Deli in vlada]
December 18, 2024

1 Deli in vladaj

Pristop deli in vladaj (Divide and Conquer) smo Ze srecali pri dvojiskem iskanju, hitrem urejanju
(quick sort) in urejanju z zlivanjem (merge sort). Gre za preprosto idejo, da problem razdelimo na
ve¢ manjsih podproblemov, te reSimo rekurzivno po enakem postopku, nato pa zdruzimo dobljene
rezultate manjsih problemov v resitev vec¢jega problema. Umetnost pa je v podrobnostih, kako
razbiti problem in kako zdruzevati resitve, da bo celoten postopek res ucinkovit.

Oglejmo si to na primeru racunanja vsote seznama, ki vsebuje n Stevil. Seznam razbijemo na levo
in desno polovico, rekurzivno izra¢unamo njuni vsoti, ter ju nato preprosto sestejemo. Enostavno.
Kaj pa u¢inkovito? Navadno sestevanje v zanki ima ¢asovnost zahtevnost O(n). Ce smo ustvarjali
nove kopije za levo in desno polovico, je ta resitev pravzaprav slabsa, ker ima ¢asovno zahtevnost
O(nlogn). Ce smo za podsezname uporabljali indekse, pa tudi nismo ni¢ na boljsem. Casovna
zahtevnost je Se vedno O(n), samo vrstni red seStevanja elementov se je spremenil.

Omenimo nekaj klasi¢nih primerov algoritmov, ki temeljijo na pristopu deli in vladaj, vendar jih v
okviru APS1 ne bomo utegnili obravnavati:

« mnozenje velikih stevil (Karatsuba, FFT)
« mnozenje matrik (Strassen),

e najblizji par tock v ravnini

e konveksna ovojnica

1.1 Krovni izrek

Obic¢ajno razbijemo problem velikosti n na podprobleme velikosti n/b. Rekurzivno moramo resiti
a takih podproblemov. Obicajno je a < b, ni pa nujno. Poleg tega pa za razbitje in zdruzevanje
resitev potrebujemo f(n) operacij:

o dvojisko iskanje: b=2,a =1, f(n) = O(1)
o quick/merge sort: b =2,a =2, f(n) = O(n)

Za izracun Stevila operacij imamo torej rekuzivno formulo T'(n) = aT'(n/b) + f(n), pri ¢emer je
T(n) = O(1) za dovolj majhen n. Stevili a in b sta konstanti, ki nista odvisni od n-ja. Gre
za druzino rekurzivnih funkcij, za katere nam krovni izrek (tudi mojstrova metoda) v dolo¢enih
primerih navaja resitve.

Primera b = 2,a =1 in b = 2,a = 2 smo ze analizirali. Oglejmo si Se primer b = 2,a = 4 za npr.
n=_8.

o Na zaetnem (ni¢tem) nivoju imamo 1 problem velikosti n.
o Na prvem nivoju dobimo a problemov velikosti n/b.

« Na i-tem imamo a’ problemov velikosti n/b'.

Stevilo nivojev je log, n, torej je listov tega rekurzivnega drevesa a8 = plog,e Eksponent
oznacimo z ¢ = log, a, ker bo pomemben v nadaljevanju.

Ce je funkcija koli¢ine dela na posameznem nivoju f(n) dovolj majhna, predstavlja velikost
rekurzivnega drevesa glavni del $tevila izvedenih operacij, ¢as f(n) pa je zanemarljiv. Ce pa je
koli¢ina dela f(n) dovolj velika funkcija, je glavnina operacij izvedena na zaCetnem nivoju v ko-
renu, ker problem nato razpade na manjse podprobleme, ki imajo “zanemarljivo” majhno koli¢ino
dela v primerjavi s korenom.

Za obicajni konstanti b = 2, a = 2 si oglejmo nekaj primerov funkcije f(n).

e f(n) =logn: V korenu imamo logn dela, v otrocih ponovno 2logn/2 = logn, .. Skupaj
torej O(n + log” n) = O(n), ker prevladuje velikost rekurzivnega drevesa.

o f(n)=mn: Tega ze poznamo. Imamo logn nivojev in na vsakem nivoju n dela, skupaj torej
O(nlogn).

o f(n)=n?: Vkorenuimamo n? dela, v otrocih 2(n/2)? = 1/2n?, v vnukih 4(n/4)? = 1/4n>.
Vsota je O(n?), ker prevladuje delo v korenu.

Krovni izrek (master theorem) nam poda reSitve rekurzivne enacbe T'(n) = aT'(n/b) + f(n)
pri konstantah a > 1,b > 1 za tri skupine enacb glede na razmerje med ¢ = log, a in funkcijo f(n).
Velikostni red funkcije f(n) bomo primerjali z n¢ in lo¢ili tri primere.

1. f(n)=0(n°) = T(n)=06(n°
Ce je ¢as za zdruzevaje “manjsi” od n°, je velikost rekurzivnega drevesa (n¢) prevladujoca
vrednost.

2. f(n)=0(n°) = T(n)=0O(nlogn)
Ce sta vrednosti “enaki”, dobimo dodaten logaritemski faktor. Obstaja $e natancnejsa for-

mulacija tega primera:
f(n) =0(nlog"n),k >0 = T(n)=0(n"log""

3. f(n) =) = T(n)=06(f(n)
Ce je cas za zdruZevanje “vecji”, je to prevladujoc¢a vrednost. Ta primer zahteva Se dodaten
pogoj regularnosti, ki pravi, da je koli¢ina dela v vozlis¢u vsaj tako velika kot koli¢ina dela v
otrocih (kar je skoraj vedno res): af(n/b) < kf(n) za dovolj velike n-je in nek k < 1.

1TL)

Oglejmo si nekaj primerov razpolavljanja z b = 2:

e a=2,f(n) =1 (rekurzivno sestevanje): ¢ =1, velja 1. primer, zato je T'(n) = O(n)
e a=2,f(n)=logn: ¢=1,velja 1. primer, zato je T'(n) = O(n)
(n) = n (Karatsuba): ¢~ 1.6, velja 1. primer, zato je T'(n) = O(n'°).
e a=1, f(n) =1 (dvojisko iskanje): ¢ =0, velja 2. primer, zato je T'(n) = O(logn).
o a=2,f(n) =n (quick/merge sort): ¢ =1, velja 2. primer, zato je T'(n) = O(nlogn).
e a=2,f(n)=2" ¢=1, velja 3. primer, zato je T'(n) = 2".

Primeri, kjer si ne moremo pomagati s krovnim izrekom:

e T(n)=1/2T(n/4) +n: a <1 nima smisla, reSujemo pol problema velikosti n/4?

e T(n)=2T(n/1)+mn: b=1, zato se problem sploh ne zmanjsuje.

e« T(n)=3T(n/2) —n?: Delo f(n) ne more biti negativno.

e T(n)=n/2T(n/2)+n: a=n/2 nikonstanta.

o T(n)=2T(n/2)+n/loglogn: Tega ne pokriva noben izmed treh primerov.

[1]7:

[2]:

[3]:

[4] :

Posplositev krovnega izreka na primere, kjer imamo opravka s podproblemi razli¢nih velikosti (niso
vsi enako veliki n/b), je znana kot Akra-Bazzi metoda.

1.2 Primeri nalog

Sedaj smo opremljeni s teorijo pristopa deli in vladaj, ki jo v nadaljevanju poskusimo uporabiti na
nekaj primerih.

#include <tostream>
#include <vector>
using namespace std;

template<typename T>

void print(const vector<T> &s) {
for (T x : s8) cout << x << " ",
cout << endl;

1.2.1 Potenciranje

Izracunati zelimo potenco z™. Pri tem predpostavimo, da lahko mnozimo poljubno velika stevila v
konstantnem casu (kar seveda ni res). Ali pa izra¢unajmo resitev po nekem modulu M (v kolobarju
ostankov), kjer lahko pri seStevanju in mnozenju sproti racunamo z ostanki.

Ce je n sod, bi nam prisla prav potenca p = z"/2. Iskani rezultat je ravno p?. Ce pa je n lih,

mu odstejemo 1 (in mnozimo rezultat z n) ter tako pridemo do sodega primera. Obakrat smo s
konstantnim Stevilom operacij razpolovili velikost problema, zato je ¢asovna zahtevnost O(logn),
za kar nam niti ni treba komplicirati s krovnim izrekom. Postopek se imenuje potenciranje s
kvadriranjem (ezponentiation by squaring).

int potenca(int x, int n) {

if (n==0) return 1;

if (n%2==0) {
//return potenca(z, n/2) * potenca(z, n/2); // nmarobe! ... O0(n)
int p = potenca(x, n/2);
return p*p;

} else {
return x*potenca(x, n-1);

}
cout << potenca(2,10) << endl;

1024

Pozorni moramo biti, da ne ra¢unamo vrednosti potenca(x, n/2) dvakrat. V tem primeru bi bila
¢asovna zahtevnost O(n), kar ni ni¢ boljse od zaporednega mnozenja. Vrednost izra¢unamo enkrat
in jo nato kvadriramo.

[5]:

1.2.2 Enakomerno razbitje seznama

Podan imamo seznam n stevil a4, ay, ..., a,, z vsoto V = Z? a;, ki ga zelimo razbiti na k strnjenih
podseznamov (ki so lahko tudi prazni). Zelimo si, da je razbitje tako, da so si vsote podseznamov
¢im bolj podobne. Idealno bi bilo, ¢e bi imel vsak podseznam vsoto V' /k, vendar to ni vedno mogoce.
Odlo¢ili smo se, da bomo to dosegli tako, da bomo zahtevali, da je najvecja vsota v posameznega
podseznama ¢im manjSa (minimiziramo maksimalno vsoto). Kaksno je optimalno razbitje?

Za primer vzemimo seznam 12, 8, 3, 5, 4, 13, 5, 3, 7 in kK = 3. Vsota je 60, zato bi bilo
idealno, ¢e bi naredili skupine po 20. Prva dva elementa se ravno sestejeta v 20, zato bi ju bilo
smiselno dati v svojo skupino. Potem nam ostane Se dilema glede meje med drugo in tretjo skupino,
kjer lahko preizkusimo obe meji okoli vsote 20. Smo s tem pozresnim razmislekom prisli do opti-
malne resitve? Nismo. Prvo skupino se splaca podaljsati, da pride do lepse delitve med drugo in
tretjo. Optimalno razbitje je (12, 8, 3), (5, 4, 13), (5, 3, 7), kjer so vsote 23, 22 in 15.

Pogosto so odlocitveni problemi lazji od optimizacijskih. Je neka konkretna meja v sprejemljiva?
Ali obstaja razbitje na k kosov, katerih vsota ne presega v? Vedja kot je meja za vsoto, lazji je
problem. Ce obstaja razbitje z mejno vsoto v, obstaja tudi pri meji v+ 1 (veljavno je isto razbitje).
In obratno, ¢e pri meji v ne obstaja, potem ne obstaja tudi pri v—1. IS¢emo mejo med situacijama,
kjer razbijte Se obstaja in kjer ne. To lahko pois¢emo z dvojiskim iskanjem. Pravzaprav delamo
dvojisko iskanje po moznih resitvah v in preverjamo, ali so sprejemljive.

Kako ugotovimo, ali obstaja veljavno razbitje pri neki mejni vsoti v? Poiskali bomo razbitje s ¢im
manj kosi, ki ne presegajo vsote v (vedno lahko dodamo kaksnega praznega, da jih bo toc¢no k).
Tega se lahko lotimo na pozresen nacin. Prvi kos naj bo najvecja predpona seznama, ki Se ne preseze
vsote v. To bo vedno vodilo do neke optimalne resitve. Recimo, da ne bi, in bi moral biti prvi kos
krajsi (daljsi o¢itno ne more biti). Potem bi lahko v tej predpostavljeni optimalni resitvi premaknili
nekaj elementov iz drugega kosa v prvega. Vemo, da je v prvem kosu Se prostor, z zmanjsevanjem
drugega kosa pa tudi ne pokvarimo resitve. Pozresno strategijo lahko torej uporabimo za dolocanje
vsakega kosa znova. Ce s tem nismo presegli k kosov, je mejna vsota v sprejemljiva, sicer pa ne.

Razmislimo Se o ¢asovni zahtevnosti opisanega postopka. Za dvojisko iskanje meje v bomo potre-
bovali O(logV') korakov. Za dolo¢anje sprejemljivosti posamezne meje pa O(n). To je skupaj
O(nlogV).

int partition(vector<int> a, int k) {
int total=0, largest=0;
for (int x : a) {
total+=x;
largest = max(largest, x);
}
int lo=largest-1, hi=total; // lo=infeasible, hi=feasible
while (lo+1<hi) {
int 1lim=(lo+hi)/2;
int sum=0, chunks=1;
for (int x : a) {
if (sum+x<=lim) sum+=x; // extend last chunk
else { chunks++; sum=x; } // start new chunk
}
if (chunks<=k) hi=lim;

[6]:

[7]:

else lo=lim;
}
return hi;

¥

vector<int> a={12,8,3,5,4,13,5,3,7};
cout << partition(a, 3) << endl;
for (int k=1;k<=a.size();k++) {
cout << k << ": " << partition(a, k) << endl;

}

N
w

: 60
1 32
: 23
17
15
13
13
13
13

©O© 00 N O O WN -

1.2.3 K-ti element

V problemu izbire k-tega elementa (selection problem) imamo podan (neurejen) seznam n Stevil
ay,Gq,...,a,. Zanima nas, katero Stevilo je k-to po velikosti oz. bi bilo na k-tem mestu, ¢e bi
seznam uredili.

Seznam lahko uredimo in preverimo, kateri element konca na k-tem mestu. Casovna zahtevnost
je odvisna od ¢asa urejanja in je v splosnem O(nlogn). Smo lahko kaj bolj uc¢inkoviti? Vsakakor
moramo preveriti vseh n elementov, morda pa lahko izboljsamo faktor logn.

Ker bomo uporabili podoben prostop kot pri hitrem urejanju (quick sort), se algoritmu, ki ga bomo
opisali, rece hitro izbiranje (quick select). Izbrali bomo delilni element (pivot) in razdelili Stevila na
manjsa (ali enaka) in vedja. Naj bo manjsih Stevil m. Ce je k <= m, moramo k-tega iskati med
manjSimi. Sicer pa moramo med vecjimi poiskati (k —m)-tega.

Ob predpostavki, da nam seznami razpadajo na prbilizno enako velike skupine, bo pri¢akovana
¢asovna zahtevnost O(n+n/2+n/4+...) = O(n). S tem se strinja tudi krovni izrek pri b = 2,a =
1, f(n) =n (3. primer).

V C++ je ta funkcionalnost Ze na voljo kot funkcija nth_element iz knjiznice algorithm, ki delno
uredi seznam tako, da je n-ti element na pravem mestu, pred njim so samo manjsi ali enaki elementi,
za njim pa vecji ali enaki.

vector<int> v = {3,5,2,8,1,10,2,3,8,5,1};
nth_element(v.begin(), v.begin(O+4, v.end());
print(v);

sort(v.begin(),v.end());

print(v);

358108

211235
112233558810
1.2.4 Stetje inverzij

V seznamu n Stevil aq,a,, ..., a, je inverzija par indeksov i in j (i < j), za kateri velja, da sta
pripadajoci stevili v seznamu narobe urejeni (a; > a;). Zanima nas, koliko inverzij vsebuje podani
seznam? Seveda lahko preverimo vse pare indeksov, vendar ima to kvadratno ¢asovno zahtevnost.

Prilagodili bomo algoritem urejanja z zlivanjem (merge sort). Poleg urejanja podseznamov naj
funkcija izracuna Se Stevilo inverzij v njem (pred urejanjem). Recimo, da smo seznam razbili na
levo in desno polovico, ter rekurzivno resili manjsa problema. S tem smo dobili stevilo inverzij v
levi polovici in urejeno levo polovico, ter enako za desno polovico. Urejeni polovici znamo zliti v
urejeno celoto. Kaj pa inverzije?

Inverzije v levi in desni polovici sestejemo, vendar nam manjkajo Se tiste inverzije, kjer je eno
stevilo v levi, drugo pa v desni polovici. Za vsako stevilo x iz leve polovice bomo izracunali Stevilo
inverzij, v katerih nastopa - koliko je v desni polovici manjsih stevil od z? To lahko ucinkovito
izracunamo med zlivanjem obeh polovic. Recimo, da smo ze zlili [stevil iz leve polovice in d iz
desne ter je naslednje na vrsti stevilo x iz leve polovice. Pred njim je v zlitem urejenem seznamu
ze d manjsih Stevil iz desne polovice, s katerimi je formiral inverzije in jih pristejemo k rezultatu.

	Deli in vladaj
	Krovni izrek
	Primeri nalog
	Potenciranje
	Enakomerno razbitje seznama
	K-ti element
	Štetje inverzij

