
Cpp

December 18, 2024

1 C++
V C-ju že znate programirati, C++ pa vam ponuja nekaj dodatnih funkcionalnosti, ki vam bodo
olajšale življenje. Večinoma preko svoje standardne knjižnice in raznih sintaktičnih bližnjic. Stan-
dardna knjižnica vsebuje številne uporabne podatkovne tipe/strukture (containters) in algoritme.
Osnovana je bila po knjižnici Standard Template Library (STL), ki se še danes pogosto uporablja
kar kot sinonim za C++ standardno knjižnico.

Prav vam bo prišla dokumentacija: - cplusplus - cppreference

1.1 Branje in pisanje
V C-ju ste navajeni branja in pisanja podatkov s knjižnico stdin.hin funkcijami kot so scanf,
printf, gets, …

C++ pa v knjižnici iostream ponuja t.i. tokove (stream). Prav nam bosta prišla cin (character
input) in cout (character output). Podpirata operatorje >> oz. <<, ki poleg branja/pisanja tudi
vrneta isti objekt, da lahko operatorje verižimo.

[1]: #include <iostream>

[2]: std::cout << "Zivjo!\n";

Zivjo!

Večina funkcionalnosti, ki jih ponuja C++ v svoji standardni knjižnici, se nahaja v imenskem
prostoru std, do objektov v njem pa dostopamo z std::ime. Malo pisanja si lahko prihranimo z
deklaracijo uporabe imenskega prostora std.

[2]: using namespace std;

[28]: int a,b;
cin >> a >> b;
cout << "vsota = " << a+b << endl;

9 10

vsota = 19

1

https://cplusplus.com/reference/
https://en.cppreference.com/w/

1.2 Nizi
C++ ponuja podatkovno strukturo string, ki nam olajša delo z nizi v primerjavi s C-jem, kjer
smo bili obsojeni na delo s tabelami znakov.

[3]: #include <string>

[6]: string ime, priimek;
cin >> ime >> priimek;
string oseba = priimek + " " + ime;
cout << "Pozdravljen, " << oseba << "!" << endl;
cout << "Zacetnice: " << ime[0] << priimek[0] << endl;
cout << "Dolzina imena: " << ime.size() << endl;

Tomaz Hocevar

Pozdravljen, Hocevar Tomaz!
Zacetnice: TH
Dolzina imena: 5

1.3 Pari
Pari vrednosti so zelo koristni, da nam ni treba za vsako malenkost ustvarjati novih struktur ali
razredov. V jezikih, kot je npr. Python, pa je koncept terk (tuple) še bolj prisoten. Paru moramo
določiti tudi tipe vsebovanih komponent. Sintaksa z “oklepaji” oz. znaki manjše/večje je podobna
tisti, ki ste je navajeni iz Jave. Do obeh elementov dostopamo preko atributov first in second.

[4]: #include <utility>

[8]: pair<int,int> xy;
xy = make_pair(10,12);
cout << xy.first << " " << xy.second << endl;

10 12

1.3.1 Inicializacija s seznamom

Nekatere podatkovne tipe lahko inicializiramo tudi s seznami vrednosti (initializer list). Poleg parov
bomo videli primere uporabe tudi kasneje pri drugih strukturah.

[9]: pair<int,int> p = {2,3};
cout << p.first << " " << p.second << endl;

2 3

1.3.2 Avtomatska določitev tipa

Ko začnemo uporabljati gnezdene strukture (npr. par osebe in ocene, pri čemer je oseba prav
tako par sestavljen iz imena in priimka), postanejo opisi podatkovnih tipov precej dolgi. Ker
zna prevajalnik med prevajanjem ugotoviti, da se nek tip ne ujema, ga lahko tudi kar določi, kar
označimo s tipom auto.

2

[10]: pair<pair<string,string>, int> ocena = {{"Tomaz", "Hocevar"}, 10};
auto o = ocena;
cout << o.first.first << endl;

Tomaz

1.4 Seznam
V C-ju smo imeli na voljo tabele fiksne velikosti. Če smo želeli hraniti seznam elementov, ki
smo ga podaljševali, pa smo naleteli na manjši problem. Tega nam rešuje poatkovnih tip vector,
ki predstavlja razširljivo tabelo (resizable array), podobno kot ArrayList v Javi. V njem lahko
shranjujemo samo elemente enakega tipa, ki ga moramo navesti ob deklaraciji (za razliko od npr.
Pythona).

[4]: #include <vector>

[4]: vector<int> v;
for (int x=1; x<=1024; x*=2) v.push_back(x);
for (int i=0; i<v.size(); i++) cout << v[i] << " ";
cout << endl;

1 2 4 8 16 32 64 128 256 512 1024

1.4.1 Iteratorji

Koncept iteratorjev vam je že poznan iz Jave. V C++ so iteratorji kazalci na elemente v struk-
turah, s katerimi se lahko premikamo po elementih v tej strukturi. Vsaka struktura ima svoj tip
iteratorja (npr. ‘vector<int>::iterator) in ponuja iteratorja na svoj začetek in konec
(.begin()in.end()‘).

[6]: for (vector<int>::iterator it=v.begin(); it!=v.end(); it++) {
cout << *it << " ";

}
cout << endl;

1 2 4 8 16 32 64 128 256 512 1024

1.4.2 For each

Iteracija čez vse elemente strukture je zelo pogosta operacija, zato je v številnih programskih jezikih
na voljo tudi temu prilagojena sintaksa. V C++ je to for (tip element : struktura).

[17]: vector<pair<int,int>> koordinate = {{2,6},{1,4},{-2,6}};
for (pair<int,int> xy : koordinate) cout << "[" << xy.first << ", " << xy.

↪second << "]" << endl;

[2, 6]
[1, 4]
[-2, 6]

3

1.4.3 Razpakiranje

Dostop do posameznih elementov kompleksnejšega tipa (npr. seznama parov) je lahko kar dolg. To
si lahko skrajšamo z uporabo razpakiranja (structured binding declaration). Sintaksa je auto [a,
b, ...] = x.

[18]: for (auto [x, y] : koordinate) cout << "[" << x << ", " << y << "]" << endl;

[2, 6]
[1, 4]
[-2, 6]

1.5 Vrsta, sklad, slovar, množica, povezani seznam, …
C++ pozna še cel kup drugih podatkovnih tipov, kot so queue, stack, map, set, list … Več o njih
pa takrat, ko bomo obravnavali abstraktne podatkovne tipe.

[6]: #include <map>
#include <set>

[7]: map<string,int> vpisna = {{"Ana", 123}, {"Miha", 456}, {"Tine", 789}};
set<string> prisotni = {"Ana", "Tine"};
for (auto ime : prisotni) cout << vpisna[ime] << endl;

123
789

1.6 Reference
Referenca je drugo ime za isto spremenljivko. Označimo jo s znakom &. V spodnjem primeru je
y referenca na spremenljivko tipa int, kar zapišemo kot int &y. Referenca ne more biti prazna,
inicializirati jo moramo z drugo spremenljivko ob deklaraciji. Deklaracija reference brez inicializacije
(int &y;) ali inicializacija s konstantno vrednostjo (int &y = 9;) nista možni.

[5]: int x = 10;
int &y = x;
cout << x << " " << y << endl;

10 10

Če sedaj spremenimo vrednost spremenljivke x, se ta sprememba odraža tudi v spremenljivki y, in
obratno.

[6]: x = 11;
cout << x << " " << y << endl;
y = 12;
cout << x << " " << y << endl;

11 11
12 12

4

V C++ se argumenti funkcij prenašajo po vrednosti. Funkcija torej prejme kopijo podanega argu-
menta. V Pythonu ali Javi bi z dodajanjem elementov seznamu, ki ga sprejme funkcija, spremenili
tudi zunanji seznam. V C++ temu ni tako.

[7]: void izpisi(vector<int> v) {
for (int x : v) cout << x << " ";
cout << endl;

}

[8]: auto podvoji(vector<int> v) {
int n=v.size();
for (int i=0; i<n; i++) {

v.push_back(v[i]);
}
return v;

}

[9]: vector<int> a = {1,2,3,4,5};
vector<int> b = podvoji(a);
izpisi(a);
izpisi(b);

1 2 3 4 5
1 2 3 4 5 1 2 3 4 5

Če želimo, lahko to funkcionalnost dosežemo s prenosom argumentov po referenci. Funkcija
podvoji_ref sprejme argument po referenci, vrednost te spremenljivke spremeni in ne vrne ničesar.

[10]: void podvoji_ref(vector<int> &v) {
int n=v.size();
for (int i=0; i<n; i++) {

v.push_back(v[i]);
}

}

[11]: podvoji_ref(a);
izpisi(a);

1 2 3 4 5 1 2 3 4 5

Prenos po referenci se uporablja za podajanje velikih spremenljivk, da se izognemo ustvarjanju
kopije. Druga pogosta uporaba je vračanje več vrednosti iz funkcije preko nastavljanja argumentov,
ki so podani po referenci. Slednje smo v C-ju lahko dosegli tako, da smo funkciji podali kazalec na
spremenljivko in jo nato spreminjali preko tega kazalca.

V spodnjem primeru funkcija stat sprejme seznam celih števil v po referenci, da se ne ustvari
kopija po nepotrebnem, ker funkcija seznama ne spreminja. Prešteje pozitivna in negativna števila
ter rezultate vpiše v argumenta poz in neg, ki sta prav tako podana po referenci.

5

[12]: void stat(vector<int> &v, int &poz, int &neg) {
poz=0;
neg=0;
for (int x : v) {

if (x>0) poz++;
if (x<0) neg++;

}
}

[13]: vector<int> st = {5, -7, 8, 9, -3, -2, -1, -4};
int poz, neg;
stat(st, poz, neg);
cout << "poz/neg: " << poz << " " << neg << endl;

poz/neg: 3 5

1.7 Algoritmi
Knjižnica algorithm ponuje cel kup uporabnih funkcij, kot so min, max, min_element, swap, count,
…

[13]: #include <algorithm>

[14]: cout << min(5,2) << endl;
cout << min({5,3,9}) << endl;

vector<int> v={4,7,1,8};
cout << *min_element(v.begin(), v.end()) << endl;

2
3
1

Verjetno najpogosteje uporabljena funkcija pa je sort. Funkcija sort sprejme iteratorja na začetek
in konec seznama vrednosti, ki jih bo uredila. Tako lahko uporabljamo funkcijo sort na različnih
strukturah, ki implementirajo pravo vrsto iteratorjev.

[19]: vector<int> sez = {8,41,11,7,2};
sort(sez.begin(), sez.end());
for (int x : sez) cout << x << " ";
cout << endl;

2 7 8 11 41

1.7.1 Anonimne funkcije

Pogosto pišemo kratke funkcije za enkratno uporabo. Zato večina modernih programskih jezikov
(Java, Python, C++, …) pozna anonimne oz. lambda funkcije. Sintaksa v C++ je [zunanje
spremenljivke](argumenti funkcije) { vsebina }. Če so zunanje spremenljivke prazne, to

6

pomeni, da lahko vsebina funkcije dostopa samo do svojih argumentov in do globalnih spremenljivk.
Vse spremenljivke in argumente lahko funkcija sprejme po vrednosti ali po referenci.

V spodnjem primeru bomo ponovno uredili seznam števil, vendar jih bomo tokrat primerjali po
abecedi namesto po vrednosti.

[22]: sort(sez.begin(), sez.end(), [](int a, int b) {
return to_string(a) < to_string(b);

});
for (int x : sez) cout << x << " ";
cout << endl;

11 2 41 7 8

1.8 Ostalo
C++ seveda ponuja še veliko več. Do tu smo predstavili samo nekaj osnov, ki nam bodo koristile
pri reševanju algoritmičnih problemov v nadaljevanju.

Kogar zanima več, si lahko na spletu prebere o temah, kot so: razredi (classes), predloge (templates),
pametni kazalci (smart pointers), niti (threads), izjeme (exceptions), preobremenjevanje operatorjev
(operator overloading), …

7

	C++
	Branje in pisanje
	Nizi
	Pari
	Inicializacija s seznamom
	Avtomatska določitev tipa

	Seznam
	Iteratorji
	For each
	Razpakiranje

	Vrsta, sklad, slovar, množica, povezani seznam, …
	Reference
	Algoritmi
	Anonimne funkcije

	Ostalo

