje zmotili,
bi moral imeti vsak tak klic funkcije tudi enak rezultat. Rezultat si lahko ob prvem klicu funkcije
shranimo, v kasnejsih klicih pa ga samo vrnemo. To je pristop od zgoraj navzdol (top-down),
ki je znan tudi pod imenom memoizacija (memoization, brez “r”). Funkcija se bo torej za vsak
mozen argument izvedla natanko enkrat, ob ostalih klicih pa bo takoj vrnila vrednost, ¢esar niti ne
bomo $teli kot klic funkcije. Stevilo klicev funkcije bo torej O(n), ¢as izvedbe posameznega klica

funkcije pa O(1). Resitev ima ¢asovno in prostorsko zahtevnost O(n).

Za ugotavljanje, ali je bil nek podproblem zZe resen ali ne, lahko v tem primeru izkoristimo kar
vrednost 0, saj bomo kot izracunane rezultate vpisovali samo vecja Stevila. V splosnem pa bi lahko
imeli eno tabelo, ki bi nam povedala, ali je bil nek podproblem ze reSen, ter drugo tabelo, ki bi
hranila dejanske rezultate. Zaradi enostavnosti bomo uporabili dovolj veliko fiksno tabelo dovolj.
Namesto tega bi lahko uporabili katerokoli implementacijo slovarja, ki bi imel kot klju¢ argumente,
ki predstavljajo opis podproblema, za pripadajoco vrednost pa njegovo resitev.

const int N=10000;
int memo[N+1]; // memoizactijska tabela

int fib2(int n) {
if (n<=1) return n;
if (memo[n]'!=0) return memo[n];
memo [n]=fib2(n-1)+fib2(n-2);
return memo [n];

¥

Ce smo malo bolj sistemati¢ni, lahko resujemo podprobleme v takem vrstnem redu, da imamo
resitve manjsih podproblemov vedno ze resene, ko jih potrebujemo. Podprobleme bomo torej
resevali od manjsih proti vecjim, kar v tem primeru pomeni od manjsih proti ve¢jim n-jem. Takemu

[7]:

[8]:

[9]:

reSevanju re¢emo od spodaj navzgor (bottom-up). Casovna in prostorska zahtevnost sta enaki
kot v prejsnjem primeru, le da sta Se bolj ocitni.

int fib3[N+1];

£ib3[0]=0;

£ib3[1]1=1;

for (int n=2;n<=N;n++) fib3[n]=fib3[n-1]1+fib3[n-2];
cout << £ib3[100] << endl; // overflow

cout << fib3[10] << endl;

-980107325
55

Zaradi sistemati¢nosti pa smo lahko malo bolj prostorsko uc¢inkoviti. Vedno namre¢ potrebujemo
rezultate samo zadnjih dveh izrac¢unanih problemov. Tako lahko prostorsko zahtevnost zmanjsamo

na O(1).

int fib4(int n) {
int £2=0, f1=1;
for (int i=2;i<=n;i++) {
int fi=f1+£f2;

f2=£f1;
f1=£fi;
}
return f1;

}
cout << fib4(10) << endl;

55

1.2 Zabji skoki

Vzdolz potoka gleda iz vode n skal na koordinatah x; < x4 < ... < ,,. Zabec sedi na prvi skali in
bi rad z zaporedjem skokov po skalah prispel do zadnje skale. V enem skoku lahko sko¢i najmanj
a in najve¢ b enot dale¢ v smeri proti cilju. Kaksno je najmanjse stevilo skokov, ki jih potrebuje
za to?

Ce je a = 0, smo ze v poglavju o pozresnih algoritmih na podobnem problemu ugotovili, da lahko
z vsakim skokom skoc¢i do najbolj oddaljene skale, ki jo se doseze, in bo s tem minimiziral Stevilo
svojih skokov. Vpeljava spodnje meje dolzine skoka pa problem zakomplicira.

Ce razmisljamo rekurzivno, se bo zabec v prvem skoku premaknil na neko skalo x;, ki je oddaljena
med a in b od skale ;. Ce take skale sploh ni, pot do cilja ne obstaja. Za to je porabil en skok, nato
pa se mora v ¢im manjSem Stevilu skokov premakniti s skale z,; do cilja. Definirajmo podproblem
f(i) kot najmanjse Stevilo skokov, ki ga zabec potrebuje, da pride na cilj z i-te skale:

° f(Z) = minj>i: agwjfa:igb (1 + f(]))

Ocitno bo prislo do ponavljanja podproblemov. Do neke skale lahko Zzabec pride na ve¢ nacinov,

[10]:

[11]:

[12]:

ampak za optimalno pot od tam do cilja je povsem nepomembno, kako je do tja prisel. Pomembno je
samo, na kateri skali se nahaja. Zato si lahko resitev shranimo in jo kasneje po potrebi uporabimo,
ne da bi jo racunali ponovno. Lahko pa bi probleme resevali tudi sistemati¢no po principu od
spodaj navzgor, kar v tem primeru pomeni od skal blizje cilju proti tistim blizje zacetku.

Resiti moramo O(n) podproblemov, za resitev vsakega od njih pa moramo preveriti O(n) moznosti
za naslednji skok. Casovna zahtevnost je O(n?), prostorska pa O(n).

const int inf=1e9;
int a=3, b=4;
int mem_jump[1000];

int jump(int i, vector<int> &x) {
int n=x.size();
if (i==n-1) return 0;
if (mem_jump[i] !=0) return mem_jump[i];
int best=inf;
for (int j=i+1;j<n;j++) {
int d=x[j]-x[i];
if (a<=d && d<=b) best=min(best, 1+jump(j,x));
}
mem_jump [i]=best;
return best;

vector<int> x = {0,3,4,6,10};
cout << jump(0,x) << endl;

3

1.3 Rezanje palice

Pri problemu rezanja palice (rod cutting) imamo podano palico dolzine n, ki jo Zelimo razrezati na
manjse kose in te kose prodati posamicno za ¢im vecjo skupno ceno. Dolzina palice in dolzine kosov
morajo biti celostevilske. Podano imamo tabelo cen ¢, v kateri nam ¢-to Stevilo ¢; pove, za kaksno
ceno bomo lahko prodali palico dolzine . Daljsi kot je kos, za vec¢jo ceno ga bomo lahko prodali:
veljalo bo ¢; < ¢;, ;. KakSen je najvecji mozen izkupicek od prodaje razrezane palice?

Oglejmo si primer s spodnjo tabelo cen:
)

1

2
3
4
5
6

20
Naj bo dolzina palice n = 8:

+ Ce razrezemo palico na kose dolzine 1, bomo zanjo dobili n - ¢; = 16.

« Ce pustimo palico celo, dobimo zanjo cg = 20.

« Ce jo razrezemo na dva kose dolzin 2 in 6, pa bomo dobili ¢, + cg = 21.

« Ce jo razrezemo na dva kose dolzin 1, 2 in 5, bomo dobili ¢; + ¢y + ¢5 = 22.

Rekurzivni razmislek o zasluzku f(n) pri optimalnem rezanju palice dolzine n nam pove, da bomo
morali izbrati dolZino prvega reza. Ce je palica dolZine n, si moramo izbrati enega od rezov dolzine
x < n (s ¢imer zasluzimo c¢,) ter optimalno zrezati preostanek palice dolzine n — z. Ker ne vemo,
katera dolzina reza bo najboljsa, rekurzivno preverimo vse. Uporabimo tokrat pristop od spodaj
navzgor in izracunajmo zasluzke za vedno daljSe palice: f(n) = max,, f(n —z) +c,.

[13]: vector<int> ¢ = {0,2,5,6,9,15,16,17,20%};
int N=8;
int £[1000];
£[0]1=0;
for (int n=1;n<=N;n++) {
f[n]=0;
for (int x=1;x<=n;x++) {
f[n]=max(f[n], fln-x]+clx]);

}

cout << f[N] << endl;

22
Casovna zahtevnost algoritma je O(n?), prostorska pa O(n).

Razmislimo Se o rekonstrukciji resitve. Katere reze je treba narediti, da dosezemo optimalno
ceno? Za vsak podproblem pois¢emo potezo, ki je vodila do optimalnega rezultata. Druga moznost
pa je, da si Ze ob reSevanju podproblema shranimo optimalno potezo: npr. v dodatni tabeli g(n)
bi lahko hranili z, pri katerem funkcija f(n) doseze svoj maksimum.

[14]:

[2]:

int n=N;
while (n>0) {
for (int x=1;x<=n;x++) {
if (f[nl==f[n-x]+c[x]) {

cout << x << ": " << ¢[x] << endl;
n-=x;
break;
+
}
+
1: 2
2: 5
5: 15

1.4 Pot v mrezi

V labirintu visine A in Sirine w oz. tabeli znakov ’, ki predstavljajo prosto polje in ‘#’, ki pred-
stavlajo blokirano polje, nas zanima, na koliko nac¢inov lahko pridemo iz levega-zgornjega kota v
desni-spodnji kot, pri ¢emer se lahko premikamo samo desno in navzdol. V spodnjem primeru
obstajajo tri take poti.

Rekurzivno bi problem resevali tako, da bi se s trenutne celice poskusili premakniti desno in navzdol
(Ce sta oba premika sploh mozna) in sesteli mozne poti do cilja iz nove lokacije (sosednje celice).
Dosedanji problemi so imel eno-dimenzionalen opis podproblema, kjer smo podproblem opisali z
eno spremenljivko. Tokrat pa podproblem opiSemo z dvema dimenzijama - vrstico in stolpcem
celice. Ce je polje zasedeno ali se nahaja izven mreZe, je Stevilo poti do cilja enako 0, sicer pa velja
fli,5) = fi+1,5) + f(i,7+ 1). Robni pogoj v desnem-spodnjem kotu je f(h—1,w—1) = 0.

Podprobleme lahko resujemo sistemati¢no po vrsticah od spodaj navzgor in znotraj vrstice od desne
proti levi. Tako imamo potrebne resitve podproblemov vsaki¢ ze na voljo. Casovna in prostorska
zahtevnost sta O(hw).

vector<string> lab = {".#....",
P RN
L S SR
D oo "};
int h=lab.size(), w=1labl[0].size();
int £[10] [10];
memset (f,0,sizeof (£f));
for (int i=h-1;i>=0;i--) {
for (int j=w-1;3j>=0;j--) {
if (i==h-1 && j==w-1) £[il[jl1=1;
else if (lab[i][jl=='#') £[i]l[j1=0;

else f[i] [jI1=f[i+11[jI1+£[i][j+1];

}
cout << f[0][0] << endl;

4

Prostorsko zahtevnost bi lahko izboljsali na O(w), ker pri ra¢unanju vrednosti f(,*) potrebujemo
samo Ze izra¢unane rezultate desno v isti vrstici f(7,*) in eno vrstico nizje f(i + 1, *).

1.5 Najdaljse skupno podzaporedje

Pri problemu najdaljSega skupnega podzaporedja (longest common subsequence, LCS) nizov S in T
(dolzine n in m), i8¢emo najdaljsi niz LCS(S, T'), ki se pojavi kot podzaporedje (ne nujno podniz)
v S in v T. Oglejmo si primer S = ABCBDAB in T = BDCBBA, kjer je eno izmed najdaljsih
skupnih podzaporedij LCS(S,T) = BCBA dolzine 4.

Drugacen pogled na isti problem je poravnava obeh nizov, da se pri tem ¢im ve¢ znakov ujema.

AB CB DAB
BDCBB A

Rekurzivni razmislek je sledec:

« Ce se oba niza za¢neta z enakim znakom, je ta znak lahko zacetek LCS-ja, preostanek pa je
LCS za en znak krajsih nizov.

« Ce se niza razlikujeta v prvem znaku, potem vsaj en od teh dveh znakov ne bo del LCS-ja.
Preizkusimo obe moznosti in resimo problem z nizoma, kjer je en malo krajsi.

Naj bo LCS(i, j) najdaljsi skupni podniz nizov S;5;,; ... S, in T;T; 4 ...T,, ;:

(3 m—

1+LCS(i+1,5+1) ¢ S; =T,
LCS(4, j) = max < LCS(i + 1,)
LCS(i,j + 1)

Robni primeri pa so LCS(n,*) = 0 in LCS(x,m) = 0.

Problem lahko resujemo sistemati¢no od vecjih proti manjsim i-jem in enako za j. ReSujemo torej
probleme z vedno dalj$imi priponami nizov S in T'. S tem pravzaprav izpolnjujemo 2D tabelo od
desnega spodnjega kota proti levemu zgornjemu, tako da izberemo veéjo od spodnje in desne celice.
Ce sta zacetna znaka enaka, pa upostevamo e diagonalen rezultat povecan za 1. Dokazemo lahko
tudi, da bo ta diagonalna poteza vedno optimalna, ¢e je na voljo.

[18]: string LCS(string s, string t) {

int n=s.size(), m=t.size();

int lcs[n+1] [m+1]; // dodatna vrstica in stolpec nicel

memset (1lcs,0,sizeof (1cs));

for (int i=n-1;i>=0;i--) {

for (int j=m-1;j>=0;j--) {

lcs[il [jl=max(lcs[i+11[j], lcs[il[j+11);
if (sl[il==t[j1) lecsl[i] [jl=max(lcs[i]l[j], 1+lcs[i+1][j+11);

}
// tzpis izracunane tabele
for (int i=0;i<n;i++) {
for (int j=0;j<m;j++) {
cout << les[i][j] << '"\t';
}
cout << endl;
}
// rekonstrukcija
string 1="";
int i=0, j=0;
while (i<n && j<m) {
if (Qes[il[j]==1lcs[i+1]1[j]) i++;
else if (lcs[il[jl==1lcs[il[j+1]1) j++;
else { l+=s[i]; i++; j++; }

}

return 1;
}

[19]: string 1 = LCS("ABCBDAB", "BDCBBA");

cout << "LCS = " << 1 << endl;
4 3 3 3 2 1
4 3 3 3 2 1
3 3 3 2 2 1
3 2 2 2 2 1
2 2 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 0
LCS = BCBA

Casovna in prostorska zahtevnost sta O(nm). Problem lahko re$ujemo tudi v obratni smeri od
konca proti zacetkom nizov, kjer se vprasamo, kaj se bo zgodilo z zadnjima znakoma obeh nizov
(namesto prvima), kar boste pogosto videli v drugih virih.

Kako pa bi problem resili za tri nize? LCS(S,T,U) namre¢ ni enak LCS(LCS(S,T),U)! Stanje
bi opisali s trojico indeksov LCS(i, j, k) in obravnavali primere podobno kot za dva niza. Ce velja
S; = T; = Uy, je ta znak lahko del LCS-ja, sicer pa vsaj en izmed njih ne bo in lahko enega od
nizov skrajSamo.

Soroden problem je iskanje najdaljSega skupnega podniza (ne podzaporedja; longest common sub-
string), kjer mora biti pojavitev podniza strnjena v obeh nizih. Ta problem ima drugacne in bolj
uéinkovite resitve.

1.6 Nahrbtnik

Problem nahrbtnika (knapsack, backpack) je Se en klasien primer uporabe dinamicnega programi-
ranja. Podan imamo nabor n predmetov, za katere poznamo njihove teze ¢, in vrednosti v; (oboje
so cela $tevila). Izbrali bi radi neko podmnozico S teh predmetov, ki bo imela ¢im veéjo vrednost
(}:ESQQinjﬂ1bomo]ahh)ﬂﬁaﬂh\/nﬁnbmﬁkz mmﬂmﬁﬁofT(E:ES%-g T). Problemu se

8

[8]:

natancneje rece 0-1 nahrbtnik, ker vsak predmet vzamemo v celoti ali pa ga pustimo, ne moremo
pa vzeti samo dela predmeta.

V rekurzivni resitvi bi se lahko za vsak predmet odli¢ili, ali ga bomo vzeli ali ne. Ce ga vzamemo,
imamo za preostale predmeta na voljo nekoliko manjso nosilnost. Podproblem torej opiSemo z
dvema atributoma.

« Nabor predmetov, za katere se moramo e odlo¢iti, kaj bomo z njimi. Ce smo sistemati¢ni,
se lahko o vkljucenosti predmetov odlocamo po vrsti od prvega do zadnjega.
e Nosilnost nahrbtnika, ki je na voljo za preostale predmete.

Naj bo f(i,z) najvecja vrednost, ki jo lahko dobimo v nahrbtniku z nosilnostjo z, ¢e lahko vanj
dodajamo predmete 7, i+1, ..., n. Obravnavamo dva primera, glede na (ne)uporabo i-tega predmeta.
Robni primer je f(n,*) =0 (¢e nam zmanjka predmetov, lahko dobimo samo vrednost 0).

. {f(z +1,z) ne uporabimo i-tega predmeta
fli,x) = max 97 . o
f+1,z—t,)+wv; ¢&ejet, <z, lahko uporabimo i-ti predmet

Casovna zahtevnost je O(nT). Ce nimamo meje za T, vemo, da teza predmetov ne bo presegla
> t,. Ta resitev z dinamiénim programiranjem izkoris¢a majhne celostevilske teze predmetov in
nosilnost nahrbtnika. Ce bi bile teZe in vrednosti neka realna $tevila, postane problem izrazito
tezji (NP-tezek). V tem primeru imajo razlicne kombinacije predmetov razliéne teze in vrednosti,
zato se nam podproblemi ne bi ponavljali. V primeru celih Stevil pa so bile te vrednosti samo
z omejenega intervala celih stevil. Ceprav obstaja O(2") podmnozic, je na razpolago samo O(T)
razlicnih nosilnosti nahrbtnika.

const int n = 4;

const int nosilnost = 40;

vector<int> teza = {30,10,40,20%};
vector<int> vrednost = {10,20,30,40};

int f[n+1] [nosilnost+1];

memset (f,0,sizeof (f));

for (int i=n-1;i>=0;i--) {

for (int x=0;x<=nosilnost;x++) {
flil[x] = £[i+11[x]; // me uporabimo i-tega predmeta
if (tezalil<=x) { // poskusimo uporabiti i-ti predmet
f[i] [x] = max(£f[i] [x], vrednost[i]l+f[i+1] [x-tezal[il]l);

+

}

cout << f[0] [nosilnost] << endl;

60

	Dinamično programiranje
	Fibonaccijevo zaporedje
	Žabji skoki
	Rezanje palice
	Pot v mreži
	Najdaljše skupno podzaporedje
	Nahrbtnik

