[1]:

[2]:

[2]:

[28]:

Cpp

December 18, 2024

1 CH4++

V C-ju Ze znate programirati, C++ pa vam ponuja nekaj dodatnih funkcionalnosti, ki vam bodo
olajsale zivljenje. VeCinoma preko svoje standardne knjiznice in raznih sintakti¢nih bliznjic. Stan-
dardna knjiznica vsebuje Stevilne uporabne podatkovne tipe/strukture (containters) in algoritme.
Osnovana je bila po knjiznici Standard Template Library (STL), ki se Se danes pogosto uporablja
kar kot sinonim za C++ standardno knjiznico.

Prav vam bo prisla dokumentacija: - cplusplus - cppreference

1.1 Branje in pisanje

V C-ju ste navajeni branja in pisanja podatkov s knjiznico stdin.hin funkcijami kot so scanf,
printf, gets, ..

C++ pa v knjiznici iostream ponuja t.i. tokove (stream). Prav nam bosta prisla cin (character
input) in cout (character output). Podpirata operatorje >> oz. <<, ki poleg branja/pisanja tudi
vrneta isti objekt, da lahko operatorje verizimo.

#include <iostream>
std::cout << "Zivjo!\n";

Zivjo!

Vecina funkcionalnosti, ki jih ponuja C++ v svoji standardni knjiznici, se nahaja v imenskem
prostoru std, do objektov v njem pa dostopamo z std::ime. Malo pisanja si lahko prihranimo z
deklaracijo uporabe imenskega prostora std.

using namespace std;

int a,b;

cin >> a >> b;

cout << "vsota = " << a+b << endl;
9 10

vsota = 19

https://cplusplus.com/reference/
https://en.cppreference.com/w/

[3]:

[6]:

[4] :

[8]:

[9]:

1.2 Nizi

C++ ponuja podatkovno strukturo string, ki nam olajsa delo z nizi v primerjavi s C-jem, kjer
smo bili obsojeni na delo s tabelami znakov.

#include <string>

string ime, priimek;
cin >> ime >> priimek;

string oseba = priimek + " " + ime;

cout << "Pozdravljen, " << oseba << "!" << endl;

cout << "Zacetnice: " << ime[0] << priimek[0] << endl;
cout << "Dolzina imena: " << ime.size() << endl;

Tomaz Hocevar

Pozdravljen, Hocevar Tomaz!
Zacetnice: TH
Dolzina imena: 5

1.3 Pari

Pari vrednosti so zelo koristni, da nam ni treba za vsako malenkost ustvarjati novih struktur ali
razredov. V jezikih, kot je npr. Python, pa je koncept terk (tuple) Se bolj prisoten. Paru moramo
dolo¢iti tudi tipe vsebovanih komponent. Sintaksa z “oklepaji” oz. znaki manjse/vecje je podobna
tisti, ki ste je navajeni iz Jave. Do obeh elementov dostopamo preko atributov first in second.

#include <utility>
pair<int,int> xy;

xy = make_pair(10,12);
cout << xy.first << " " << xy.second << endl;

10 12

1.3.1 Inicializacija s seznamom

Nekatere podatkovne tipe lahko inicializiramo tudi s seznami vrednosti (initializer list). Poleg parov
bomo videli primere uporabe tudi kasneje pri drugih strukturah.

pair<int,int> p = {2,3};
cout << p.first << " " << p.second << endl;

23

1.3.2 Avtomatska dolocitev tipa

Ko zacnemo uporabljati gnezdene strukture (npr. par osebe in ocene, pri ¢emer je oseba prav
tako par sestavljen iz imena in priimka), postanejo opisi podatkovnih tipov precej dolgi. Ker
zna prevajalnik med prevajanjem ugotoviti, da se nek tip ne ujema, ga lahko tudi kar dolo¢i, kar
oznacimo s tipom auto.

[10]:

[4] :

[4] :

[6]:

[17]:

pair<pair<string,string>, int> ocena = {{"Tomaz", "Hocevar"l}, 10};
auto o = ocena;
cout << o.first.first << endl;

Tomaz

1.4 Seznam

V C-ju smo imeli na voljo tabele fiksne velikosti. Ce smo zeleli hraniti seznam elementov, ki
smo ga podaljsevali, pa smo naleteli na manjsi problem. Tega nam resuje poatkovnih tip vector,
ki predstavlja razsirljivo tabelo (resizable array), podobno kot ArrayList v Javi. V njem lahko
shranjujemo samo elemente enakega tipa, ki ga moramo navesti ob deklaraciji (za razliko od npr.
Pythona).

#include <vector>

vector<int> v;

for (int x=1; x<=1024; x*=2) v.push_back(x);

for (int i=0; i<v.size(); i++) cout << v[i] << " ";
cout << endl;

1248 16 32 64 128 256 512 1024

1.4.1 Iteratorji

Koncept iteratorjev vam je ze poznan iz Jave. V C++ so iteratorji kazalci na elemente v struk-
turah, s katerimi se lahko premikamo po elementih v tej strukturi. Vsaka struktura ima svoj tip
iteratorja (npr. ‘vector<int>::iterator) in ponuja iteratorja na svoj zaetek in konec

(.begin()in.end()).

for (vector<int>::iterator it=v.begin(); it!=v.end(); it++) {
cout << *it << " ",

}

cout << endl;

1248 16 32 64 128 256 512 1024

1.4.2 For each

Iteracija Cez vse elemente strukture je zelo pogosta operacija, zato je v stevilnih programskih jezikih
na voljo tudi temu prilagojena sintaksa. V C++ je to for (tip element : struktura).

vector<pair<int,int>> koordinate = {{2,6},{1,4},{-2,6}};
for (pair<int,int> xy : koordinate) cout << "[" << xy.first << ", " << xy.
wsecond << "]" << endl;

(2, 6]
(1, 4]
(-2, 6]

[18]:

[6]:

[71:

[5]:

[6]:

1.4.3 Razpakiranje

Dostop do posameznih elementov kompleksnejSega tipa (npr. seznama parov) je lahko kar dolg. To
si lahko skrajSamo z uporabo razpakiranja (structured binding declaration). Sintaksa je auto [a,

b, ...] = x.

for (auto [x, y] : koordinate) cout << "[" << x << ", " << y << "]" << endl;
[2, 6]

[1, 4]

(-2, 6]

1.5 Vrsta, sklad, slovar, mnoZica, povezani seznam, ...

C++ pozna Se cel kup drugih podatkovnih tipov, kot so queue, stack, map, set, 1ist .. Vec o njih
pa takrat, ko bomo obravnavali abstraktne podatkovne tipe.

#include <map>

#include <set>

map<string,int> vpisna = {{"Ana", 123}, {"Miha", 456}, {"Tine", 7893}};
set<string> prisotni = {"Ana", "Tine"};

for (auto ime : prisotni) cout << vpisnalime] << endl;
123
789
1.6 Reference
Referenca je drugo ime za isto spremenljivko. Oznac¢imo jo s znakom &. V spodnjem primeru je
y referenca na spremenljivko tipa int, kar zapiSemo kot int &y. Referenca ne more biti prazna,
inicializirati jo moramo z drugo spremenljivko ob deklaraciji. Deklaracija reference brez inicializacije
(int &y;) ali inicializacija s konstantno vrednostjo (int &y = 9;) nista mozni.

int x = 10;

int &y = x;

cout << x << " " << y << endl;

10 10

Ce sedaj spremenimo vrednost spremenljivke x, se ta sprememba odraza tudi v spremenljivki y, in
obratno.

x = 11;

cout << x << " " << y << endl;

y = 12;

cout << x << " " << y << endl;

11 11

12 12

V CH+ se argumenti funkcij prenasajo po vrednosti. Funkcija torej prejme kopijo podanega argu-
menta. V Pythonu ali Javi bi z dodajanjem elementov seznamu, ki ga sprejme funkcija, spremenili
tudi zunanji seznam. V C++ temu ni tako.

[7]: void izpisi(vector<int> v) {
for (int x : v) cout << x << " ",
cout << endl;

}

[8]: auto podvoji(vector<int> v) {
int n=v.size();
for (int i=0; i<n; i++) {
v.push_back(v[i]);
}

return v;

[9]: vector<int> a
vector<int> b
izpisi(a);
izpisi(b);

{1’2,3’4’5};
podvoji(a);

12345
1234512345

Ce zelimo, lahko to funkcionalnost dosezemo s prenosom argumentov po referenci. Funkcija
podvoji_ref sprejme argument po referenci, vrednost te spremenljivke spremeni in ne vrne nicesar.

[10]: void podvoji_ref(vector<int> &v) {
int n=v.size();
for (int i=0; i<n; i++) {
v.push_back(v[i]);

}

[11]: podvoji_ref(a);
izpisi(a);

1234512345

Prenos po referenci se uporablja za podajanje velikih spremenljivk, da se izognemo ustvarjanju
kopije. Druga pogosta uporaba je vracanje ve¢ vrednosti iz funkcije preko nastavljanja argumentov,
ki so podani po referenci. Slednje smo v C-ju lahko dosegli tako, da smo funkciji podali kazalec na
spremenljivko in jo nato spreminjali preko tega kazalca.

V spodnjem primeru funkcija stat sprejme seznam celih stevil v po referenci, da se ne ustvari
kopija po nepotrebnem, ker funkcija seznama ne spreminja. Presteje pozitivna in negativna Stevila
ter rezultate vpiSe v argumenta poz in neg, ki sta prav tako podana po referenci.

[12]:

[13]:

[13]:

[14]:

[19]:

void stat(vector<int> &v, int &poz, int &neg) {
poz=0;
neg=0;
for (int x : v) {
if (x>0) poz++;
if (x<0) negt+;

}
}
vector<int> st = {5, -7, 8, 9, -3, -2, -1, -4};
int poz, neg;
stat(st, poz, neg);
cout << "poz/meg: " << poz << " " << neg << endl;
poz/neg: 3 5

1.7 Algoritmi

Knjiznica algorithm ponuje cel kup uporabnih funkcij, kot so min, max, min_element, swap, count,

#include <algorithm>

cout << min(5,2) << endl;
cout << min({5,3,9}) << endl;

vector<int> v={4,7,1,8};
cout << *min_element(v.begin(), v.end()) << endl;

2

1

Verjetno najpogosteje uporabljena funkcija pa je sort. Funkcija sort sprejme iteratorja na zacetek
in konec seznama vrednosti, ki jih bo uredila. Tako lahko uporabljamo funkcijo sort na razli¢nih
strukturah, ki implementirajo pravo vrsto iteratorjev.

vector<int> sez = {8,41,11,7,2};
sort(sez.begin(), sez.end());

for (int x : sez) cout << x << " ";
cout << endl;

27 8 11 41

1.7.1 Anonimne funkcije

Pogosto pisemo kratke funkcije za enkratno uporabo. Zato vecina modernih programskih jezikov
(Java, Python, C++, ..) pozna anonimne oz. lambda funkcije. Sintaksa v C++ je [zunanje
spremenljivke] (argumenti funkcije) { vsebina }. Ce so zunanje spremenljivke prazne, to

[22]:

pomeni, da lahko vsebina funkcije dostopa samo do svojih argumentov in do globalnih spremenljivk.
Vse spremenljivke in argumente lahko funkcija sprejme po vrednosti ali po referenci.

V spodnjem primeru bomo ponovno uredili seznam stevil, vendar jih bomo tokrat primerjali po
abecedi namesto po vrednosti.

sort(sez.begin(), sez.end(), [](int a, int b) {
return to_string(a) < to_string(b);

b

for (int x : sez) cout << x << " ",

cout << endl;

11 2417 8

1.8 Ostalo

C++ seveda ponuja Se veliko ve¢. Do tu smo predstavili samo nekaj osnov, ki nam bodo koristile
pri resevanju algoritmicénih problemov v nadaljevanju.

Kogar zanima vec, si lahko na spletu prebere o temah, kot so: razredi (classes), predloge (templates),
pametni kazalci (smart pointers), niti (threads), izjeme (ezceptions), preobremenjevanje operatorjev
(operator overloading), ...

	C++
	Branje in pisanje
	Nizi
	Pari
	Inicializacija s seznamom
	Avtomatska določitev tipa

	Seznam
	Iteratorji
	For each
	Razpakiranje

	Vrsta, sklad, slovar, množica, povezani seznam, …
	Reference
	Algoritmi
	Anonimne funkcije

	Ostalo

