
Dinamicno programiranje

December 18, 2024

1 Dinamično programiranje
Dinamično programiranje je algoritmičen pristop, ki je podoben pristopu deli in vladaj. Tudi
pri uporabi dinamičnega programiranja bomo razbili problem na manjše podprobleme, poiskali
optimalne rešitve podproblemov in si z njimi pomagali pri rešitvi začetnega problema. Pomembne
lastnosti problema, pri katerem si lahko pomagamo z dinamičnim programiranjem so:

• neodvisnost podproblemov: Posamezen podproblem lahko rešujemo neodvisno od drugih pod-
problemov.

• optimalna podstruktura: Optimalna rešitev problema vsebuje optimalne rešitve podproble-
mov.

• prekrivanje/ponavljanje podproblemov: To je glavna lastnost, ki jo bomo izkoristili za
izboljšave in v čemer se pristop razlikuje od tehnike deli in vladaj.

Tehniko lahko enostavno povzamemo z nasvetom “ne računaj enakih stvari večkrat”, v praksi pa
je kljub temu nekoliko bolj zapleteno - kako to doseči, katere stvari sploh so enake, …

Pristop nima nobene veze z dinamično alokacijo pomnilnika. Poimenoval ga je njen avtor Richard
Bellman. “Programiranje” se nanaša na reševanje optimizacijskega problema, poodobno kot matem-
atično programiranje/optimizacija. Pridevnik “dinamično” pa se nanaša na različne podprobleme.

[1]: #include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using namespace std;

1.1 Fibonaccijevo zaporedje
Osnovno idejo dinamičnega programiranja si oglejmo na trivialnem primeru Fibonacijevega za-
poredja, ki je definirano rekurzivno kot: 𝐹0 = 0, 𝐹1 = 1, 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2. Zanima nas 𝑛-to
število v zaporedju. Pri večjih 𝑛-jih bodo vrednosti zaporedja precej velike, vendar se s tem ne
bomo ukvarjali in bomo zadovoljni z rezultatom, ki je posledica preliva (overflow).

[2]: int fib(int n) {
if (n<=1) return n;
return fib(n-1)+fib(n-2);

}

1

[3]: for (int n=0;n<10;n++) {
cout << n << ": " << fib(n) << endl;

}

0: 0
1: 1
2: 1
3: 2
4: 3
5: 5
6: 8
7: 13
8: 21
9: 34

Vrednosti izgledajo pravilne. Hitro pa ugotovimo, da na ta način ne bomo mogli računati vrednosti
že za malo večje 𝑛-je. Težava je v eksponentni velikosti drevesa rekurzivnih klicev. Listov tega
drevesa, kjer je rezultat funkcije 1, je natanko 𝐹𝑛. Poleg tega pa imamo še liste z vrednostjo 0 in
vsa notranja vozlišča. Skratka, ogromno število vozlišč oz. klicev funkcije.

[4]: //cout << fib(100) << endl; // prepocasi

Opazimo lahko, da se bo funkcija izvedla večkrat z istim argumentom 𝑛. Če se nismo kje zmotili,
bi moral imeti vsak tak klic funkcije tudi enak rezultat. Rezultat si lahko ob prvem klicu funkcije
shranimo, v kasnejših klicih pa ga samo vrnemo. To je pristop od zgoraj navzdol (top-down),
ki je znan tudi pod imenom memoizacija (memoization, brez “r”). Funkcija se bo torej za vsak
možen argument izvedla natanko enkrat, ob ostalih klicih pa bo takoj vrnila vrednost, česar niti ne
bomo šteli kot klic funkcije. Število klicev funkcije bo torej 𝑂(𝑛), čas izvedbe posameznega klica
funkcije pa 𝑂(1). Rešitev ima časovno in prostorsko zahtevnost 𝑂(𝑛).
Za ugotavljanje, ali je bil nek podproblem že rešen ali ne, lahko v tem primeru izkoristimo kar
vrednost 0, saj bomo kot izračunane rezultate vpisovali samo večja števila. V splošnem pa bi lahko
imeli eno tabelo, ki bi nam povedala, ali je bil nek podproblem že rešen, ter drugo tabelo, ki bi
hranila dejanske rezultate. Zaradi enostavnosti bomo uporabili dovolj veliko fiksno tabelo dovolj.
Namesto tega bi lahko uporabili katerokoli implementacijo slovarja, ki bi imel kot ključ argumente,
ki predstavljajo opis podproblema, za pripadajočo vrednost pa njegovo rešitev.

[5]: const int N=10000;
int memo[N+1]; // memoizacijska tabela

[6]: int fib2(int n) {
if (n<=1) return n;
if (memo[n]!=0) return memo[n];
memo[n]=fib2(n-1)+fib2(n-2);
return memo[n];

}

Če smo malo bolj sistematični, lahko rešujemo podprobleme v takem vrstnem redu, da imamo
rešitve manjših podproblemov vedno že rešene, ko jih potrebujemo. Podprobleme bomo torej
reševali od manjših proti večjim, kar v tem primeru pomeni od manjših proti večjim 𝑛-jem. Takemu

2

reševanju rečemo od spodaj navzgor (bottom-up). Časovna in prostorska zahtevnost sta enaki
kot v prejšnjem primeru, le da sta še bolj očitni.

[7]: int fib3[N+1];
fib3[0]=0;
fib3[1]=1;
for (int n=2;n<=N;n++) fib3[n]=fib3[n-1]+fib3[n-2];
cout << fib3[100] << endl; // overflow
cout << fib3[10] << endl;

-980107325
55

Zaradi sistematičnosti pa smo lahko malo bolj prostorsko učinkoviti. Vedno namreč potrebujemo
rezultate samo zadnjih dveh izračunanih problemov. Tako lahko prostorsko zahtevnost zmanjšamo
na 𝑂(1).

[8]: int fib4(int n) {
int f2=0, f1=1;
for (int i=2;i<=n;i++) {

int fi=f1+f2;
f2=f1;
f1=fi;

}
return f1;

}

[9]: cout << fib4(10) << endl;

55

1.2 Žabji skoki
Vzdolž potoka gleda iz vode 𝑛 skal na koordinatah 𝑥1 < 𝑥2 < ... < 𝑥𝑛. Žabec sedi na prvi skali in
bi rad z zaporedjem skokov po skalah prispel do zadnje skale. V enem skoku lahko skoči najmanj
𝑎 in največ 𝑏 enot daleč v smeri proti cilju. Kakšno je najmanjše število skokov, ki jih potrebuje
za to?

Če je 𝑎 = 0, smo že v poglavju o požrešnih algoritmih na podobnem problemu ugotovili, da lahko
z vsakim skokom skoči do najbolj oddaljene skale, ki jo še doseže, in bo s tem minimiziral število
svojih skokov. Vpeljava spodnje meje dolžine skoka pa problem zakomplicira.

Če razmišljamo rekurzivno, se bo žabec v prvem skoku premaknil na neko skalo 𝑥𝑖, ki je oddaljena
med 𝑎 in 𝑏 od skale 𝑥1. Če take skale sploh ni, pot do cilja ne obstaja. Za to je porabil en skok, nato
pa se mora v čim manjšem številu skokov premakniti s skale 𝑥𝑖 do cilja. Definirajmo podproblem
𝑓(𝑖) kot najmanjše število skokov, ki ga žabec potrebuje, da pride na cilj z 𝑖-te skale:

• 𝑓(𝑛) = 0
• 𝑓(𝑖) = min𝑗>𝑖∶ 𝑎≤𝑥𝑗−𝑥𝑖≤𝑏 (1 + 𝑓(𝑗))

Očitno bo prišlo do ponavljanja podproblemov. Do neke skale lahko žabec pride na več načinov,

3

ampak za optimalno pot od tam do cilja je povsem nepomembno, kako je do tja prišel. Pomembno je
samo, na kateri skali se nahaja. Zato si lahko rešitev shranimo in jo kasneje po potrebi uporabimo,
ne da bi jo računali ponovno. Lahko pa bi probleme reševali tudi sistematično po principu od
spodaj navzgor, kar v tem primeru pomeni od skal bližje cilju proti tistim bližje začetku.

Rešiti moramo 𝑂(𝑛) podproblemov, za rešitev vsakega od njih pa moramo preveriti 𝑂(𝑛) možnosti
za naslednji skok. Časovna zahtevnost je 𝑂(𝑛2), prostorska pa 𝑂(𝑛).

[10]: const int inf=1e9;
int a=3, b=4;
int mem_jump[1000];

[11]: int jump(int i, vector<int> &x) {
int n=x.size();
if (i==n-1) return 0;
if (mem_jump[i]!=0) return mem_jump[i];
int best=inf;
for (int j=i+1;j<n;j++) {

int d=x[j]-x[i];
if (a<=d && d<=b) best=min(best, 1+jump(j,x));

}
mem_jump[i]=best;
return best;

}

[12]: vector<int> x = {0,3,4,6,10};
cout << jump(0,x) << endl;

3

1.3 Rezanje palice
Pri problemu rezanja palice (rod cutting) imamo podano palico dolžine 𝑛, ki jo želimo razrezati na
manjše kose in te kose prodati posamično za čim večjo skupno ceno. Dolžina palice in dolžine kosov
morajo biti celoštevilske. Podano imamo tabelo cen 𝑐, v kateri nam 𝑖-to število 𝑐𝑖 pove, za kakšno
ceno bomo lahko prodali palico dolžine 𝑖. Daljši kot je kos, za večjo ceno ga bomo lahko prodali:
veljalo bo 𝑐𝑖 ≤ 𝑐𝑖+1. Kakšen je največji možen izkupiček od prodaje razrezane palice?

Oglejmo si primer s spodnjo tabelo cen:

𝑖
1

2

3

4

5

6

4

7

8

𝑐𝑖

2

5

6

9

15

16

17

20

Naj bo dolžina palice 𝑛 = 8:

• Če razrežemo palico na kose dolžine 1, bomo zanjo dobili 𝑛 ⋅ 𝑐1 = 16.
• Če pustimo palico celo, dobimo zanjo 𝑐8 = 20.
• Če jo razrežemo na dva kose dolžin 2 in 6, pa bomo dobili 𝑐2 + 𝑐6 = 21.
• Če jo razrežemo na dva kose dolžin 1, 2 in 5, bomo dobili 𝑐1 + 𝑐2 + 𝑐5 = 22.

Rekurzivni razmislek o zaslužku 𝑓(𝑛) pri optimalnem rezanju palice dolžine 𝑛 nam pove, da bomo
morali izbrati dolžino prvega reza. Če je palica dolžine 𝑛, si moramo izbrati enega od rezov dolžine
𝑥 ≤ 𝑛 (s čimer zaslužimo 𝑐𝑥) ter optimalno zrezati preostanek palice dolžine 𝑛 − 𝑥. Ker ne vemo,
katera dolžina reza bo najboljša, rekurzivno preverimo vse. Uporabimo tokrat pristop od spodaj
navzgor in izračunajmo zaslužke za vedno daljše palice: 𝑓(𝑛) = max𝑥≤𝑛 𝑓(𝑛 − 𝑥) + 𝑐𝑥.

[13]: vector<int> c = {0,2,5,6,9,15,16,17,20};
int N=8;
int f[1000];
f[0]=0;
for (int n=1;n<=N;n++) {

f[n]=0;
for (int x=1;x<=n;x++) {

f[n]=max(f[n], f[n-x]+c[x]);
}

}
cout << f[N] << endl;

22

Časovna zahtevnost algoritma je 𝑂(𝑛2), prostorska pa 𝑂(𝑛).
Razmislimo še o rekonstrukciji rešitve. Katere reze je treba narediti, da dosežemo optimalno
ceno? Za vsak podproblem poiščemo potezo, ki je vodila do optimalnega rezultata. Druga možnost
pa je, da si že ob reševanju podproblema shranimo optimalno potezo: npr. v dodatni tabeli 𝑔(𝑛)
bi lahko hranili 𝑥, pri katerem funkcija 𝑓(𝑛) doseže svoj maksimum.

5

[14]: int n=N;
while (n>0) {

for (int x=1;x<=n;x++) {
if (f[n]==f[n-x]+c[x]) {

cout << x << ": " << c[x] << endl;
n-=x;
break;

}
}

}

1: 2
2: 5
5: 15

1.4 Pot v mreži
V labirintu višine ℎ in širine 𝑤 oz. tabeli znakov ‘.’, ki predstavljajo prosto polje in ‘#’, ki pred-
stavlajo blokirano polje, nas zanima, na koliko načinov lahko pridemo iz levega-zgornjega kota v
desni-spodnji kot, pri čemer se lahko premikamo samo desno in navzdol. V spodnjem primeru
obstajajo tri take poti.

.#....

....#.

.#..#.

......

Rekurzivno bi problem reševali tako, da bi se s trenutne celice poskusili premakniti desno in navzdol
(če sta oba premika sploh možna) in sešteli možne poti do cilja iz nove lokacije (sosednje celice).
Dosedanji problemi so imel eno-dimenzionalen opis podproblema, kjer smo podproblem opisali z
eno spremenljivko. Tokrat pa podproblem opišemo z dvema dimenzijama - vrstico in stolpcem
celice. Če je polje zasedeno ali se nahaja izven mreže, je število poti do cilja enako 0, sicer pa velja
𝑓(𝑖, 𝑗) = 𝑓(𝑖 + 1, 𝑗) + 𝑓(𝑖, 𝑗 + 1). Robni pogoj v desnem-spodnjem kotu je 𝑓(ℎ − 1, 𝑤 − 1) = 0.

Podprobleme lahko rešujemo sistematično po vrsticah od spodaj navzgor in znotraj vrstice od desne
proti levi. Tako imamo potrebne rešitve podproblemov vsakič že na voljo. Časovna in prostorska
zahtevnost sta 𝑂(ℎ𝑤).

[2]: vector<string> lab = {".#....",
"....#.",
".#..#.",
"......"};

int h=lab.size(), w=lab[0].size();
int f[10][10];
memset(f,0,sizeof(f));
for (int i=h-1;i>=0;i--) {

for (int j=w-1;j>=0;j--) {
if (i==h-1 && j==w-1) f[i][j]=1;
else if (lab[i][j]=='#') f[i][j]=0;

6

else f[i][j]=f[i+1][j]+f[i][j+1];
}

}
cout << f[0][0] << endl;

4

Prostorsko zahtevnost bi lahko izboljšali na 𝑂(𝑤), ker pri računanju vrednosti 𝑓(𝑖, ∗) potrebujemo
samo že izračunane rezultate desno v isti vrstici 𝑓(𝑖, ∗) in eno vrstico nižje 𝑓(𝑖 + 1, ∗).

1.5 Najdaljše skupno podzaporedje
Pri problemu najdaljšega skupnega podzaporedja (longest common subsequence, LCS) nizov 𝑆 in 𝑇
(dolžine 𝑛 in 𝑚), iščemo najdaljši niz LCS(𝑆, 𝑇), ki se pojavi kot podzaporedje (ne nujno podniz)
v 𝑆 in v 𝑇 . Oglejmo si primer 𝑆 = 𝐴𝐵̄ ̄𝐶𝐵̄𝐷 ̄𝐴𝐵 in 𝑇 = 𝐵̄𝐷 ̄𝐶𝐵̄𝐵 ̄𝐴, kjer je eno izmed najdaljših
skupnih podzaporedij LCS(𝑆, 𝑇) = 𝐵𝐶𝐵𝐴 dolžine 4.

Drugačen pogled na isti problem je poravnava obeh nizov, da se pri tem čim več znakov ujema.

AB CB DAB
BDCBB A

Rekurzivni razmislek je sledeč:

• Če se oba niza začneta z enakim znakom, je ta znak lahko začetek LCS-ja, preostanek pa je
LCS za en znak krajših nizov.

• Če se niza razlikujeta v prvem znaku, potem vsaj en od teh dveh znakov ne bo del LCS-ja.
Preizkusimo obe možnosti in rešimo problem z nizoma, kjer je en malo krajši.

Naj bo LCS(𝑖, 𝑗) najdaljši skupni podniz nizov 𝑆𝑖𝑆𝑖+1 … 𝑆𝑛−1 in 𝑇𝑗𝑇𝑗+1 … 𝑇𝑚−1:

LCS(𝑖, 𝑗) = max
⎧{
⎨{⎩

1 + LCS(𝑖 + 1, 𝑗 + 1) če 𝑆𝑖 = 𝑇𝑗
LCS(𝑖 + 1, 𝑗)
LCS(𝑖, 𝑗 + 1)

Robni primeri pa so LCS(𝑛, ∗) = 0 in LCS(∗, 𝑚) = 0.

Problem lahko rešujemo sistematično od večjih proti manjšim 𝑖-jem in enako za 𝑗. Rešujemo torej
probleme z vedno daljšimi priponami nizov 𝑆 in 𝑇 . S tem pravzaprav izpolnjujemo 2D tabelo od
desnega spodnjega kota proti levemu zgornjemu, tako da izberemo večjo od spodnje in desne celice.
Če sta začetna znaka enaka, pa upoštevamo še diagonalen rezultat povečan za 1. Dokažemo lahko
tudi, da bo ta diagonalna poteza vedno optimalna, če je na voljo.

[18]: string LCS(string s, string t) {
int n=s.size(), m=t.size();
int lcs[n+1][m+1]; // dodatna vrstica in stolpec nicel
memset(lcs,0,sizeof(lcs));
for (int i=n-1;i>=0;i--) {

for (int j=m-1;j>=0;j--) {
lcs[i][j]=max(lcs[i+1][j], lcs[i][j+1]);
if (s[i]==t[j]) lcs[i][j]=max(lcs[i][j], 1+lcs[i+1][j+1]);

}

7

}
// izpis izracunane tabele
for (int i=0;i<n;i++) {

for (int j=0;j<m;j++) {
cout << lcs[i][j] << '\t';

}
cout << endl;

}
// rekonstrukcija
string l="";
int i=0, j=0;
while (i<n && j<m) {

if (lcs[i][j]==lcs[i+1][j]) i++;
else if (lcs[i][j]==lcs[i][j+1]) j++;
else { l+=s[i]; i++; j++; }

}
return l;

}

[19]: string l = LCS("ABCBDAB", "BDCBBA");
cout << "LCS = " << l << endl;

4 3 3 3 2 1
4 3 3 3 2 1
3 3 3 2 2 1
3 2 2 2 2 1
2 2 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 0
LCS = BCBA

Časovna in prostorska zahtevnost sta 𝑂(𝑛𝑚). Problem lahko rešujemo tudi v obratni smeri od
konca proti začetkom nizov, kjer se vprašamo, kaj se bo zgodilo z zadnjima znakoma obeh nizov
(namesto prvima), kar boste pogosto videli v drugih virih.

Kako pa bi problem rešili za tri nize? LCS(𝑆, 𝑇 , 𝑈) namreč ni enak LCS(LCS(𝑆, 𝑇), 𝑈)! Stanje
bi opisali s trojico indeksov LCS(𝑖, 𝑗, 𝑘) in obravnavali primere podobno kot za dva niza. Če velja
𝑆𝑖 = 𝑇𝑗 = 𝑈𝑘, je ta znak lahko del LCS-ja, sicer pa vsaj en izmed njih ne bo in lahko enega od
nizov skrajšamo.

Soroden problem je iskanje najdaljšega skupnega podniza (ne podzaporedja; longest common sub-
string), kjer mora biti pojavitev podniza strnjena v obeh nizih. Ta problem ima drugačne in bolj
učinkovite rešitve.

1.6 Nahrbtnik
Problem nahrbtnika (knapsack, backpack) je še en klasičen primer uporabe dinamičnega programi-
ranja. Podan imamo nabor 𝑛 predmetov, za katere poznamo njihove teže 𝑡𝑖 in vrednosti 𝑣𝑖 (oboje
so cela števila). Izbrali bi radi neko podmnožico 𝑆 teh predmetov, ki bo imela čim večjo vrednost
(∑𝑗∈𝑆 𝑣𝑗) in jih bomo lahko spravili v nahrbtnik z nosilnostjo 𝑇 (∑𝑗∈𝑆 𝑡𝑗 ≤ 𝑇). Problemu se

8

natančneje reče 0-1 nahrbtnik, ker vsak predmet vzamemo v celoti ali pa ga pustimo, ne moremo
pa vzeti samo dela predmeta.

V rekurzivni rešitvi bi se lahko za vsak predmet odličili, ali ga bomo vzeli ali ne. Če ga vzamemo,
imamo za preostale predmeta na voljo nekoliko manjšo nosilnost. Podproblem torej opišemo z
dvema atributoma.

• Nabor predmetov, za katere se moramo še odločiti, kaj bomo z njimi. Če smo sistematični,
se lahko o vključenosti predmetov odločamo po vrsti od prvega do zadnjega.

• Nosilnost nahrbtnika, ki je na voljo za preostale predmete.

Naj bo 𝑓(𝑖, 𝑥) največja vrednost, ki jo lahko dobimo v nahrbtniku z nosilnostjo 𝑥, če lahko vanj
dodajamo predmete 𝑖, 𝑖+1, … , 𝑛. Obravnavamo dva primera, glede na (ne)uporabo 𝑖-tega predmeta.
Robni primer je 𝑓(𝑛, ∗) = 0 (če nam zmanjka predmetov, lahko dobimo samo vrednost 0).

𝑓(𝑖, 𝑥) = max {𝑓(𝑖 + 1, 𝑥) ne uporabimo i-tega predmeta
𝑓(𝑖 + 1, 𝑥 − 𝑡𝑖) + 𝑣𝑖 če je 𝑡𝑖 ≤ 𝑥, lahko uporabimo i-ti predmet

Časovna zahtevnost je 𝑂(𝑛𝑇). Če nimamo meje za 𝑇 , vemo, da teža predmetov ne bo presegla
∑ 𝑡𝑖. Ta rešitev z dinamičnim programiranjem izkorišča majhne celoštevilske teže predmetov in
nosilnost nahrbtnika. Če bi bile teže in vrednosti neka realna števila, postane problem izrazito
težji (NP-težek). V tem primeru imajo različne kombinacije predmetov različne teže in vrednosti,
zato se nam podproblemi ne bi ponavljali. V primeru celih števil pa so bile te vrednosti samo
z omejenega intervala celih števil. Čeprav obstaja 𝑂(2𝑛) podmnožic, je na razpolago samo 𝑂(𝑇)
različnih nosilnosti nahrbtnika.

[8]: const int n = 4;
const int nosilnost = 40;
vector<int> teza = {30,10,40,20};
vector<int> vrednost = {10,20,30,40};

int f[n+1][nosilnost+1];
memset(f,0,sizeof(f));
for (int i=n-1;i>=0;i--) {

for (int x=0;x<=nosilnost;x++) {
f[i][x] = f[i+1][x]; // ne uporabimo i-tega predmeta
if (teza[i]<=x) { // poskusimo uporabiti i-ti predmet

f[i][x] = max(f[i][x], vrednost[i]+f[i+1][x-teza[i]]);
}

}
}
cout << f[0][nosilnost] << endl;

60

9

	Dinamično programiranje
	Fibonaccijevo zaporedje
	Žabji skoki
	Rezanje palice
	Pot v mreži
	Najdaljše skupno podzaporedje
	Nahrbtnik

