
Cpp

December 18, 2024

1 C++
V C-ju že znate programirati, C++ pa vam ponuja nekaj dodatnih funkcionalnosti, ki vam bodo
olajšale življenje. Večinoma preko svoje standardne knjižnice in raznih sintaktičnih bližnjic. Stan-
dardna knjižnica vsebuje številne uporabne podatkovne tipe/strukture (containters) in algoritme.
Osnovana je bila po knjižnici Standard Template Library (STL), ki se še danes pogosto uporablja
kar kot sinonim za C++ standardno knjižnico.

Prav vam bo prišla dokumentacija: - cplusplus - cppreference

1.1 Branje in pisanje
V C-ju ste navajeni branja in pisanja podatkov s knjižnico stdin.hin funkcijami kot so scanf,
printf, gets, …

C++ pa v knjižnici iostream ponuja t.i. tokove (stream). Prav nam bosta prišla cin (character
input) in cout (character output). Podpirata operatorje >> oz. <<, ki poleg branja/pisanja tudi
vrneta isti objekt, da lahko operatorje verižimo.

[1]: #include <iostream>

[2]: std::cout << "Zivjo!\n";

Zivjo!

Večina funkcionalnosti, ki jih ponuja C++ v svoji standardni knjižnici, se nahaja v imenskem
prostoru std, do objektov v njem pa dostopamo z std::ime. Malo pisanja si lahko prihranimo z
deklaracijo uporabe imenskega prostora std.

[2]: using namespace std;

[28]: int a,b;
cin >> a >> b;
cout << "vsota = " << a+b << endl;

9 10

vsota = 19

1

https://cplusplus.com/reference/
https://en.cppreference.com/w/

1.2 Nizi
C++ ponuja podatkovno strukturo string, ki nam olajša delo z nizi v primerjavi s C-jem, kjer
smo bili obsojeni na delo s tabelami znakov.

[3]: #include <string>

[6]: string ime, priimek;
cin >> ime >> priimek;
string oseba = priimek + " " + ime;
cout << "Pozdravljen, " << oseba << "!" << endl;
cout << "Zacetnice: " << ime[0] << priimek[0] << endl;
cout << "Dolzina imena: " << ime.size() << endl;

Tomaz Hocevar

Pozdravljen, Hocevar Tomaz!
Zacetnice: TH
Dolzina imena: 5

1.3 Pari
Pari vrednosti so zelo koristni, da nam ni treba za vsako malenkost ustvarjati novih struktur ali
razredov. V jezikih, kot je npr. Python, pa je koncept terk (tuple) še bolj prisoten. Paru moramo
določiti tudi tipe vsebovanih komponent. Sintaksa z “oklepaji” oz. znaki manjše/večje je podobna
tisti, ki ste je navajeni iz Jave. Do obeh elementov dostopamo preko atributov first in second.

[4]: #include <utility>

[8]: pair<int,int> xy;
xy = make_pair(10,12);
cout << xy.first << " " << xy.second << endl;

10 12

1.3.1 Inicializacija s seznamom

Nekatere podatkovne tipe lahko inicializiramo tudi s seznami vrednosti (initializer list). Poleg parov
bomo videli primere uporabe tudi kasneje pri drugih strukturah.

[9]: pair<int,int> p = {2,3};
cout << p.first << " " << p.second << endl;

2 3

1.3.2 Avtomatska določitev tipa

Ko začnemo uporabljati gnezdene strukture (npr. par osebe in ocene, pri čemer je oseba prav
tako par sestavljen iz imena in priimka), postanejo opisi podatkovnih tipov precej dolgi. Ker
zna prevajalnik med prevajanjem ugotoviti, da se nek tip ne ujema, ga lahko tudi kar določi, kar
označimo s tipom auto.

2

[10]: pair<pair<string,string>, int> ocena = {{"Tomaz", "Hocevar"}, 10};
auto o = ocena;
cout << o.first.first << endl;

Tomaz

1.4 Seznam
V C-ju smo imeli na voljo tabele fiksne velikosti. Če smo želeli hraniti seznam elementov, ki
smo ga podaljševali, pa smo naleteli na manjši problem. Tega nam rešuje poatkovnih tip vector,
ki predstavlja razširljivo tabelo (resizable array), podobno kot ArrayList v Javi. V njem lahko
shranjujemo samo elemente enakega tipa, ki ga moramo navesti ob deklaraciji (za razliko od npr.
Pythona).

[4]: #include <vector>

[4]: vector<int> v;
for (int x=1; x<=1024; x*=2) v.push_back(x);
for (int i=0; i<v.size(); i++) cout << v[i] << " ";
cout << endl;

1 2 4 8 16 32 64 128 256 512 1024

1.4.1 Iteratorji

Koncept iteratorjev vam je že poznan iz Jave. V C++ so iteratorji kazalci na elemente v struk-
turah, s katerimi se lahko premikamo po elementih v tej strukturi. Vsaka struktura ima svoj tip
iteratorja (npr. ‘vector<int>::iterator) in ponuja iteratorja na svoj začetek in konec
(.begin()in.end()‘).

[6]: for (vector<int>::iterator it=v.begin(); it!=v.end(); it++) {
cout << *it << " ";

}
cout << endl;

1 2 4 8 16 32 64 128 256 512 1024

1.4.2 For each

Iteracija čez vse elemente strukture je zelo pogosta operacija, zato je v številnih programskih jezikih
na voljo tudi temu prilagojena sintaksa. V C++ je to for (tip element : struktura).

[17]: vector<pair<int,int>> koordinate = {{2,6},{1,4},{-2,6}};
for (pair<int,int> xy : koordinate) cout << "[" << xy.first << ", " << xy.

↪second << "]" << endl;

[2, 6]
[1, 4]
[-2, 6]

3

1.4.3 Razpakiranje

Dostop do posameznih elementov kompleksnejšega tipa (npr. seznama parov) je lahko kar dolg. To
si lahko skrajšamo z uporabo razpakiranja (structured binding declaration). Sintaksa je auto [a,
b, ...] = x.

[18]: for (auto [x, y] : koordinate) cout << "[" << x << ", " << y << "]" << endl;

[2, 6]
[1, 4]
[-2, 6]

1.5 Vrsta, sklad, slovar, množica, povezani seznam, …
C++ pozna še cel kup drugih podatkovnih tipov, kot so queue, stack, map, set, list … Več o njih
pa takrat, ko bomo obravnavali abstraktne podatkovne tipe.

[6]: #include <map>
#include <set>

[7]: map<string,int> vpisna = {{"Ana", 123}, {"Miha", 456}, {"Tine", 789}};
set<string> prisotni = {"Ana", "Tine"};
for (auto ime : prisotni) cout << vpisna[ime] << endl;

123
789

1.6 Reference
Referenca je drugo ime za isto spremenljivko. Označimo jo s znakom &. V spodnjem primeru je
y referenca na spremenljivko tipa int, kar zapišemo kot int &y. Referenca ne more biti prazna,
inicializirati jo moramo z drugo spremenljivko ob deklaraciji. Deklaracija reference brez inicializacije
(int &y;) ali inicializacija s konstantno vrednostjo (int &y = 9;) nista možni.

[5]: int x = 10;
int &y = x;
cout << x << " " << y << endl;

10 10

Če sedaj spremenimo vrednost spremenljivke x, se ta sprememba odraža tudi v spremenljivki y, in
obratno.

[6]: x = 11;
cout << x << " " << y << endl;
y = 12;
cout << x << " " << y << endl;

11 11
12 12

4

V C++ se argumenti funkcij prenašajo po vrednosti. Funkcija torej prejme kopijo podanega argu-
menta. V Pythonu ali Javi bi z dodajanjem elementov seznamu, ki ga sprejme funkcija, spremenili
tudi zunanji seznam. V C++ temu ni tako.

[7]: void izpisi(vector<int> v) {
for (int x : v) cout << x << " ";
cout << endl;

}

[8]: auto podvoji(vector<int> v) {
int n=v.size();
for (int i=0; i<n; i++) {

v.push_back(v[i]);
}
return v;

}

[9]: vector<int> a = {1,2,3,4,5};
vector<int> b = podvoji(a);
izpisi(a);
izpisi(b);

1 2 3 4 5
1 2 3 4 5 1 2 3 4 5

Če želimo, lahko to funkcionalnost dosežemo s prenosom argumentov po referenci. Funkcija
podvoji_ref sprejme argument po referenci, vrednost te spremenljivke spremeni in ne vrne ničesar.

[10]: void podvoji_ref(vector<int> &v) {
int n=v.size();
for (int i=0; i<n; i++) {

v.push_back(v[i]);
}

}

[11]: podvoji_ref(a);
izpisi(a);

1 2 3 4 5 1 2 3 4 5

Prenos po referenci se uporablja za podajanje velikih spremenljivk, da se izognemo ustvarjanju
kopije. Druga pogosta uporaba je vračanje več vrednosti iz funkcije preko nastavljanja argumentov,
ki so podani po referenci. Slednje smo v C-ju lahko dosegli tako, da smo funkciji podali kazalec na
spremenljivko in jo nato spreminjali preko tega kazalca.

V spodnjem primeru funkcija stat sprejme seznam celih števil v po referenci, da se ne ustvari
kopija po nepotrebnem, ker funkcija seznama ne spreminja. Prešteje pozitivna in negativna števila
ter rezultate vpiše v argumenta poz in neg, ki sta prav tako podana po referenci.

5

[12]: void stat(vector<int> &v, int &poz, int &neg) {
poz=0;
neg=0;
for (int x : v) {

if (x>0) poz++;
if (x<0) neg++;

}
}

[13]: vector<int> st = {5, -7, 8, 9, -3, -2, -1, -4};
int poz, neg;
stat(st, poz, neg);
cout << "poz/neg: " << poz << " " << neg << endl;

poz/neg: 3 5

1.7 Algoritmi
Knjižnica algorithm ponuje cel kup uporabnih funkcij, kot so min, max, min_element, swap, count,
…

[13]: #include <algorithm>

[14]: cout << min(5,2) << endl;
cout << min({5,3,9}) << endl;

vector<int> v={4,7,1,8};
cout << *min_element(v.begin(), v.end()) << endl;

2
3
1

Verjetno najpogosteje uporabljena funkcija pa je sort. Funkcija sort sprejme iteratorja na začetek
in konec seznama vrednosti, ki jih bo uredila. Tako lahko uporabljamo funkcijo sort na različnih
strukturah, ki implementirajo pravo vrsto iteratorjev.

[19]: vector<int> sez = {8,41,11,7,2};
sort(sez.begin(), sez.end());
for (int x : sez) cout << x << " ";
cout << endl;

2 7 8 11 41

1.7.1 Anonimne funkcije

Pogosto pišemo kratke funkcije za enkratno uporabo. Zato večina modernih programskih jezikov
(Java, Python, C++, …) pozna anonimne oz. lambda funkcije. Sintaksa v C++ je [zunanje
spremenljivke](argumenti funkcije) { vsebina }. Če so zunanje spremenljivke prazne, to

6

pomeni, da lahko vsebina funkcije dostopa samo do svojih argumentov in do globalnih spremenljivk.
Vse spremenljivke in argumente lahko funkcija sprejme po vrednosti ali po referenci.

V spodnjem primeru bomo ponovno uredili seznam števil, vendar jih bomo tokrat primerjali po
abecedi namesto po vrednosti.

[22]: sort(sez.begin(), sez.end(), [](int a, int b) {
return to_string(a) < to_string(b);

});
for (int x : sez) cout << x << " ";
cout << endl;

11 2 41 7 8

1.8 Ostalo
C++ seveda ponuja še veliko več. Do tu smo predstavili samo nekaj osnov, ki nam bodo koristile
pri reševanju algoritmičnih problemov v nadaljevanju.

Kogar zanima več, si lahko na spletu prebere o temah, kot so: razredi (classes), predloge (templates),
pametni kazalci (smart pointers), niti (threads), izjeme (exceptions), preobremenjevanje operatorjev
(operator overloading), …

7

Deli in vladaj

December 18, 2024

1 Deli in vladaj
Pristop deli in vladaj (Divide and Conquer) smo že srečali pri dvojiškem iskanju, hitrem urejanju
(quick sort) in urejanju z zlivanjem (merge sort). Gre za preprosto idejo, da problem razdelimo na
več manjših podproblemov, te rešimo rekurzivno po enakem postopku, nato pa združimo dobljene
rezultate manjših problemov v rešitev večjega problema. Umetnost pa je v podrobnostih, kako
razbiti problem in kako združevati rešitve, da bo celoten postopek res učinkovit.

Oglejmo si to na primeru računanja vsote seznama, ki vsebuje 𝑛 števil. Seznam razbijemo na levo
in desno polovico, rekurzivno izračunamo njuni vsoti, ter ju nato preprosto seštejemo. Enostavno.
Kaj pa učinkovito? Navadno seštevanje v zanki ima časovnost zahtevnost 𝑂(𝑛). Če smo ustvarjali
nove kopije za levo in desno polovico, je ta rešitev pravzaprav slabša, ker ima časovno zahtevnost
𝑂(𝑛 log 𝑛). Če smo za podsezname uporabljali indekse, pa tudi nismo nič na boljšem. Časovna
zahtevnost je še vedno 𝑂(𝑛), samo vrstni red seštevanja elementov se je spremenil.

Omenimo nekaj klasičnih primerov algoritmov, ki temeljijo na pristopu deli in vladaj, vendar jih v
okviru APS1 ne bomo utegnili obravnavati:

• množenje velikih števil (Karatsuba, FFT)
• množenje matrik (Strassen),
• najbližji par točk v ravnini
• konveksna ovojnica

1.1 Krovni izrek
Običajno razbijemo problem velikosti 𝑛 na podprobleme velikosti 𝑛/𝑏. Rekurzivno moramo rešiti
𝑎 takih podproblemov. Običajno je 𝑎 ≤ 𝑏, ni pa nujno. Poleg tega pa za razbitje in združevanje
rešitev potrebujemo 𝑓(𝑛) operacij:

• dvojiško iskanje: 𝑏 = 2, 𝑎 = 1, 𝑓(𝑛) = 𝑂(1)
• quick/merge sort: 𝑏 = 2, 𝑎 = 2, 𝑓(𝑛) = 𝑂(𝑛)

Za izračun števila operacij imamo torej rekuzivno formulo 𝑇 (𝑛) = 𝑎𝑇 (𝑛/𝑏) + 𝑓(𝑛), pri čemer je
𝑇 (𝑛) = 𝑂(1) za dovolj majhen 𝑛. Števili 𝑎 in 𝑏 sta konstanti, ki nista odvisni od 𝑛-ja. Gre
za družino rekurzivnih funkcij, za katere nam krovni izrek (tudi mojstrova metoda) v določenih
primerih navaja rešitve.

Primera 𝑏 = 2, 𝑎 = 1 in 𝑏 = 2, 𝑎 = 2 smo že analizirali. Oglejmo si še primer 𝑏 = 2, 𝑎 = 4 za npr.
𝑛 = 8.

• Na začetnem (ničtem) nivoju imamo 1 problem velikosti 𝑛.
• Na prvem nivoju dobimo 𝑎 problemov velikosti 𝑛/𝑏.

1

• Na 𝑖-tem imamo 𝑎𝑖 problemov velikosti 𝑛/𝑏𝑖.

Število nivojev je log𝑏 𝑛, torej je listov tega rekurzivnega drevesa 𝑎log𝑏 𝑛 = 𝑛log𝑏 𝑎. Eksponent
označimo z 𝑐 = log𝑏 𝑎, ker bo pomemben v nadaljevanju.

Če je funkcija količine dela na posameznem nivoju 𝑓(𝑛) dovolj majhna, predstavlja velikost
rekurzivnega drevesa glavni del števila izvedenih operacij, čas 𝑓(𝑛) pa je zanemarljiv. Če pa je
količina dela 𝑓(𝑛) dovolj velika funkcija, je glavnina operacij izvedena na začetnem nivoju v ko-
renu, ker problem nato razpade na manjše podprobleme, ki imajo “zanemarljivo” majhno količino
dela v primerjavi s korenom.

Za običajni konstanti 𝑏 = 2, 𝑎 = 2 si oglejmo nekaj primerov funkcije 𝑓(𝑛).
• 𝑓(𝑛) = log 𝑛 ∶ V korenu imamo log 𝑛 dela, v otrocih ponovno 2 log 𝑛/2 = log 𝑛, … Skupaj

torej 𝑂(𝑛 + log2 𝑛) = 𝑂(𝑛), ker prevladuje velikost rekurzivnega drevesa.
• 𝑓(𝑛) = 𝑛 ∶ Tega že poznamo. Imamo log 𝑛 nivojev in na vsakem nivoju 𝑛 dela, skupaj torej

𝑂(𝑛 log 𝑛).
• 𝑓(𝑛) = 𝑛2 ∶ V korenu imamo 𝑛2 dela, v otrocih 2(𝑛/2)2 = 1/2𝑛2, v vnukih 4(𝑛/4)2 = 1/4𝑛2.

Vsota je 𝑂(𝑛2), ker prevladuje delo v korenu.

Krovni izrek (master theorem) nam poda rešitve rekurzivne enačbe 𝑇 (𝑛) = 𝑎𝑇 (𝑛/𝑏) + 𝑓(𝑛)
pri konstantah 𝑎 ≥ 1, 𝑏 > 1 za tri skupine enačb glede na razmerje med 𝑐 = log𝑏 𝑎 in funkcijo 𝑓(𝑛).
Velikostni red funkcije 𝑓(𝑛) bomo primerjali z 𝑛𝑐 in ločili tri primere.

1. 𝑓(𝑛) = 𝑂(𝑛𝑐−𝜖) ⇒ 𝑇 (𝑛) = Θ(𝑛𝑐)
Če je čas za združevaje “manjši” od 𝑛𝑐, je velikost rekurzivnega drevesa (𝑛𝑐) prevladujoča
vrednost.

2. 𝑓(𝑛) = Θ(𝑛𝑐) ⇒ 𝑇 (𝑛) = Θ(𝑛𝑐 log 𝑛)
Če sta vrednosti “enaki”, dobimo dodaten logaritemski faktor. Obstaja še natančnejša for-
mulacija tega primera:
𝑓(𝑛) = Θ(𝑛𝑐 log𝑘 𝑛), 𝑘 ≥ 0 ⇒ 𝑇 (𝑛) = Θ(𝑛𝑐 log𝑘+1 𝑛)

3. 𝑓(𝑛) = Ω(𝑛𝑐+𝜖) ⇒ 𝑇 (𝑛) = Θ(𝑓(𝑛))
Če je čas za združevanje “večji”, je to prevladujoča vrednost. Ta primer zahteva še dodaten
pogoj regularnosti, ki pravi, da je količina dela v vozlišču vsaj tako velika kot količina dela v
otrocih (kar je skoraj vedno res): 𝑎𝑓(𝑛/𝑏) ≤ 𝑘𝑓(𝑛) za dovolj velike 𝑛-je in nek 𝑘 < 1.

Oglejmo si nekaj primerov razpolavljanja z 𝑏 = 2:

• 𝑎 = 2, 𝑓(𝑛) = 1 (rekurzivno seštevanje): 𝑐 = 1, velja 1. primer, zato je 𝑇 (𝑛) = 𝑂(𝑛)
• 𝑎 = 2, 𝑓(𝑛) = log 𝑛: 𝑐 = 1, velja 1. primer, zato je 𝑇 (𝑛) = 𝑂(𝑛)
• 𝑎 = 3, 𝑓(𝑛) = 𝑛 (Karatsuba): 𝑐 ≈ 1.6, velja 1. primer, zato je 𝑇 (𝑛) = 𝑂(𝑛1.6).
• 𝑎 = 1, 𝑓(𝑛) = 1 (dvojiško iskanje): 𝑐 = 0, velja 2. primer, zato je 𝑇 (𝑛) = 𝑂(log 𝑛).
• 𝑎 = 2, 𝑓(𝑛) = 𝑛 (quick/merge sort): 𝑐 = 1, velja 2. primer, zato je 𝑇 (𝑛) = 𝑂(𝑛 log 𝑛).
• 𝑎 = 2, 𝑓(𝑛) = 2𝑛: 𝑐 = 1, velja 3. primer, zato je 𝑇 (𝑛) = 2𝑛.

Primeri, kjer si ne moremo pomagati s krovnim izrekom:

• 𝑇 (𝑛) = 1/2 𝑇 (𝑛/4) + 𝑛 ∶ 𝑎 < 1 nima smisla, rešujemo pol problema velikosti 𝑛/4?
• 𝑇 (𝑛) = 2 𝑇 (𝑛/1) + 𝑛 ∶ 𝑏 = 1, zato se problem sploh ne zmanjšuje.
• 𝑇 (𝑛) = 3 𝑇 (𝑛/2) − 𝑛2 ∶ Delo 𝑓(𝑛) ne more biti negativno.
• 𝑇 (𝑛) = 𝑛/2 𝑇 (𝑛/2) + 𝑛 ∶ 𝑎 = 𝑛/2 ni konstanta.
• 𝑇 (𝑛) = 2 𝑇 (𝑛/2) + 𝑛/ log log 𝑛 ∶ Tega ne pokriva noben izmed treh primerov.

2

Posplošitev krovnega izreka na primere, kjer imamo opravka s podproblemi različnih velikosti (niso
vsi enako veliki 𝑛/𝑏), je znana kot Akra-Bazzi metoda.

1.2 Primeri nalog
Sedaj smo opremljeni s teorijo pristopa deli in vladaj, ki jo v nadaljevanju poskusimo uporabiti na
nekaj primerih.

[1]: #include <iostream>
#include <vector>
using namespace std;

[2]: template<typename T>
void print(const vector<T> &s) {

for (T x : s) cout << x << " ";
cout << endl;

}

1.2.1 Potenciranje

Izračunati želimo potenco 𝑥𝑛. Pri tem predpostavimo, da lahko množimo poljubno velika števila v
konstantnem času (kar seveda ni res). Ali pa izračunajmo rešitev po nekem modulu 𝑀 (v kolobarju
ostankov), kjer lahko pri seštevanju in množenju sproti računamo z ostanki.

Če je 𝑛 sod, bi nam prišla prav potenca 𝑝 = 𝑥𝑛/2. Iskani rezultat je ravno 𝑝2. Če pa je 𝑛 lih,
mu odštejemo 1 (in množimo rezultat z 𝑛) ter tako pridemo do sodega primera. Obakrat smo s
konstantnim številom operacij razpolovili velikost problema, zato je časovna zahtevnost 𝑂(log 𝑛),
za kar nam niti ni treba komplicirati s krovnim izrekom. Postopek se imenuje potenciranje s
kvadriranjem (exponentiation by squaring).

[3]: int potenca(int x, int n) {
if (n==0) return 1;
if (n%2==0) {

//return potenca(x, n/2) * potenca(x, n/2); // narobe! ... O(n)
int p = potenca(x, n/2);
return p*p;

} else {
return x*potenca(x, n-1);

}
}

[4]: cout << potenca(2,10) << endl;

1024

Pozorni moramo biti, da ne računamo vrednosti potenca(x, n/2) dvakrat. V tem primeru bi bila
časovna zahtevnost 𝑂(𝑛), kar ni nič boljše od zaporednega množenja. Vrednost izračunamo enkrat
in jo nato kvadriramo.

3

1.2.2 Enakomerno razbitje seznama

Podan imamo seznam 𝑛 števil 𝑎1, 𝑎2, … , 𝑎𝑛 z vsoto 𝑉 = ∑𝑛
1 𝑎𝑖, ki ga želimo razbiti na 𝑘 strnjenih

podseznamov (ki so lahko tudi prazni). Želimo si, da je razbitje tako, da so si vsote podseznamov
čim bolj podobne. Idealno bi bilo, če bi imel vsak podseznam vsoto 𝑉 /𝑘, vendar to ni vedno mogoče.
Odločili smo se, da bomo to dosegli tako, da bomo zahtevali, da je največja vsota 𝑣 posameznega
podseznama čim manjša (minimiziramo maksimalno vsoto). Kakšno je optimalno razbitje?

Za primer vzemimo seznam 12, 8, 3, 5, 4, 13, 5, 3, 7 in 𝑘 = 3. Vsota je 60, zato bi bilo
idealno, če bi naredili skupine po 20. Prva dva elementa se ravno seštejeta v 20, zato bi ju bilo
smiselno dati v svojo skupino. Potem nam ostane še dilema glede meje med drugo in tretjo skupino,
kjer lahko preizkusimo obe meji okoli vsote 20. Smo s tem požrešnim razmislekom prišli do opti-
malne rešitve? Nismo. Prvo skupino se splača podaljšati, da pride do lepše delitve med drugo in
tretjo. Optimalno razbitje je (12, 8, 3), (5, 4, 13), (5, 3, 7), kjer so vsote 23, 22 in 15.

Pogosto so odločitveni problemi lažji od optimizacijskih. Je neka konkretna meja 𝑣 sprejemljiva?
Ali obstaja razbitje na 𝑘 kosov, katerih vsota ne presega 𝑣? Večja kot je meja za vsoto, lažji je
problem. Če obstaja razbitje z mejno vsoto 𝑣, obstaja tudi pri meji 𝑣 + 1 (veljavno je isto razbitje).
In obratno, če pri meji 𝑣 ne obstaja, potem ne obstaja tudi pri 𝑣−1. Iščemo mejo med situacijama,
kjer razbijte še obstaja in kjer ne. To lahko poiščemo z dvojiškim iskanjem. Pravzaprav delamo
dvojiško iskanje po možnih rešitvah 𝑣 in preverjamo, ali so sprejemljive.

Kako ugotovimo, ali obstaja veljavno razbitje pri neki mejni vsoti 𝑣? Poiskali bomo razbitje s čim
manj kosi, ki ne presegajo vsote 𝑣 (vedno lahko dodamo kakšnega praznega, da jih bo točno 𝑘).
Tega se lahko lotimo na požrešen način. Prvi kos naj bo največja predpona seznama, ki še ne preseže
vsote 𝑣. To bo vedno vodilo do neke optimalne rešitve. Recimo, da ne bi, in bi moral biti prvi kos
krajši (daljši očitno ne more biti). Potem bi lahko v tej predpostavljeni optimalni rešitvi premaknili
nekaj elementov iz drugega kosa v prvega. Vemo, da je v prvem kosu še prostor, z zmanjševanjem
drugega kosa pa tudi ne pokvarimo rešitve. Požrešno strategijo lahko torej uporabimo za določanje
vsakega kosa znova. Če s tem nismo presegli 𝑘 kosov, je mejna vsota 𝑣 sprejemljiva, sicer pa ne.

Razmislimo še o časovni zahtevnosti opisanega postopka. Za dvojiško iskanje meje 𝑣 bomo potre-
bovali 𝑂(log 𝑉) korakov. Za določanje sprejemljivosti posamezne meje pa 𝑂(𝑛). To je skupaj
𝑂(𝑛 log 𝑉).

[5]: int partition(vector<int> a, int k) {
int total=0, largest=0;
for (int x : a) {

total+=x;
largest = max(largest, x);

}
int lo=largest-1, hi=total; // lo=infeasible, hi=feasible
while (lo+1<hi) {

int lim=(lo+hi)/2;
int sum=0, chunks=1;
for (int x : a) {

if (sum+x<=lim) sum+=x; // extend last chunk
else { chunks++; sum=x; } // start new chunk

}
if (chunks<=k) hi=lim;

4

else lo=lim;
}
return hi;

}

[6]: vector<int> a={12,8,3,5,4,13,5,3,7};
cout << partition(a, 3) << endl;
for (int k=1;k<=a.size();k++) {

cout << k << ": " << partition(a, k) << endl;
}

23
1: 60
2: 32
3: 23
4: 17
5: 15
6: 13
7: 13
8: 13
9: 13

1.2.3 K-ti element

V problemu izbire k-tega elementa (selection problem) imamo podan (neurejen) seznam 𝑛 števil
𝑎1, 𝑎2, … , 𝑎𝑛. Zanima nas, katero število je 𝑘-to po velikosti oz. bi bilo na 𝑘-tem mestu, če bi
seznam uredili.

Seznam lahko uredimo in preverimo, kateri element konča na 𝑘-tem mestu. Časovna zahtevnost
je odvisna od časa urejanja in je v splošnem 𝑂(𝑛 log 𝑛). Smo lahko kaj bolj učinkoviti? Vsakakor
moramo preveriti vseh 𝑛 elementov, morda pa lahko izboljšamo faktor log 𝑛.

Ker bomo uporabili podoben prostop kot pri hitrem urejanju (quick sort), se algoritmu, ki ga bomo
opisali, reče hitro izbiranje (quick select). Izbrali bomo delilni element (pivot) in razdelili števila na
manjša (ali enaka) in večja. Naj bo manjših števil 𝑚. Če je 𝑘 <= 𝑚, moramo 𝑘-tega iskati med
manjšimi. Sicer pa moramo med večjimi poiskati (𝑘 − 𝑚)-tega.

Ob predpostavki, da nam seznami razpadajo na prbiližno enako velike skupine, bo pričakovana
časovna zahtevnost 𝑂(𝑛 + 𝑛/2 + 𝑛/4 + …) = 𝑂(𝑛). S tem se strinja tudi krovni izrek pri 𝑏 = 2, 𝑎 =
1, 𝑓(𝑛) = 𝑛 (3. primer).

V C++ je ta funkcionalnost že na voljo kot funkcija nth_element iz knjižnice algorithm, ki delno
uredi seznam tako, da je n-ti element na pravem mestu, pred njim so samo manjši ali enaki elementi,
za njim pa večji ali enaki.

[7]: vector<int> v = {3,5,2,8,1,10,2,3,8,5,1};
nth_element(v.begin(), v.begin()+4, v.end());
print(v);
sort(v.begin(),v.end());
print(v);

5

2 1 1 2 3 5 3 5 8 10 8
1 1 2 2 3 3 5 5 8 8 10

1.2.4 Štetje inverzij

V seznamu 𝑛 števil 𝑎1, 𝑎2, … , 𝑎𝑛 je inverzija par indeksov 𝑖 in 𝑗 (𝑖 < 𝑗), za kateri velja, da sta
pripadajoči števili v seznamu narobe urejeni (𝑎𝑖 > 𝑎𝑗). Zanima nas, koliko inverzij vsebuje podani
seznam? Seveda lahko preverimo vse pare indeksov, vendar ima to kvadratno časovno zahtevnost.

Prilagodili bomo algoritem urejanja z zlivanjem (merge sort). Poleg urejanja podseznamov naj
funkcija izračuna še število inverzij v njem (pred urejanjem). Recimo, da smo seznam razbili na
levo in desno polovico, ter rekurzivno rešili manjša problema. S tem smo dobili število inverzij v
levi polovici in urejeno levo polovico, ter enako za desno polovico. Urejeni polovici znamo zliti v
urejeno celoto. Kaj pa inverzije?

Inverzije v levi in desni polovici seštejemo, vendar nam manjkajo še tiste inverzije, kjer je eno
število v levi, drugo pa v desni polovici. Za vsako število 𝑥 iz leve polovice bomo izračunali število
inverzij, v katerih nastopa - koliko je v desni polovici manjših števil od 𝑥? To lahko učinkovito
izračunamo med zlivanjem obeh polovic. Recimo, da smo že zlili 𝑙 števil iz leve polovice in 𝑑 iz
desne ter je naslednje na vrsti število 𝑥 iz leve polovice. Pred njim je v zlitem urejenem seznamu
že 𝑑 manjših števil iz desne polovice, s katerimi je formiral inverzije in jih prištejemo k rezultatu.

6

Dinamicno programiranje

December 18, 2024

1 Dinamično programiranje
Dinamično programiranje je algoritmičen pristop, ki je podoben pristopu deli in vladaj. Tudi
pri uporabi dinamičnega programiranja bomo razbili problem na manjše podprobleme, poiskali
optimalne rešitve podproblemov in si z njimi pomagali pri rešitvi začetnega problema. Pomembne
lastnosti problema, pri katerem si lahko pomagamo z dinamičnim programiranjem so:

• neodvisnost podproblemov: Posamezen podproblem lahko rešujemo neodvisno od drugih pod-
problemov.

• optimalna podstruktura: Optimalna rešitev problema vsebuje optimalne rešitve podproble-
mov.

• prekrivanje/ponavljanje podproblemov: To je glavna lastnost, ki jo bomo izkoristili za
izboljšave in v čemer se pristop razlikuje od tehnike deli in vladaj.

Tehniko lahko enostavno povzamemo z nasvetom “ne računaj enakih stvari večkrat”, v praksi pa
je kljub temu nekoliko bolj zapleteno - kako to doseči, katere stvari sploh so enake, …

Pristop nima nobene veze z dinamično alokacijo pomnilnika. Poimenoval ga je njen avtor Richard
Bellman. “Programiranje” se nanaša na reševanje optimizacijskega problema, poodobno kot matem-
atično programiranje/optimizacija. Pridevnik “dinamično” pa se nanaša na različne podprobleme.

[1]: #include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using namespace std;

1.1 Fibonaccijevo zaporedje
Osnovno idejo dinamičnega programiranja si oglejmo na trivialnem primeru Fibonacijevega za-
poredja, ki je definirano rekurzivno kot: 𝐹0 = 0, 𝐹1 = 1, 𝐹𝑛 = 𝐹𝑛−1 + 𝐹𝑛−2. Zanima nas 𝑛-to
število v zaporedju. Pri večjih 𝑛-jih bodo vrednosti zaporedja precej velike, vendar se s tem ne
bomo ukvarjali in bomo zadovoljni z rezultatom, ki je posledica preliva (overflow).

[2]: int fib(int n) {
if (n<=1) return n;
return fib(n-1)+fib(n-2);

}

1

[3]: for (int n=0;n<10;n++) {
cout << n << ": " << fib(n) << endl;

}

0: 0
1: 1
2: 1
3: 2
4: 3
5: 5
6: 8
7: 13
8: 21
9: 34

Vrednosti izgledajo pravilne. Hitro pa ugotovimo, da na ta način ne bomo mogli računati vrednosti
že za malo večje 𝑛-je. Težava je v eksponentni velikosti drevesa rekurzivnih klicev. Listov tega
drevesa, kjer je rezultat funkcije 1, je natanko 𝐹𝑛. Poleg tega pa imamo še liste z vrednostjo 0 in
vsa notranja vozlišča. Skratka, ogromno število vozlišč oz. klicev funkcije.

[4]: //cout << fib(100) << endl; // prepocasi

Opazimo lahko, da se bo funkcija izvedla večkrat z istim argumentom 𝑛. Če se nismo kje zmotili,
bi moral imeti vsak tak klic funkcije tudi enak rezultat. Rezultat si lahko ob prvem klicu funkcije
shranimo, v kasnejših klicih pa ga samo vrnemo. To je pristop od zgoraj navzdol (top-down),
ki je znan tudi pod imenom memoizacija (memoization, brez “r”). Funkcija se bo torej za vsak
možen argument izvedla natanko enkrat, ob ostalih klicih pa bo takoj vrnila vrednost, česar niti ne
bomo šteli kot klic funkcije. Število klicev funkcije bo torej 𝑂(𝑛), čas izvedbe posameznega klica
funkcije pa 𝑂(1). Rešitev ima časovno in prostorsko zahtevnost 𝑂(𝑛).
Za ugotavljanje, ali je bil nek podproblem že rešen ali ne, lahko v tem primeru izkoristimo kar
vrednost 0, saj bomo kot izračunane rezultate vpisovali samo večja števila. V splošnem pa bi lahko
imeli eno tabelo, ki bi nam povedala, ali je bil nek podproblem že rešen, ter drugo tabelo, ki bi
hranila dejanske rezultate. Zaradi enostavnosti bomo uporabili dovolj veliko fiksno tabelo dovolj.
Namesto tega bi lahko uporabili katerokoli implementacijo slovarja, ki bi imel kot ključ argumente,
ki predstavljajo opis podproblema, za pripadajočo vrednost pa njegovo rešitev.

[5]: const int N=10000;
int memo[N+1]; // memoizacijska tabela

[6]: int fib2(int n) {
if (n<=1) return n;
if (memo[n]!=0) return memo[n];
memo[n]=fib2(n-1)+fib2(n-2);
return memo[n];

}

Če smo malo bolj sistematični, lahko rešujemo podprobleme v takem vrstnem redu, da imamo
rešitve manjših podproblemov vedno že rešene, ko jih potrebujemo. Podprobleme bomo torej
reševali od manjših proti večjim, kar v tem primeru pomeni od manjših proti večjim 𝑛-jem. Takemu

2

reševanju rečemo od spodaj navzgor (bottom-up). Časovna in prostorska zahtevnost sta enaki
kot v prejšnjem primeru, le da sta še bolj očitni.

[7]: int fib3[N+1];
fib3[0]=0;
fib3[1]=1;
for (int n=2;n<=N;n++) fib3[n]=fib3[n-1]+fib3[n-2];
cout << fib3[100] << endl; // overflow
cout << fib3[10] << endl;

-980107325
55

Zaradi sistematičnosti pa smo lahko malo bolj prostorsko učinkoviti. Vedno namreč potrebujemo
rezultate samo zadnjih dveh izračunanih problemov. Tako lahko prostorsko zahtevnost zmanjšamo
na 𝑂(1).

[8]: int fib4(int n) {
int f2=0, f1=1;
for (int i=2;i<=n;i++) {

int fi=f1+f2;
f2=f1;
f1=fi;

}
return f1;

}

[9]: cout << fib4(10) << endl;

55

1.2 Žabji skoki
Vzdolž potoka gleda iz vode 𝑛 skal na koordinatah 𝑥1 < 𝑥2 < ... < 𝑥𝑛. Žabec sedi na prvi skali in
bi rad z zaporedjem skokov po skalah prispel do zadnje skale. V enem skoku lahko skoči najmanj
𝑎 in največ 𝑏 enot daleč v smeri proti cilju. Kakšno je najmanjše število skokov, ki jih potrebuje
za to?

Če je 𝑎 = 0, smo že v poglavju o požrešnih algoritmih na podobnem problemu ugotovili, da lahko
z vsakim skokom skoči do najbolj oddaljene skale, ki jo še doseže, in bo s tem minimiziral število
svojih skokov. Vpeljava spodnje meje dolžine skoka pa problem zakomplicira.

Če razmišljamo rekurzivno, se bo žabec v prvem skoku premaknil na neko skalo 𝑥𝑖, ki je oddaljena
med 𝑎 in 𝑏 od skale 𝑥1. Če take skale sploh ni, pot do cilja ne obstaja. Za to je porabil en skok, nato
pa se mora v čim manjšem številu skokov premakniti s skale 𝑥𝑖 do cilja. Definirajmo podproblem
𝑓(𝑖) kot najmanjše število skokov, ki ga žabec potrebuje, da pride na cilj z 𝑖-te skale:

• 𝑓(𝑛) = 0
• 𝑓(𝑖) = min𝑗>𝑖∶ 𝑎≤𝑥𝑗−𝑥𝑖≤𝑏 (1 + 𝑓(𝑗))

Očitno bo prišlo do ponavljanja podproblemov. Do neke skale lahko žabec pride na več načinov,

3

ampak za optimalno pot od tam do cilja je povsem nepomembno, kako je do tja prišel. Pomembno je
samo, na kateri skali se nahaja. Zato si lahko rešitev shranimo in jo kasneje po potrebi uporabimo,
ne da bi jo računali ponovno. Lahko pa bi probleme reševali tudi sistematično po principu od
spodaj navzgor, kar v tem primeru pomeni od skal bližje cilju proti tistim bližje začetku.

Rešiti moramo 𝑂(𝑛) podproblemov, za rešitev vsakega od njih pa moramo preveriti 𝑂(𝑛) možnosti
za naslednji skok. Časovna zahtevnost je 𝑂(𝑛2), prostorska pa 𝑂(𝑛).

[10]: const int inf=1e9;
int a=3, b=4;
int mem_jump[1000];

[11]: int jump(int i, vector<int> &x) {
int n=x.size();
if (i==n-1) return 0;
if (mem_jump[i]!=0) return mem_jump[i];
int best=inf;
for (int j=i+1;j<n;j++) {

int d=x[j]-x[i];
if (a<=d && d<=b) best=min(best, 1+jump(j,x));

}
mem_jump[i]=best;
return best;

}

[12]: vector<int> x = {0,3,4,6,10};
cout << jump(0,x) << endl;

3

1.3 Rezanje palice
Pri problemu rezanja palice (rod cutting) imamo podano palico dolžine 𝑛, ki jo želimo razrezati na
manjše kose in te kose prodati posamično za čim večjo skupno ceno. Dolžina palice in dolžine kosov
morajo biti celoštevilske. Podano imamo tabelo cen 𝑐, v kateri nam 𝑖-to število 𝑐𝑖 pove, za kakšno
ceno bomo lahko prodali palico dolžine 𝑖. Daljši kot je kos, za večjo ceno ga bomo lahko prodali:
veljalo bo 𝑐𝑖 ≤ 𝑐𝑖+1. Kakšen je največji možen izkupiček od prodaje razrezane palice?

Oglejmo si primer s spodnjo tabelo cen:

𝑖
1

2

3

4

5

6

4

7

8

𝑐𝑖

2

5

6

9

15

16

17

20

Naj bo dolžina palice 𝑛 = 8:

• Če razrežemo palico na kose dolžine 1, bomo zanjo dobili 𝑛 ⋅ 𝑐1 = 16.
• Če pustimo palico celo, dobimo zanjo 𝑐8 = 20.
• Če jo razrežemo na dva kose dolžin 2 in 6, pa bomo dobili 𝑐2 + 𝑐6 = 21.
• Če jo razrežemo na dva kose dolžin 1, 2 in 5, bomo dobili 𝑐1 + 𝑐2 + 𝑐5 = 22.

Rekurzivni razmislek o zaslužku 𝑓(𝑛) pri optimalnem rezanju palice dolžine 𝑛 nam pove, da bomo
morali izbrati dolžino prvega reza. Če je palica dolžine 𝑛, si moramo izbrati enega od rezov dolžine
𝑥 ≤ 𝑛 (s čimer zaslužimo 𝑐𝑥) ter optimalno zrezati preostanek palice dolžine 𝑛 − 𝑥. Ker ne vemo,
katera dolžina reza bo najboljša, rekurzivno preverimo vse. Uporabimo tokrat pristop od spodaj
navzgor in izračunajmo zaslužke za vedno daljše palice: 𝑓(𝑛) = max𝑥≤𝑛 𝑓(𝑛 − 𝑥) + 𝑐𝑥.

[13]: vector<int> c = {0,2,5,6,9,15,16,17,20};
int N=8;
int f[1000];
f[0]=0;
for (int n=1;n<=N;n++) {

f[n]=0;
for (int x=1;x<=n;x++) {

f[n]=max(f[n], f[n-x]+c[x]);
}

}
cout << f[N] << endl;

22

Časovna zahtevnost algoritma je 𝑂(𝑛2), prostorska pa 𝑂(𝑛).
Razmislimo še o rekonstrukciji rešitve. Katere reze je treba narediti, da dosežemo optimalno
ceno? Za vsak podproblem poiščemo potezo, ki je vodila do optimalnega rezultata. Druga možnost
pa je, da si že ob reševanju podproblema shranimo optimalno potezo: npr. v dodatni tabeli 𝑔(𝑛)
bi lahko hranili 𝑥, pri katerem funkcija 𝑓(𝑛) doseže svoj maksimum.

5

[14]: int n=N;
while (n>0) {

for (int x=1;x<=n;x++) {
if (f[n]==f[n-x]+c[x]) {

cout << x << ": " << c[x] << endl;
n-=x;
break;

}
}

}

1: 2
2: 5
5: 15

1.4 Pot v mreži
V labirintu višine ℎ in širine 𝑤 oz. tabeli znakov ‘.’, ki predstavljajo prosto polje in ‘#’, ki pred-
stavlajo blokirano polje, nas zanima, na koliko načinov lahko pridemo iz levega-zgornjega kota v
desni-spodnji kot, pri čemer se lahko premikamo samo desno in navzdol. V spodnjem primeru
obstajajo tri take poti.

.#....

....#.

.#..#.

......

Rekurzivno bi problem reševali tako, da bi se s trenutne celice poskusili premakniti desno in navzdol
(če sta oba premika sploh možna) in sešteli možne poti do cilja iz nove lokacije (sosednje celice).
Dosedanji problemi so imel eno-dimenzionalen opis podproblema, kjer smo podproblem opisali z
eno spremenljivko. Tokrat pa podproblem opišemo z dvema dimenzijama - vrstico in stolpcem
celice. Če je polje zasedeno ali se nahaja izven mreže, je število poti do cilja enako 0, sicer pa velja
𝑓(𝑖, 𝑗) = 𝑓(𝑖 + 1, 𝑗) + 𝑓(𝑖, 𝑗 + 1). Robni pogoj v desnem-spodnjem kotu je 𝑓(ℎ − 1, 𝑤 − 1) = 0.

Podprobleme lahko rešujemo sistematično po vrsticah od spodaj navzgor in znotraj vrstice od desne
proti levi. Tako imamo potrebne rešitve podproblemov vsakič že na voljo. Časovna in prostorska
zahtevnost sta 𝑂(ℎ𝑤).

[2]: vector<string> lab = {".#....",
"....#.",
".#..#.",
"......"};

int h=lab.size(), w=lab[0].size();
int f[10][10];
memset(f,0,sizeof(f));
for (int i=h-1;i>=0;i--) {

for (int j=w-1;j>=0;j--) {
if (i==h-1 && j==w-1) f[i][j]=1;
else if (lab[i][j]=='#') f[i][j]=0;

6

else f[i][j]=f[i+1][j]+f[i][j+1];
}

}
cout << f[0][0] << endl;

4

Prostorsko zahtevnost bi lahko izboljšali na 𝑂(𝑤), ker pri računanju vrednosti 𝑓(𝑖, ∗) potrebujemo
samo že izračunane rezultate desno v isti vrstici 𝑓(𝑖, ∗) in eno vrstico nižje 𝑓(𝑖 + 1, ∗).

1.5 Najdaljše skupno podzaporedje
Pri problemu najdaljšega skupnega podzaporedja (longest common subsequence, LCS) nizov 𝑆 in 𝑇
(dolžine 𝑛 in 𝑚), iščemo najdaljši niz LCS(𝑆, 𝑇), ki se pojavi kot podzaporedje (ne nujno podniz)
v 𝑆 in v 𝑇 . Oglejmo si primer 𝑆 = 𝐴𝐵̄ ̄𝐶𝐵̄𝐷 ̄𝐴𝐵 in 𝑇 = 𝐵̄𝐷 ̄𝐶𝐵̄𝐵 ̄𝐴, kjer je eno izmed najdaljših
skupnih podzaporedij LCS(𝑆, 𝑇) = 𝐵𝐶𝐵𝐴 dolžine 4.

Drugačen pogled na isti problem je poravnava obeh nizov, da se pri tem čim več znakov ujema.

AB CB DAB
BDCBB A

Rekurzivni razmislek je sledeč:

• Če se oba niza začneta z enakim znakom, je ta znak lahko začetek LCS-ja, preostanek pa je
LCS za en znak krajših nizov.

• Če se niza razlikujeta v prvem znaku, potem vsaj en od teh dveh znakov ne bo del LCS-ja.
Preizkusimo obe možnosti in rešimo problem z nizoma, kjer je en malo krajši.

Naj bo LCS(𝑖, 𝑗) najdaljši skupni podniz nizov 𝑆𝑖𝑆𝑖+1 … 𝑆𝑛−1 in 𝑇𝑗𝑇𝑗+1 … 𝑇𝑚−1:

LCS(𝑖, 𝑗) = max
⎧{
⎨{⎩

1 + LCS(𝑖 + 1, 𝑗 + 1) če 𝑆𝑖 = 𝑇𝑗
LCS(𝑖 + 1, 𝑗)
LCS(𝑖, 𝑗 + 1)

Robni primeri pa so LCS(𝑛, ∗) = 0 in LCS(∗, 𝑚) = 0.

Problem lahko rešujemo sistematično od večjih proti manjšim 𝑖-jem in enako za 𝑗. Rešujemo torej
probleme z vedno daljšimi priponami nizov 𝑆 in 𝑇 . S tem pravzaprav izpolnjujemo 2D tabelo od
desnega spodnjega kota proti levemu zgornjemu, tako da izberemo večjo od spodnje in desne celice.
Če sta začetna znaka enaka, pa upoštevamo še diagonalen rezultat povečan za 1. Dokažemo lahko
tudi, da bo ta diagonalna poteza vedno optimalna, če je na voljo.

[18]: string LCS(string s, string t) {
int n=s.size(), m=t.size();
int lcs[n+1][m+1]; // dodatna vrstica in stolpec nicel
memset(lcs,0,sizeof(lcs));
for (int i=n-1;i>=0;i--) {

for (int j=m-1;j>=0;j--) {
lcs[i][j]=max(lcs[i+1][j], lcs[i][j+1]);
if (s[i]==t[j]) lcs[i][j]=max(lcs[i][j], 1+lcs[i+1][j+1]);

}

7

}
// izpis izracunane tabele
for (int i=0;i<n;i++) {

for (int j=0;j<m;j++) {
cout << lcs[i][j] << '\t';

}
cout << endl;

}
// rekonstrukcija
string l="";
int i=0, j=0;
while (i<n && j<m) {

if (lcs[i][j]==lcs[i+1][j]) i++;
else if (lcs[i][j]==lcs[i][j+1]) j++;
else { l+=s[i]; i++; j++; }

}
return l;

}

[19]: string l = LCS("ABCBDAB", "BDCBBA");
cout << "LCS = " << l << endl;

4 3 3 3 2 1
4 3 3 3 2 1
3 3 3 2 2 1
3 2 2 2 2 1
2 2 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 0
LCS = BCBA

Časovna in prostorska zahtevnost sta 𝑂(𝑛𝑚). Problem lahko rešujemo tudi v obratni smeri od
konca proti začetkom nizov, kjer se vprašamo, kaj se bo zgodilo z zadnjima znakoma obeh nizov
(namesto prvima), kar boste pogosto videli v drugih virih.

Kako pa bi problem rešili za tri nize? LCS(𝑆, 𝑇 , 𝑈) namreč ni enak LCS(LCS(𝑆, 𝑇), 𝑈)! Stanje
bi opisali s trojico indeksov LCS(𝑖, 𝑗, 𝑘) in obravnavali primere podobno kot za dva niza. Če velja
𝑆𝑖 = 𝑇𝑗 = 𝑈𝑘, je ta znak lahko del LCS-ja, sicer pa vsaj en izmed njih ne bo in lahko enega od
nizov skrajšamo.

Soroden problem je iskanje najdaljšega skupnega podniza (ne podzaporedja; longest common sub-
string), kjer mora biti pojavitev podniza strnjena v obeh nizih. Ta problem ima drugačne in bolj
učinkovite rešitve.

1.6 Nahrbtnik
Problem nahrbtnika (knapsack, backpack) je še en klasičen primer uporabe dinamičnega programi-
ranja. Podan imamo nabor 𝑛 predmetov, za katere poznamo njihove teže 𝑡𝑖 in vrednosti 𝑣𝑖 (oboje
so cela števila). Izbrali bi radi neko podmnožico 𝑆 teh predmetov, ki bo imela čim večjo vrednost
(∑𝑗∈𝑆 𝑣𝑗) in jih bomo lahko spravili v nahrbtnik z nosilnostjo 𝑇 (∑𝑗∈𝑆 𝑡𝑗 ≤ 𝑇). Problemu se

8

natančneje reče 0-1 nahrbtnik, ker vsak predmet vzamemo v celoti ali pa ga pustimo, ne moremo
pa vzeti samo dela predmeta.

V rekurzivni rešitvi bi se lahko za vsak predmet odličili, ali ga bomo vzeli ali ne. Če ga vzamemo,
imamo za preostale predmeta na voljo nekoliko manjšo nosilnost. Podproblem torej opišemo z
dvema atributoma.

• Nabor predmetov, za katere se moramo še odločiti, kaj bomo z njimi. Če smo sistematični,
se lahko o vključenosti predmetov odločamo po vrsti od prvega do zadnjega.

• Nosilnost nahrbtnika, ki je na voljo za preostale predmete.

Naj bo 𝑓(𝑖, 𝑥) največja vrednost, ki jo lahko dobimo v nahrbtniku z nosilnostjo 𝑥, če lahko vanj
dodajamo predmete 𝑖, 𝑖+1, … , 𝑛. Obravnavamo dva primera, glede na (ne)uporabo 𝑖-tega predmeta.
Robni primer je 𝑓(𝑛, ∗) = 0 (če nam zmanjka predmetov, lahko dobimo samo vrednost 0).

𝑓(𝑖, 𝑥) = max {𝑓(𝑖 + 1, 𝑥) ne uporabimo i-tega predmeta
𝑓(𝑖 + 1, 𝑥 − 𝑡𝑖) + 𝑣𝑖 če je 𝑡𝑖 ≤ 𝑥, lahko uporabimo i-ti predmet

Časovna zahtevnost je 𝑂(𝑛𝑇). Če nimamo meje za 𝑇 , vemo, da teža predmetov ne bo presegla
∑ 𝑡𝑖. Ta rešitev z dinamičnim programiranjem izkorišča majhne celoštevilske teže predmetov in
nosilnost nahrbtnika. Če bi bile teže in vrednosti neka realna števila, postane problem izrazito
težji (NP-težek). V tem primeru imajo različne kombinacije predmetov različne teže in vrednosti,
zato se nam podproblemi ne bi ponavljali. V primeru celih števil pa so bile te vrednosti samo
z omejenega intervala celih števil. Čeprav obstaja 𝑂(2𝑛) podmnožic, je na razpolago samo 𝑂(𝑇)
različnih nosilnosti nahrbtnika.

[8]: const int n = 4;
const int nosilnost = 40;
vector<int> teza = {30,10,40,20};
vector<int> vrednost = {10,20,30,40};

int f[n+1][nosilnost+1];
memset(f,0,sizeof(f));
for (int i=n-1;i>=0;i--) {

for (int x=0;x<=nosilnost;x++) {
f[i][x] = f[i+1][x]; // ne uporabimo i-tega predmeta
if (teza[i]<=x) { // poskusimo uporabiti i-ti predmet

f[i][x] = max(f[i][x], vrednost[i]+f[i+1][x-teza[i]]);
}

}
}
cout << f[0][nosilnost] << endl;

60

9

Grafi

December 18, 2024

1 Grafi
Graf 𝐺 je abstraktni podatkovni tip, ki ga sestavljata množica vozlišč (nodes, vertices, points)
𝑉 in množica povezav (edges, links) 𝐸, ki predstavljajo relacije med pari vozlišč. Vozliščema, ki
sestavljata povezavo, rečemo krajišči (endpoints). Vozlišča in povezave lahko hranijo tudi kakšne
dodatne lastnosti.

Običajne operacije, ki jih želimo izvajati na grafu so:

• dodajanje/odstranjevanje vozlišča/povezave
• nastavljanje/ugotavljanje lastnosti vozlišča/povezave
• ugotavljanje sosednosti dveh vozlišč
• iskanje vseh sosednjih vozlišč
• …

Kadar z grafom modeliramo nek resničen pojav ali proces, namesto grafa pogosto uporabimo izraz
omrežje (network). Grafe lahko uporabimo za modeliranje številnih procesov, kot so razna družbena
ali komunikacijska omrežja, omrežja soavtorstev ali celo biološka omrežja, ki modelirajo razne
kemijske procese. Mi pa se bomo ukvarjali samo s strukturami brez njihovega ozadja, torej z grafi.

1.1 Terminologija
Glavni lastnosti grafa sta število vozlišč 𝑛 = |𝑉 | in število povezav 𝑒 = |𝐸| (za število povezav
bomo včasih uporabljali tudi 𝑚).

Poznamo več vrst grafov glede na njihove lastnosti:

• Neusmerjeni (undirected) grafi vsebujejo same neusmerjene povezave, ki predstavljajo
simetrične relacije, kjer vrstni red krajišč ni pomemben, npr. med dvema bratoma. Us-
merjeni (directed) grafi (digraphs) pa so sestavljeni iz usmerjenih povezav, ki predstavljajo
asimetrično relacijo, npr. od otroka k staršu. Te običajno ponazorimo z puščicami.

• Glede na lastnost povezav ločimo med neuteženimi (unweighted) in uteženimi (weighted)
grafi. V neuteženih grafih so vse povezave enakovredne, v uteženih pa vsaki povezavi prired-
imo neko numerično vrednost, ki ji rečemo utež, in lahko predstavlja npr. dolžino, ceno,
…

• Enostavni (simple) grafi ne vsebujejo zank (loop), ki povezujejo vozlišče s samim seboj, in
vzporednih povezav (multiple/parallel edges) med istimi pari vozlišč.

• Glede na prisotnost ciklov v grafih poznamo aciklične (acyclic) in ciklične (cyclic) grafe.
• Grafe precej grobo ločujemo tudi po razmerju med številom povezav in številom vozlišč. V

gostih (dense) grafih je število vozlišč velikostnega reda, ki je blizu maksimalnemu številu

1

možnih povezav, 𝑒 = 𝑂(𝑛2). V redkih (sparse) grafih pa je število povezav linearno odvisno
od števila vozlišč 𝑒 = 𝑂(𝑛).

Oglejmo si še nekaj drugih terminov povezanih z grafi:

• Tako kot pri drevesih, tudi v grafih poznamo stopnjo (degree) vozlišča, ki je enaka številu
povezav, ki vključujejo to vozlišče. Če govorimo o stopnji grafa (kar bomo označevali z 𝑑),
pa mislimo največjo stopnjo njegovega vozlišča. V usmerjenih grafih ločujemo vhodno in
izhodno stopnjo (indegree/outdegree), ki sta število povezav, ki kažejo v vozlišče oz. izven
njega.

• Dve vozlišči sta sosednji (adjacent) oz. soseda, če ju povezuje katera izmed povezav v grafu.
Množici sosednjih vozlišč izbranega vozlišča rečemo tudi soseščina (neighbourhood).

Poleg že omenjenih splošnih vrst grafov, poznamo tudi več razredov grafov, ki imajo podobne
strukturne lastnosti. Poznamo:

• drevesa (trees), ki so v kontekstu novih terminov pravzaprav aciklični povezani neusmerjeni
graf

• polne grafe (complete graph), ki vsebujejo vse možne povezave
• regularne grafe (regular graph), v katerih imajo vsa vozlišča enako stopnjo
• dvodelne grafe (bipartite graph), ki so sestavljeni iz dveh skupin vozlišč, povezave pa

potekajo samo med obema skupinama
• …

Na grafih nas pogosto zanimajo premiki med sosednjimi vozlišči:

• Sprehod (walk) je poljubno zaporedje vozlišč, med katerimi se premikamo po povezavah v
grafu. Če obstaja sprehod med dvema vozliščema, bomo rekli, da sta povezani. Spomnimo
se, da če sta povezani neposredno z eno samo povezavo, jima rečemo tudi sosednji.

• Obhod (closed walk) je sprehod, ki se začne in konča v istem vozlišču.
• Steza (trail) je sprehod brez ponovljenih povezav.
• Pot (path) je sprehod brez ponovljenih vozlišč. Uporablja se nekoliko nekonsistentno, npr.

za sprehod. V nekaterih primerih pa je to celo nepomembno - najkrajša pot v pozitivno
uteženem grafu bo zagotovo pot in ne sprehod, kjer bi se kaj ponavljalo.

• Cikel (cycle) je obhod brez ponovljenih vmesnih vozlišč (z izjemo začetnega in končnega, ki
sta enaka).

• V angleščini se pojavlja tudi termin tour, ki pa nima poenotene definicije (npr. knight’s tour,
Euler tour). Običajno pomeni, da zaporedje premikov obišče celoten graf (npr. vsa vozlišča,
vse povezave) ob možnih dodatnih omejitvah (npr. vsako povezavo samo enkrat, vrne se na
izhodišče).

1.2 Predstavitve
Strukturo grafa, ki jo definirajo vozlišča in povezave, moramo nekako predstaviti oz. shraniti, da
bomo lahko na njej izvajali kakšne izračune. Glede na funkcionalnost, ki jo potrebujemo, poznamo
tri pogoste načine predstavitve grafov. Če je treba, pa si lahko pomagamo kar z več različnimi
predstavitvami sočasno.

[1]: #include <iostream>
#include <fstream>
#include <vector>

2

#include <queue>
#include <algorithm>
using namespace std;

typedef pair<int,int> PII;
typedef vector<int> VI;
typedef vector<pair<int,int>> VII;
typedef vector<vector<int>> VVI;

[2]: template<typename T>
void print(const vector<T> &sez) {

for (T x : sez) cout << x << " ";
cout << endl;

}

• Seznam povezav (edge list) je najbolj enostavna predstavitev. Vse povezave v grafu pre-
prosto shranimo v seznam. Ta predstavitev bo primerna, če želimo obravnavati vse povezave
ne glede na vrstni red.

[3]: VII read_graph(string fname, int &n, int &m) {
ifstream fin(fname);
fin >> n >> m;
vector<PII> povezave;
for (int i=0;i<m;i++) {

int a,b;
fin >> a >> b;
povezave.push_back({a,b});

}
fin.close();
return povezave;

}

[4]: int n,m;
vector<PII> povezave = read_graph("graph.txt",n,m);
for (auto [a,b] : povezave) cout << '(' << a << ',' << b << ')' << ' ';
cout << endl;

(0,1) (0,4) (1,3) (1,4) (1,5) (1,7) (2,3) (2,5) (4,5) (6,7)

• Seznam sosedov (adjacency list) hrani za vsako vozlišče seznam njegovih sosedov. Kadar
se premikamo po grafih od enega vozlišča k drugemu, nam to pride zelo prav.

[5]: VVI adjacency_list(VII &edge_list, int n, bool dir=false) {
vector<VI> adj(n);
for (auto [a,b] : edge_list) {

adj[a].push_back(b);
if (!dir) adj[b].push_back(a);

}
return adj;

3

}

[6]: vector<VI> sosedi = adjacency_list(povezave, n);
for (int i=0;i<n;i++) {

cout << i << ": ";
print(sosedi[i]);

}

0: 1 4
1: 0 3 4 5 7
2: 3 5
3: 1 2
4: 0 1 5
5: 1 2 4
6: 7
7: 1 6

• Matrika sosednosti (adjacency matrix) je namenjena učinkovitemu preverjanju sosednosti
dveh vozlišč. Sestavimo namreč matriko 𝑀 , kjer na mestu 𝑀𝑥,𝑦 hranimo informacijo o
prisotnosti ali teži povezave med vozliščema 𝑥 in 𝑦.

[7]: VVI adjacency_matrix(VII &edge_list, int n) {
vector<VI> mat(n, vector<int>(n));
for (auto [a,b] : edge_list) {

mat[a][b] = 1;
mat[b][a] = 1;

}
return mat;

}

[8]: vector<VI> sosednost = adjacency_matrix(povezave, n);
for (int i=0;i<n;i++) {

print(sosednost[i]);
}

0 1 0 0 1 0 0 0
1 0 0 1 1 1 0 1
0 0 0 1 0 1 0 0
0 1 1 0 0 0 0 0
1 1 0 0 0 1 0 0
0 1 1 0 1 0 0 0
0 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0

Predstavitev s seznami povezav ali sosedov bi lahko nadgradili z uporabo množic. Namesto v
seznamu hranimo povezave ali sosede v množicah, ki so implementirane z razpršeno tabelo ali
kakšno uravnotežene drevesno strukturo.

Omenjene predstavitve imajo svoje prednosti in slabosti. Primerjajmo jih med seboj glede na
prostorsko zahtevnost in časovne zahtevnosti nekaterih operacij na enostavnih grafih.

4

seznam povezav

seznam sosedov

matrika sosednosti

Prostorska zahtevnost

𝑂(𝑒)
𝑂(𝑛 + 𝑒)
𝑂(𝑛2)
Dodajanje povezave

𝑂(1)
𝑂(1)
𝑂(1)
Brisanje povezave

𝑂(𝑒)
𝑂(𝑛)
𝑂(1)
Dodajanje vozlišča

𝑂(1)
𝑂(1)
𝑂(𝑛2)
Brisanje vozlišča

𝑂(𝑒)
𝑂(𝑒)
𝑂(𝑛2)
Sosednost vozlišč

𝑂(𝑒)
𝑂(𝑛)
𝑂(1)

1.3 Preiskovanje grafov
Preiskovanje grafa (graph traversal/search) je sistematičen postopek, ki obišče vsa vozlišča grafa v
nekem vrstnem redu. Poznamo dve pogosti vrsti preiskovanj.

5

1.3.1 Preiskovanje v širino (breadth-first search, BFS)

Preiskovanje v širino preiskuje vozlišča podobno kot nivojski obhod v drevesih, le da se izogiba
povezavam, ki vodijo do že obiskanih vozlišč. Najprej obišče začetno vozlišče, nato njegove sosede,
njihove sosede, itd.

[9]: void BFS(int x, vector<VI> &adj, vector<int> &vis, vector<int> &seq) {
queue<int> q;
q.push(x); vis[x]=1;
while (!q.empty()) {

x=q.front(); q.pop();
seq.push_back(x);
for (int y : adj[x]) if (vis[y]==0) {

q.push(y); vis[y]=1;
}

}
}

[10]: vector<int> visB(n), seqB;
BFS(0,sosedi,visB,seqB);
print(seqB);

0 1 4 3 5 7 2 6

Iskanje v širino ima to lepo lastnost, da obiskuje vozlišča po nivojih od bližjih proti bolj oddaljenim.
Z minimalno prilagoditvijo ga lahko uporabimo za računanje najkrajših poti iz začetnega vozlišča
do vseh ostalih vozlišč v neuteženem grafu, kjer je dolžina poti definirana s številom povezav na
njej!

1.3.2 Preiskovanje v globino (depth-first search, DFS)

Preiskovanje v globino je podobno prememu obhodu v drevesu, ki se izogiba povezam do že
obiskanih vozlišč. Najprej obišče začetno vozlišče. Nato izvede preiskovanje v globino na prvem
otroku. Ko se to zaključi in če drugi otrok še ni bil obiskan, izvede preiskovanje v globino še iz
drugega otroka itd.

[11]: void DFS(int x, vector<VI> &adj, vector<int> &vis, vector<int> &seq) {
seq.push_back(x);
vis[x]=1;
for (int y : adj[x]) if (vis[y]==0) {

DFS(y, adj, vis, seq);
}

}

[12]: vector<int> visD(n), seqD;
DFS(0,sosedi,visD,seqD);
print(seqD);

0 1 3 2 5 4 7 6

6

Oba opisana postopka obiščeta samo del grafa, ki je dosegljiv iz začetnega vozlišča. Tej množici
vozlišč v neusmerjenem grafu, ki so vsa povezana med seboj, rečemo povezana komponenta
grafa (connected component). Za iskanje povezanih komponent lahko uporabimo kateregakoli od
omenjenih postopkov za preiskovanje.

Prostorska zahtevnost obeh preiskovanj je 𝑂(𝑛). Časovno zahtevnost bi lahko ocenili z 𝑂(𝑛2),
vendar smo lahko bolj natančni z 𝑂(𝑒), ker bomo vsako povezavo obravnavali največ dvakrat
(enkrat iz vsakega krajišča).

Drevo preiskovanja v globino Tudi iskanje v globino ima svoje lepe lastnosti. Prva je jedr-
natost. Druga pa je v strukturi povezav, ki jih postopek obišče med preiskovanjem. Prehojene
povezave bodo imele obliko drevesa (to sicer velja tudi za iskanje v širino). Poleg tega pa bodo vse
ostale povezave v grafu vedno povezovale vozlišča z nekim svojim prednikom (back-edge) ali potom-
cem (forward-edge) v drevesu. Nemogoče je, da bi obstajala povezava med dvema poddrevesoma
(cross-edge). Razmislite, zakaj je temu tako. To lastnost izkoriščajo pomembni algoritmi za iskanje
mostov, prereznih vozlišč in močno povezanih komponent. Razmislite tudi, kakšne povezave lahko
nastopajo v drevesu preiskovanja v globino na usmerjenem grafu.

1.4 Detekcija ciklov
Podan imamo graf, za katerega ne vemo, ali vsebuje kakšen cikel ali ne. Ugotovili bi radi prisotnost
cikla in tudi našli konkreten primer cikla v grafu. Problem se nekoliko razlikuje med neusmerjenimi
in usmerjenimi grafi. Če bi vsako neusmerjeno povezavo modelirali z dvema nasproti usmerjenima,
bi vsaka povezava predstavljala cikel, česar nočemo.

Oglejmo si najprej primer neusmerjenega grafa. Pri razmisleku nam bo prav prišlo drevo preisko-
vanja v globino. Cikel bo v tem drevesu izgledal tako, da bo obstajala povezava med dvema
vozliščema, ki imata relacijo prednik-potomec. To povezavo bomo pri preiskovanu v globino našli
takrat, ko bomo obravnavali neko vozlišče 𝑥 in našli povezavo do nekega že obiskanega prednika 𝑦.
Vozlišča na poti od 𝑥 proti 𝑦 bodo formirala cikel, ker med njima obstaja pot po drevesu poleg tega
pa še novo odkrita direktna povezava. Prav nam bo prišlo, če bi drevo preiskovanja v globino hranili
v obliki tabele staršev za vsako vozlišče. Če je ta vrednost nenastavljena (npr. -1), je vozlišče še
neobiskano, koren pa naj ima za starša kar samega sebe. Tako lahko za izgradnjo cikla preprosto
sledimo tem starševskim povezavam od 𝑥 do 𝑦.

[13]: int cycle(int x, vector<VI> &adj, vector<int> &par, vector<int> &cyc) {
if (par[x]==-1) par[x]=x;
for (int y : adj[x]) if (y!=par[x]) {

if (par[y]!=-1) { // cikel
for (int z=x; z!=y; z=par[z]) cyc.push_back(z);
cyc.push_back(y);
return 1;

}
par[y]=x;
if (cycle(y,adj,par,cyc)) return 1;

}
return 0;

}

7

[14]: vector<int> vis(n), par(n,-1), cyc;
cout << cycle(0,sosedi,par,cyc) << endl;
print(cyc);

1
5 2 3 1

V usmerjenem grafu je situacija nekoliko drugačna. Povezave na ciklu morajo kazati v isto smer. Če
ponovno razmislimo o situaciji na drevesu preiskovanja v globino, bo cikel tudi tu nastal s povezavo
od nekega vozlišča 𝑥 do njegovega prednika 𝑦. Povezave iz vozlišča 𝑥 do nekega drugega dela
drevesa, ki je že bil obiskan, ne vzpostavijo cikla zaradi usmerjenosti. Poleg obiskanosti vozlišč
bomo hranili še informacijo o vozliščih na poti od korena do trenutnega vozlišča. S tem lahko
učinkovito ugotovimo, ali je vozlišče prednik 𝑥-a. Pri sestavljanju cikla bomo zaradi premikanja
proti prednikom cikel sestavili v obratnem vrstnem redu.

[15]: int cycleDir(int x, vector<VI> &adj, vector<int> &par, vector<int> &path,␣
↪vector<int> &cyc) {

if (par[x]==-1) par[x]=x;
path[x]=1;
for (int y : adj[x]) if (y!=par[x]) {

if (path[y]) { // prednik (cikel)
for (int z=x; z!=y; z=par[z]) cyc.push_back(z);
cyc.push_back(y);
reverse(cyc.begin(), cyc.end());
return 1;

}
if (par[y]==-1) { // neobiskano

par[y]=x;
if (cycleDir(y,adj,par,path,cyc)) return 1;

}
}
path[x]=0;
return 0;

}

Za testiranje si bomo izposodili spodnji usmerjeni graf z dodatno povezavo 5 → 4, da ustvarimo
cikel. Paziti moramo tudi na to, od kod začnemo iskanje. Če cikel ni dosegljiv iz začetnega vozlišča,
ga ne bomo našli. V tem primeru bi morali začeti iskanje na novo iz nekega neobiskanega vozlišča,
dokler niso obiskana vsa in šele takrat lahko zagotovimo, da cikla ni.

[16]: povezave = read_graph("directed.txt",n,m);
povezave.push_back({5,4});
vector<VI> sosediDir = adjacency_list(povezave, n, true);

[17]: vector<int> visDir(n), parDir(n,-1), path(n), cycDir;
cout << cycleDir(2,sosediDir,parDir,path,cycDir) << endl;
print(cycDir);

1

8

1 5 4 0

1.5 Topološko urejanje
Naj usmerjeni graf predstavlja medsebojne odvisnosti izvedbe opravil. Vozlišča ustrezajo opravilom,
povezava 𝑥 → 𝑦 pa pomeni, da je treba opravilo 𝑥 izvesti pred opravilom 𝑦. V kakšnem vrstnem
redu naj izvajamo opravila, da bomo lahko izvedli vsa oz. je to sploh mogoče?

Topološki vrstni red vozlišč v usmerjenem grafu je tak vrstni red, da vse povezave v grafu kažejo od
zgodnejšega proti kasnejšemu vozlišču v topološkem vrstnem redu. Topološki vrstni red ni enoličen.
Za zgornji primer bi bil možen topološki vrstni red npr. [4,0,2,3,1,6,5]. Ker v grafu nastopa
povezava 0 → 5, se v topološkem vrstnem redu 0 pojavi pred 5. Preverimo lahko, da to velja za
vse povezave.

[18]: povezave = read_graph("directed.txt",n,m);
sosedi = adjacency_list(povezave, n, true);
for (int i=0;i<n;i++) {

cout << i << ": ";
print(sosedi[i]);

}

0: 1 3 5
1: 5
2: 3
3: 1 6
4: 0 3
5:
6:

Razmislimo o algoritmu za izgradnjo topološkega vrstnega reda. Vozlišča brez predhodnikov lahko
postavimo na začetek topološkega vrstnega reda. Če je takih vozlišč več, njihov medsebojni vrstni
red ni pomemben. Za povezave, ki izhajajo iz njih, je torej poskrbljeno. Zato lahko ta vozlišča
in njihove povezave odstranimo iz grafa ter ponovimo postopek z morebitnimi novimi vozlišči brez
predhodnikov. Postopek se ne zaključi, če topološki vrstni red ne obstaja zaradi prisotnosti cikla
v grafu. Usmerjeni aciklični grafi (directed acyclic graph - DAG) so svoj razred grafov, ki jih je
mogoče topološko urediti.

Kako naj opisani postopek učinkovito implementiramo? Odstraniti moramo 𝑛 vozlišč in na vsakem
koraku iščemo med preostalimi vozlišči kakšnega z vhodno stopnjo 0. Direktna implementacija
takega postopka bo imela kvadratno časovno zahtevnost. To pa lahko izboljšamo v vodenjem
seznama vozlišč z vhodno stopnjo 0. Vsakič, ko odstranimo vozlišče in njegove izhodne povezave,
dodamo v seznam morebitna novo nastala začetna vozlišča. Tako dobimo algoritem s časovno
zahtevnostjo 𝑂(𝑛 + 𝑒). Običajno je število povezav vsaj tolikšno kot število vozlišč, zato lahko brez
večje škode poenostavimo na 𝑂(𝑒).

[19]: VI toposort(vector<VI> &sosedi, int n) {
vector<int> indeg(n);
for (int x=0;x<n;x++) {

for (int y : sosedi[x]) indeg[y]++;
}

9

queue<int> q;
for (int x=0;x<n;x++) {

if (indeg[x]==0) q.push(x);
}
vector<int> seq;
while (!q.empty()) {

int x=q.front(); q.pop();
seq.push_back(x);
for (int y : sosedi[x]) {

indeg[y]--;
if (indeg[y]==0) q.push(y);

}
}
return seq;

}

[20]: vector<int> topo = toposort(sosedi, n);
print(topo);

2 4 0 3 1 6 5

1.6 Kritična pot
Potek izvajanja projekta lahko modeliramo z mejniki in aktivnostmi, ki doprinesejo k izpolnjevanju
teh mejnikov. Mejnike predstavimo z vozlišči, aktivnosti pa s povezavami v usmerjenem grafu. Ko
so končane vse potrebne aktivnosti, je mejnik dosežen. Poleg tega poznamo čas 𝑤(𝑥, 𝑦) za izvedbo
določene aktivnosti med mejnikoma 𝑥 in 𝑦. Očitno mora biti graf acikličen. Kakšen je najkrajši čas
za izvedbo projekta ob “neomejeni” količini resursov, pri čemer lahko vsako aktivnost izvaja ena
oseba, vendar imamo na voljo poljubno število oseb? Ta čas predstavlja najdaljša pot v uteženem
usmerjenem acikličnem grafu, ki ji rečemo tudi kritična pot.

Kako pa jo izračunamo? Vozlišča naprej topološko uredimo v linearnem času. Nato pa lahko raču-
namo najdaljše poti 𝑑(𝑥), ki se začnejo v v posameznem vozlišču 𝑥, v obratnem topološkem vrstnem
redu. Če vozlišče nima naslednikov, je 𝑑(𝑥) = 0. Sicer pa velja 𝑑(𝑥) = max𝑦∶ 𝑥<𝑦 ∧ (𝑥,𝑦)∈𝐸 (𝑤(𝑥, 𝑦) +
𝑑(𝑦)).
Opravka imamo z uteženim grafom, ki ga moramo najprej prebrati. V seznamu sosedov bomo
poleg sosednjega vozlišča hranili še težo povezave, ki vodi do njega.

[21]: ifstream fin("critical.txt");
fin >> n >> m;
vector<VI> adj(n);
vector<VII> adjw(n);
for (int i=0;i<m;i++) {

int a,b,c;
fin >> a >> b >> c;
adj[a].push_back(b);
adjw[a].push_back({b,c});

}

10

fin.close();

Algoritem za izračun topološkega vrstnega reda že imamo, samo obrnemo ga.

[22]: vector<int> ord = toposort(adj, n);
reverse(ord.begin(), ord.end());

V tem obratnem topološkem vrstem redu lahko izračunamo dolžino najdaljše poti iz vsakega vo-
zlišča, saj bo vsaka vrednost odvisna samo od naslednikov, za katere imamo rezultat že izračunan.
Zapomnimo si tudi vozlišče z največjim rezultatom, ki je začetek najdaljše poti.

[23]: vector<int> d(n);
int start = ord[0];
for (int x : ord) {

for (auto [y,w] : adjw[x]) {
d[x] = max(d[x], w+d[y]);

}
if (d[x]>d[start]) start=x;

}
cout << "dolzina = " << d[start] << endl;

dolzina = 10

Izračunane vrednosti so dovolj, da lahko pot tudi rekonstruiramo. Iz trenutnega vozlišča nadalju-
jemo tam, kjer je izračunana najdaljša pot ravno za dolžino povezave krajša. Druga možnost bi
bila, da si pri računanju najdaljših poti za vsako vozlišče poleg razdalje shranjujemo tudi naslednje
vozlišče, ki je vodilo do te maksimalne vrednosti.

[25]: cout << start;
int x=start;
while (d[x]!=0) {

for (auto [y,w] : adjw[x]) {
if (d[x]==w+d[y]) {

cout << " " << y;
x = y;
break;

}
}

}
cout << endl;

4 6 0 5 2

1.7 Eulerjev obhod
Dobro znan problem na neusmerjenih grafih je iskanje Eulerjevega obhod (Eulerian
tour/cycle/circuit). Pri tem iščemo obhod, ki obišče vse povezave v grafu (vsako povezavo natanko
enkrat, vozlišča pa morda tudi večkrat). Podoben problem je iskanje Eulerjevega sprehoda (Eule-
rian trail/path/walk). Pravzaprav iščemo stezo (sprehod brez ponovljenih povezav vendar morda s

11

ponovljenimi vozlišči), ki obišče vse povezave v grafu. Za razliko od obhoda pa se lahko začne in
konča na različnih mestih.

S tem problemov ste se najbrž že srečali pri risanju oblik z eno potezo (npr. odprtega
pisma/ovojnice). Euler pa pri problemu sedmih mostov v Königsbergu (danes Kaliningrad). Zani-
malo ga je, kako bi lahko na sprehodu prehodil vsak most natanko enkrat.

Eulerjev izrek pravi, da v povezanem grafu obstaja Eulerjev obhod natanko takrat, ko so vsa
vozlišča sode stopnje. Eulerjev sprehod pa natanko takrat, ko so vsa vozlišča sode stopnje razen
morda točno dveh vozlišč, kjer se začne in konča. Dokažimo to trditev za primer obhoda (za
sprehod velja podobno).

• Recimo, da obstaja Eulerjev obhod. Potem ta obhod na prehodu skozi vsako vozlišče zmanjša
stopnjo tega vozlišča za 2. Če sproti odstranjujemo prehojene povezave, imajo na koncu vsa
vozlišča stopnjo 0. Torej morajo biti na začetku vsa sode stopnje.

• Obratna smer je bolj kompleksna in jo lahko dokažemo kar s konstrukcijo Eulerjevega obhoda
na povezanem grafu z vozlišči sodih stopenj. Začnemo v poljubnem vozlišču 𝑥 in sledimo
povezavam, dokler se ne vrnemo v začetno vozlišče 𝑥. Pri tem se ne moremo zatakniti v
nekem drugem vozlišču 𝑦, ker bi že porabili vse njegove povezave. V vsakem prehodu skozi
vozlišče namreč porabimo dve povezavi - če je na voljo vsaj ena za vstop, bo tudi druga za
izstop, ker so vsa vozlišča sode stopnje. Morda pa smo se vrnili v začetno vozlišče, pri tem
pa še nismo obiskali vseh povezav. Postopek ponovimo na enem od že obiskanih vozlišč, ki
ima še kakšne neobiskane povezave. Od tam na enak način zgradimo obhod in ga združimo s
prejšnjim. To ponavljamo dokler niso obiskane vse povezave. To je Hierholzerjev algoritem,
ki ga lahko implementiramo v linearnem času.

12

Najkrajse poti

December 18, 2024

1 Najkrajše poti
Klasičen problem na grafih je iskanje najkrajših poti. Zanima nas na primer najkrajša pot med
parom vozlišč 𝐴 in 𝐵 (single-pair shortest path). Naj bo ta najkrajša pot sestavljena iz vozlišč
𝐴, ...𝑋, 𝐵, kjer je 𝑋 predzadnje vozlišče na poti. V tem primeru mora biti tudi pot od 𝐴 do 𝑋
najkrajša, sicer bi lahko pot od 𝐴 do 𝐵 izboljšali. Pri iskanju najkrajše poti od 𝐴 do 𝐵 posledično
izračunamo tudi najkrajše poti do ostalih vozlišč na tej poti.

Če bomo že morali izračunati najkrajše poti iz 𝐴 do več drugih vozlišč, pa jih lahko izračunamo iz
začetnega vozlišča kar do vseh (single-source shortest path). Opazimo tudi, da bodo te najkrajše
poti v grafu formirale drevo najkrajših poti. Vsako vozlišče bo imelo namreč enega optimalnega
predhodnika/starša na najkrajši poti (npr. 𝑋 bo predhodnik 𝐵-ja). Koren drevesa pa bo seveda v
vozlišču 𝐴.

Za problem iskanja najkrajših poti med vsemi pari točk, lahko 𝑁 -krat poženemo algoritem za
iskanje drevesa najkrajših poti iz posameznega začetnega vozlišča. Obstajajo pa tudi drugi algo-
ritmi, ki si namenjeni prav iskanju poti med vsemi pari točk. Tak primer je Floyd-Warshall-ov
algoritem, ki ga tu ne bomo obravnavali.

Ukvarjali se bomo predvsem z neusmerjenimi grafi. V usmerjenih grafih je situacija namreč podobna
in lahko uporabimo enake razmisleke.

[1]: #include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;

typedef pair<int,int> PII;
typedef vector<int> VI;
typedef vector<pair<int,int>> VII;
typedef vector<vector<int>> VVI;

[2]: template<typename T>
void print(const vector<T> &sez) {

for (T x : sez) cout << x << " ";
cout << endl;

}

1

1.1 Neuteženi grafi
V neuteženih grafih ni potrebe po kompliciranju, saj že poznamo metodo iskanja v širino (BFS),
ki obiskuje vozlišča od bližnjih proti bolj oddaljenim glede na število povezav. Potrebuje je
malenkostno dopolnitev, da bo poleg obiskovanja vozlišč beležila še dolžine poti in prednike vozlišč
v drevesu najkrajših poti.

[3]: ifstream fin("graph.txt");
int n,m;
fin >> n >> m;
vector<vector<int>> sosedi(n);
for (int i=0;i<m;i++) {

int a,b;
fin >> a >> b;
sosedi[a].push_back(b);
sosedi[b].push_back(a);

}

[3]: void BFS_distance(vector<VI> &adj, int start, vector<int> &dist, vector<int>␣
↪&prev) {

int n=adj.size();
dist=vector<int>(n,-1); prev=vector<int>(n);
vector<int> vis(n);
queue<int> q;
q.push(start); vis[start]=1;
dist[start]=0; prev[start]=-1;
while (!q.empty()) {

int x=q.front(); q.pop();
for (int y : adj[x]) {

if (!vis[y]) {
q.push(y); vis[y]=1;
dist[y]=dist[x]+1; prev[y]=x; // distance, previous node

}
}

}
}

[5]: vector<int> dist, prev;
BFS_distance(sosedi,0,dist,prev);
print(dist);
print(prev);

0 1 3 2 1 2 3 2
-1 0 3 1 0 1 7 1

1.2 Uteženi grafi
V uteženih grafih pa je situacija malo bolj zapletena. Omejili se bomo na grafe s pozitivnimi
(nenegativnimi) utežmi, s kakršnimi imamo večinoma opravka v praksi, kasneje pa se bomo

2

vrnili še k negativnim utežem. Utež (ceno, dolžino) povezave med vozliščema 𝑋 in 𝑌 bomo označili
z 𝑤(𝑋, 𝑌).

[4]: ifstream fin("weighted.txt");
int n,m;
fin >> n >> m;
vector<VII> adjw(n);
for (int i=0;i<m;i++) {

int a,b,w;
fin >> a >> b >> w;
adjw[a].push_back({b,w});
adjw[b].push_back({a,w});

}

1.2.1 Dijkstrov algoritem

Tako kot smo v neuteženem primeru z iskanjem v širino računali najkrajše poti od bližnjih proti
bolj oddaljenim vozliščem, bomo to storili tudi tu. Najbližje vozlišče je kar izhodiščno, 𝑑(𝐴) =
0. Naslednje najbližje vozlišče pa bo eno od njegovih sosedov. Ker povezave niso negativne, je
nemogoče, da bi dosegli manjšo razdaljo po kakšni poti z več povezavami. Tem neizračunanim
sosedom do sedaj izračunanih vozlišč bomo rekli okolica. To so vozlišča, ki še niso izračunana in so
iz že izračunanih dosegljiva po eni povezavi. Za vsako od njih bomo hranili potencialno najkrajšo
pot 𝑝(𝑌): kakšna bi bila razdalja, če bi se do njega premaknili z enega izmed že izračunanih vozlišč.
Če iz okolice izberemo vozlišče 𝑋 s trenutno najmanjšo potencialno dolžino 𝑝(𝑋), bo to zagotovo
dejanska najmanjša dolžina poti do tega vozlišča (𝑑(𝑋) = 𝑝(𝑋)). Zaradi odsotnosti negativnih
povezav, bi bila katerakoli druga pot od že izračunanih vozlišč do 𝑋 sestavljena iz več povezav in
zato daljša. Množico že izračunanih vozlišč smo torej povečali z novim vozliščem 𝑋. Poskrbeti
moramo še za posodobitev okolice. Vse sosede 𝑌 vozlišča 𝑋 dodamo v okolico, če so že v njej, pa
zgolj posodobimo njihovo potencialno oddaljenost z 𝑝(𝑌) = min(𝑝(𝑌), 𝑑(𝑋) + 𝑐(𝑋, 𝑌)). Postopek
ponavljamo, dokler nimamo izračunanih najkrajših poti do vseh vozlišč.

V postopku imamo opravka s tremi skupinami vozlišč. V prvi skupini so tista, za katera imamo že
izračunane najkrajše poti. V drugi skupini so vozlišča iz okolice, ki imajo samo potencialne dolžine.
Tretja skupina pa so še povsem neobiskana vozlišča. Pri implementaciji bomo vse te informacije
hranili v tabeli potencialnih razdalj. Razdalja -1 bo označevala še neobiskano vozlišče iz tretje
skupine, -2 pa že izračunano iz prve.

[5]: void Dijkstra(vector<VII> &adjw, int start, vector<int> &dist, vector<int>␣
↪&prev) {

int n=adjw.size();
dist=vector<int>(n,-1); prev=vector<int>(n,-1);
vector<int> p(n,-1); // provisional distance (-1=unvisited, -2=done)
p[start]=0;
while (1) {

int x=-1; // smallest provisional
for (int i=0;i<n;i++) if (p[i]>=0) {

if (x==-1 || p[i]<p[x]) x=i;
}

3

if (x==-1) break;
dist[x]=p[x]; p[x]=-2;
for (auto [y,w] : adjw[x]) { // update neighbors

int d=dist[x]+w;
if (p[y]==-1 || (p[y]>=0 && d<p[y])) {

p[y]=d; prev[y]=x;
}

}
}

}

[11]: vector<int> dist, prev;
Dijkstra(adjw,0,dist,prev);
print(dist); print(prev);

0 4 11 17 9 22 7 8 11
-1 0 4 2 7 3 0 6 7

Prostorska zahtevnost algoritma je 𝑂(𝑛). Časovna zahtevnost pa je odvisna od iskanja najmanje
potencialne razdalje (𝑂(𝑛2)) in posodabljanja sosedov (𝑂(𝑒)). Ker je 𝑒 = 𝑂(𝑛2), je časovna za-
htevnost take implementacije algoritma 𝑂(𝑛2).
Razmislimo o izboljšavi. Težavno je iskanje vozlišča z najmanjšo potencialno razdaljo. Hkrati pa
moramo biti sposobni posodabljati potencialne razdalje sosedov. Vozlišča iz okolice s potencialnimi
razdaljami bi lahko hranili v uravnoteženem iskalnem drevesu. Tako lahko v času 𝑂(log 𝑛) poiščemo
najmanjšega in spremenimo potencialno razdaljo vozlišča. Časovna zahtevnost bi bila 𝑂(𝑛 log 𝑛 +
𝑒 log 𝑛) = 𝑂(𝑒 log 𝑛).
Iskanje najmanjšega elementa je namen prioritetne vrste, zato je to v praksi pogostejši način imple-
mentacije, ki je tudi preprostejši in zato bolj učinkovit. Če za prioritetno vrsto uporabimo dvojiško
kopico, mora ta omogočati tudi spremembo prioritete. Pravzaprav gre samo za zmanjšanje prior-
itete v minimalni dvojiški kopici, kar lahko dosežemo v logaritemskem času. Tudi ta rešitev ima
časovno zahtevnost 𝑂(𝑒 log 𝑛).
V spodnji implementaciji pa bomo malo “goljufali” in se izognili spreminjanju prioritet. Pri posod-
abljanju bomo v prioritetno vrsto samo vstavili novo manjšo vrednost, stare pa ne bomo izbrisali.
Nova vrednost bo prišla iz vrsto prej, zato lahko stare neveljavne vrednosti, ki pridejo iz vrste
nekoč kasneje, enostavno ignoriramo. V tabeli razdalj dist bomo hranili razdalje do vseh vozlišč
(nekatere so pravilne, druge zgolj potencialne). Vozlišča, katerih razdalje so zgolj potencialne,
bomo hranili v prioritetni vrsti. Ko pride vozlišče iz prioritetne vrste, vemo, da je njegova razdalja
pravilna in posodobimo sosede. V prioritetni vrsti je lahko 𝑂(𝑒) elementov, zato je taka tudi pros-
torska zahtevnost. Časovna zahtevnost pa je 𝑂(𝑒 log 𝑒) = 𝑂(𝑒 log 𝑛2) = 𝑂(𝑒 ⋅ 2 log 𝑛) = 𝑂(𝑒 log 𝑛).
Goljufija torej ni bila prav huda.

Vso to kompliciranje pa ima smisel samo, če je graf dovolj redek. Če je graf gost in vsebuje skoraj
vse možne povezave (𝑒 ≈ 𝑛2), je časovna zahtevnost 𝑂(𝑒 log 𝑛) pravzaprav 𝑂(𝑛2 log 𝑛), kar je slabše
od 𝑂(𝑛2), s čimer smo začeli.

[6]: void Dijkstra_PQ(vector<VII> &adjw, int start, vector<int> &dist, vector<int>␣
↪&prev) {

4

int n=adjw.size();
dist=vector<int>(n,-1); prev=vector<int>(n,-1);
priority_queue<PII, vector<PII>, greater<PII>> pq; // (distance, node)
dist[start]=0; pq.push({0,start});
while (!pq.empty()) {

auto [d,x]=pq.top(); pq.pop();
if (dist[x]!=d) continue; // ignore old values
for (auto [y,w] : adjw[x]) { // update neighbors

int d=dist[x]+w;
if (dist[y]==-1 || d<dist[y]) {

dist[y]=d; prev[y]=x;
pq.push({d,y});

}
}

}
}

[17]: vector<int> dist, prev;
Dijkstra_PQ(adjw,0,dist,prev);
print(dist); print(prev);

0 4 11 17 9 22 7 8 11
-1 0 4 2 7 3 0 6 7

Algoritem lahko v nekaterih primerih še izboljšamo. Pogosto so uteži relativno majhna cela števila.
Naj bo 𝑐 največja utež v grafu. Največja oddaljenost vozlišča v grafu bo tako (𝑛 − 1)𝑐. Namesto
v prioritetni vrsti lahko vozlišča s potencialnimi razdaljami hranimo “popredalčkana” v tabeli, ki
na mestu 𝑖 hrani seznam vozlišč na razdalji 𝑖. Temu rečemo tudi vrsta z vedri (bucket queue).
Podobno kot prej ne spreminjamo vrednosti, ampak dodajamo nove in po potrebi ignoriramo stare.
Prostorska in časovna zahtevnost take rešitve sta 𝑂(𝑒 + 𝑛𝑐).

[7]: void Dijkstra_BQ(vector<VII> &adjw, int start, vector<int> &dist, vector<int>␣
↪&prev) {

int n=adjw.size();
dist=vector<int>(n,-1); prev=vector<int>(n,-1);
int c=0; // maximum weight
for (int x=0;x<n;x++) for (auto [y,w] : adjw[x]) c=max(c, w);
int maxd=(n-1)*c;
vector<VI> bq(maxd+1); // bucket queue
dist[start]=0; bq[0].push_back(start);
for (int d=0;d<=maxd;d++) {

for (int x : bq[d]) {
if (dist[x]!=d) continue; // ignore old values
for (auto [y,w] : adjw[x]) { // update neighbors

int d=dist[x]+w;
if (dist[y]==-1 || d<dist[y]) {

dist[y]=d; prev[y]=x;
bq[d].push_back(y);

5

}
}

}
}

}

[8]: vector<int> dist, prev;
Dijkstra_BQ(adjw,0,dist,prev);
print(dist); print(prev);

0 4 11 17 9 22 7 8 11
-1 0 4 2 7 3 0 6 7

1.2.2 Negativne uteži

Do sedaj smo se omejili na pozitivne oz. nenegativne uteži. Negativne uteži imajo smisel samo na
usmerjenih grafih. Sicer bi se lahko sprehajali tja in nazaj po isti negativni povezavi in imeli vedno
krajšo pot.

Kje pa pride do težave na usmerjenih grafih? Naša predpostavka, da ima vozlišče v okolici z najman-
jšo potencialno razdaljo prav tako tudi dejansko razdaljo, ni več resnična. To lahko demonstriramo
s spodnjim primerom.

[10]: // (0,1,2), (0,2,3), (2,1,-2)
vector<VII> adjw = {{{1,2},{2,3}},{},{{1,-2}}};
vector<int> dist, prev;
Dijkstra(adjw,0,dist,prev);
print(dist); print(prev);

0 2 3
-1 0 0

Situacija je lahko še slabša. V usmerjenem grafu se lahko pojavi negativen cikel (cikel z negativno
vsoto uteži). V takem primeru koncept najkrajših poti tudi nima smisla, ker lahko krožimo po ciklu
in s tem poljubno krajšamo svojo pot.

Obstajajo algoritmi, ki uspešno rešujejo probleme najkrajših poti tudi v prisotnosti negativnih
povezav in zaznavajo prisotnost negativnih ciklov. Klasičen primer je Bellman-Fordov algoritem,
ki ga boste obravnavali kasneje.

1.3 Primeri
Grafi so zelo pogost način modeliranja relacij, iskanje najkrajših poti pa eden najobičajnejših prob-
lemov na njih. V nadaljevanju si bomo ogledali nekaj primerov sorodnih problemov.

1.3.1 Najširša pot

Recimo, da z grafom modeliramo cestno omrežje. Povezave predstavljajo dvosmerne ceste, vozlišča
pa križišča. Uteži povezav ustrezajo širini ceste. Kakšna je največja širina vozila, ki se lahko
pripelje od vozlišča 𝐴 do 𝐵?

6

Gre za problem iskanja najširše poti (widest path, maximum capacity path). Pri njem iščemo pot
od 𝐴 do 𝐵, za katero bo veljalo, da je najmanjša utež na poti čim večja. Za primerjavo nas je v
klasičnem problemu najkrajših poti zanimala tista pot, kjer je bila vsota uteži čim manjša. Vsoto
smo torej zamenjali z minimumom, minimizacijo pa z maksimizacijo.

Uporabimo lahko povsem enak razmislek kot pri Dijkstrovem algoritmu. Poti do vozlišče bomo
računali od širših proti ožjim. Najširša pot (∞ širine) vodi do začetnega vozlišča. Na vsakem
koraku bomo med izračunana vozlišča dodali vozlišče iz okolice, do katerega vodi trenutno najširša
potencialna pot. To ima zagotovo pravo vrednost, saj bi kakršnakoli druga pot obiskala več povezav,
kar širine poti ne more povečati, temveč jo kvečjemu zmanjša.

1.3.2 Najdaljša pot

Kaj pa, če nas namesto najkrajše poti zanima najdaljša? Trivialno, uteži negiramo in je problem
rešen. Žal ne, ker s tem dobimo graf z negativnimi cikli. Pravzaprav je koncept najdaljše poti slabo
definiran - lahko bi se sprehajali sem in tja po isti povezavi in poljubno podaljšali pot.

V primeru najdaljše poti nas zanimajo poti brez ponovljenih vozlišč. Pri najkrajših poteh je bilo to
samoumevno, saj od večkratnega obiskovanja vozlišč ni nobene koristi ampak samo škoda. Izkaže
se, da gre za težek problem, ki spada v razred NP-polnih (NP-complete) problemov. Več o tem pa
pri predmetu Izračunljivost in računska zahtevnost.

Izjema so usmerjeni aciklični grafi (DAG), ki ne vsebujejo ciklov. Tam smo že rešili prav ta problem,
le da smo mu rekli kritična pot.

1.3.3 15 Puzzle

Verjetno poznate drsno sestavljanko prikazano na spodnji sliki. Igra se na mreži velikosti 4x4, kjer
se na vsakem polju nahaja ploščica z enim izmed števil od 1 do 15. Vsako število se pojavi enkrat,
eno polje pa je prazno. Zanima nas, kako naj s premiki ploščic na prazno sosednje polje uredimo
števila po velikosti (po vrsticah od zgoraj navzdol in znotraj vrstice od leve proti desni). Še bolje,
izračunajmo najmanjše potrebno število potez.

V tem primeru nimamo opravka z grafom stanj. Vsako stanje sestavljanke ustreza nekemu vo-
zlišču. Za izračun najmanjšega števila potez bomo uporabili iskanje v širino (BFS). Seveda ne bomo
vnaprej zgradili celotnega grafa, ker bi bil ta prevelik, ampak ga bomo odkrivali sproti. Rečemo,
da bo graf predstavljen implicitno s stanji sestavljanke. Za vsako stanje oz. vozlišče znamo namreč
izračunati njegove sosede. Pri tem upamo, da bomo dosegli rešitev dovolj zgodaj, preden bomo
preiskali prevelik del grafa.

Obstajajo tudi izboljšave tega osnovnega preiskovanja, ki z uporabo hevristik usmerjajo iskanje
proti delom grafa, v katerih je bolj verjetno, da bomo našli rešitev. Primer nadgradnje iskanja
najkrajših poti z uporabi hevristik je algoritem A*.

[14]: int puzzle15(VVI start, vector<VVI> &seq) {
map<VVI, int> dist;
map<VVI, VVI> prev;
queue<VVI> q;
q.push(start); dist[start]=0;
VVI goal = {{1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,15,0}};
while (!q.empty()) {

7

VVI state=q.front(); q.pop();
if (state == goal) break;
// next states
for (int i=0;i<4;i++) for (int j=0;j<4;j++) if (state[i][j]==0) { //␣

↪find empty cell
for (auto [di,dj] : VII{{0,1},{0,-1},{1,0},{-1,0}}) { // possible␣

↪moves
int i2=i+di, j2=j+dj;
if (i2<0 || i2>=4 || j2<0 || j2>=4) continue;
VVI state2=state; // adjacent state
swap(state2[i][j], state2[i2][j2]);
if (dist.count(state2)==0) { // new?

dist[state2] = dist[state]+1;
prev[state2] = state;
q.push(state2);

}
}

}
}
// reconstruct sequence of states
VVI state=goal;
seq.push_back(state);
while (state!=start) {

state = prev[state];
seq.push_back(state);

}
reverse(seq.begin(),seq.end());
return dist[goal];

}

[15]: VVI state = {{5, 0, 2, 3},
{6, 1, 7, 4},
{9, 10,11,8},
{13,14,15,12}};

vector<VVI> seq;
cout << puzzle15(state, seq) << endl;
for (VVI state : seq) {

cout << endl;
for (VI row : state) print(row);

}

9

5 0 2 3
6 1 7 4
9 10 11 8
13 14 15 12

8

5 1 2 3
6 0 7 4
9 10 11 8
13 14 15 12

5 1 2 3
0 6 7 4
9 10 11 8
13 14 15 12

0 1 2 3
5 6 7 4
9 10 11 8
13 14 15 12

1 0 2 3
5 6 7 4
9 10 11 8
13 14 15 12

1 2 0 3
5 6 7 4
9 10 11 8
13 14 15 12

1 2 3 0
5 6 7 4
9 10 11 8
13 14 15 12

1 2 3 4
5 6 7 0
9 10 11 8
13 14 15 12

1 2 3 4
5 6 7 8
9 10 11 0
13 14 15 12

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 0

Za konec zgolj kot zanimivost omenimo še reševanje Rubikove kocke. Iskanje najkrajših poti je
še vedno predmet algoritmičnega raziskovanja. S precej računske moči so nedavno dokazali, da je
mogoče vsako stanje Rubikove kocke rešiti v največ 20 potezah oz. 26 potezah (če je ena poteza

9

http://www.cube20.org/
http://www.cube20.org/qtm/

rotacija ploskve samo za 90° in ne 180°).

10

Napredno urejanje

December 18, 2024

1 Napredno urejanje
Kot smo videli do sedaj, so imeli vsi “naravni” algoritmi za urejanje kvadratno časovno zahtevnost.
To pomeni, da imamo resno težavo že, če bi želeli urediti dva milijona prebivalcev Slovenije. Izkaže
pa se, da lahko problem urejanja rešimo veliko bolj učinkovito.

[1]: #include <vector>
#include <iostream>
#include <algorithm>
#include <random>
using namespace std;

typedef vector<int> VectorInt;
typedef array<VectorInt,3> VectorInt3;

Ker imajo zapiski težave s kompleksnejšimi tipi, bomo uporabljali VectorInt kot drugo ime za
vector<int>. Prav nam bo prišlo pa še nekaj pomožnih funkcij.

Na tem mestu lahko demonstriramo še enostavno uporabo predlog (template) v C++. Funkcija
print bi izgledala skoraj enako, če imamo opravka s seznamom celih števil, decimalnih števil ali
pa nizov, razlika bi bila samo v tipu. S spodnjo sintakso povemo prevajalniku, naj naredi kopije
funkcije in sicer po potrebi za vse tipe, ki bodo kdaj uporabljali to funkcijo.

[2]: template<typename T>
void print(const vector<T> &s) {

for (T x : s) cout << x << " ";
cout << endl;

}

[3]: VectorInt concat(VectorInt a, VectorInt b) {
a.reserve(a.size()+b.size());
a.insert(a.end(), b.begin(), b.end());
return a;

}

[4]: VectorInt random_numbers(int n, int x=1000000) {
default_random_engine rnd(123);
VectorInt v;
for (int i=0;i<n;i++) v.push_back(rnd()%x);

1

return v;
}

1.1 Napredni urejevalni algoritmi
Še vedno se bomo ukvarjali z algoritmi, ki temeljijo na medsebojnih primerjavah elementov.
Ogledali si bomo primere algoritmov, ki dosežejo časovno zahtevnost 𝑂(𝑛 log 𝑛).

1.1.1 Urejanje z zlivanjem (mergesort)

Ta algoritem razdeli elemente seznama na prvo in drugo polovico. Rekurzivno uredi vsako polovico
na enak način, nato pa združi dva urejena seznama (iz prve in druge polovice) v skupen urejen
seznam.

Najprej si oglejmo, kako bi združili dva urejena seznama v enega samega. Na vsakem koraku
preverimo najmanjša (prva) elementa v obeh seznamih in v združen seznam dodamo manjšega od
njiju ter ga odstranimo iz seznama.

[5]: VectorInt merge(VectorInt a, VectorInt b) {
int i=0, j=0;
VectorInt c;
while (i<a.size() || j<b.size()) {

if (i<a.size() && j<b.size()) {
if (a[i]<=b[j]) c.push_back(a[i++]);
else c.push_back(b[j++]);

} else if (i<a.size()) c.push_back(a[i++]);
else c.push_back(b[j++]);

}
return c;

}

Zlivanje seznamov je sicer poučno, vendar je dovolj pogosto, da je našlo svoje mesto tudi kot funkcija
merge v knjižnici algorithms.

Algoritem je od tu naprej precej enostaven. Seznam razdelimo na pol, rekurzivno uredimo vsako
polovico in združimo rezultata.

[6]: VectorInt mergesort(VectorInt sez) {
int n=sez.size();
if (n<=1) return sez;
VectorInt levo(sez.begin(), sez.begin()+n/2);
VectorInt desno(sez.begin()+n/2, sez.end());
levo = mergesort(levo);
desno = mergesort(desno);
return merge(levo, desno);

}

[7]: vector<int> sez = {5,3,4,6,2,7,1};
sez = mergesort(sez);

2

print(sez);

1 2 3 4 5 6 7

[8]: vector<int> sez = random_numbers(1000000);
sez = mergesort(sez);
if (is_sorted(sez.begin(), sez.end())) cout << "urejeno" << endl;

urejeno

Ker seznam vsakič razdelimo na pol, bo globina rekurzije 𝑂(log 𝑛). Na najglobljem nivoju se
bodo združevali pari seznamov dolžine 1, en nivo višje pari seznamov dolžine 2, nato 4, itd. Za
združevanjem bomo na posameznem nivoju potrebovali 𝑂(𝑛) časa.

Časovna zahtevnost (najslabša, povprečna, najboljša): 𝑂(𝑛 log 𝑛), 𝑂(𝑛 log 𝑛), 𝑂(𝑛 log 𝑛).
Prostorska zahtevnost je odvisna od implementacije. Zgornja ima prostorsko zahtevnost 𝑂(𝑛 log 𝑛),
ker na vsakem nivoju rekurzije obstaja ena kopija vsakega elementa. To lahko enostavno izboljšamo,
če ne ustvarjamo novih seznamov (ampak uporabljamo indekse za določitev podseznamov), za vse
korake zlivanja pa uporabimo isto pomožno tabelo velikosti 𝑂(𝑛). Omenimo, da je možno tudi
urejanje z zlivanjem izvesti povsem na mestu brez dodatnega pomnilnika, vendar je to že bolj
zakomplicirano.

1.1.2 Hitro urejanje (quicksort)

Algoritem hitrega urejanja se loti urejanja tako, da razdeli elemente seznama na majhne in velike.
Majhni bodo na začetku seznama, veliki pa na koncu. Seznam majhnih in velikih pa lahko vsakega
zase rekurzivno uredimo na enak način. S tem smo v posameznem koraku opravili samo manjši
del urejanja: elemente smo razdelili na majhne in velike. Če to ponovimo rekurzivno, pa bomo na
koncu uspešno uredili seznam.

Kako naj razdelimo (partition) seznam na majhne in velike elemente? Idealno bi bilo, če bi jih
lahko razbili na enako veliki skupini, vendar to izgleda kot ravno tako težek problem. Izbrali bomo
enostavnejšo strategijo. Iz seznama, ki ga urejamo, si izberimo neko (naključno) število (pivot).
Lahko je to kar prvi element. Elemente, ki so manjši, bomo razglasili za majhne, tiste, ki so večji,
pa za velike. Imamo pa še tretjo skupino, in to so elementi, ki so enaki pivotu.

[9]: VectorInt3 partition(VectorInt sez) {
int pivot = sez[0];
VectorInt majhni, enaki, veliki;
for (int i=0; i<sez.size(); i++) {

if (sez[i]<pivot) majhni.push_back(sez[i]);
else if (sez[i]>pivot) veliki.push_back(sez[i]);
else enaki.push_back(sez[i]);

}
VectorInt3 p = {majhni, enaki, veliki};
return p;

}

3

[10]: VectorInt quicksort(VectorInt sez) {
if (sez.size()<=1) return sez;
auto [majhni, enaki, veliki] = partition(sez);
VectorInt urejeni_majhni = quicksort(majhni);
VectorInt urejeni_veliki = quicksort(veliki);
return concat(concat(urejeni_majhni, enaki), urejeni_veliki);

}

[11]: vector<int> sez = {5,3,4,6,2,7,1};
sez = quicksort(sez);
print(sez);

1 2 3 4 5 6 7

Razmislimo, kako učinkovit je ta postopek? Recimo, da imamo srečo, in izbiramo elemente tako,
da seznam vedno razpade na dve enako veliki skupini majhnih in velikih. V tem primeru bomo
imeli 𝑂(log 𝑛) nivojev rekurzije. Na vsakem nivoju pa se bomo ukvarjali z 𝑂(𝑛) elementi. Na
prvem nivoju z eno skupino 𝑛 elementov, na drugem nivoju z dve skupinama velikosti 𝑛/2 itd. S
posemezno skupino nimamo prav veliko dela, v enem prehodu jih razdelimo med manjše in večje.
Skupaj bomo torej naredili 𝑂(𝑛 log 𝑛) operacij.

[7]: vector<int> sez = random_numbers(1000000);
sez = quicksort(sez);
if (is_sorted(sez.begin(), sez.end())) cout << "urejeno" << endl;

urejeno

Izkaže se, da naša predpostavka, da bomo imeli vedno srečo pri izbiri delilnega elementa, ni tako
slaba. Tudi pri naključnem izbiranju, bosta velikosti seznamov malih in velikih elementov v nekem
smiselnem razmerju. Če bi bilo razmerje vedno npr. 1:2 (namesto 1:1), to še vedno vodi do enake
časovne zahtevnosti. Tako je pričakovana (povprečna) časovna zahtevnost enaka tisti v najboljšem
primeru.

Časovna zahtevnost (najslabša, povprečna, najboljša): 𝑂(𝑛2), 𝑂(𝑛 log 𝑛), 𝑂(𝑛 log 𝑛).
Prostorska zahtevnost je odvisna od implementacije. Zgornja koda zaradi preglednosti porabi
𝑂(𝑛 log 𝑛) prostora. Postopek pa lahko implementiramo tudi na mestu s prestavljanjem elementov
znotraj seznama, kar zmanjša prostorsko zahtevnost na 𝑂(𝑛). V sledečem primeru bomo za pivot
izbrali zadnji element, nato pa preuredili preostale tako, da bodo na začetku manjši elementi, nji-
hovo število pa bomo hranili v spremenljivki 𝑚. Funkcija quicksort2 uredi seznam med indeksoma
𝑖 in 𝑗, vključno z 𝑖-tim in brez 𝑗-tega.

[12]: void quicksort2(VectorInt &sez, int i, int j) {
if (j-i<=1) return;
int m=0, pivot=sez[j-1];
for (int k=i;k<j;k++) {

if (sez[k]<pivot) {
swap(sez[i+m],sez[k]);
m++;

}

4

}
swap(sez[i+m], sez[j-1]);
quicksort2(sez, i, i+m);
quicksort2(sez, i+m+1, j);

}

[13]: vector<int> sez = {5,3,4,6,2,7,1};
quicksort2(sez, 0, sez.size());
print(sez);

1 2 3 4 5 6 7

Pozor: zgornja implementacija ima resno težavo v določenem primeru. Če so vsa števila enaka, bo
namreč časovna zahtevnost 𝑂(𝑛2). Kako bi lahko odpravili?

Če primerjamo algoritma mergesort in quicksort, prvi razdeli elemente na leve in desne in večino
dela z zlivanjem naredi po zaključku rekurzivnega urejanja, drugi pa jih razdeli na majhne in velike,
kar zahteva večino dela z razdelitvijo pred rekurzivnim urejanjem manjših delov.

1.1.3 Urejanje s kopico (heapsort)

Urejanje s kopico je pravzaprav izboljšava navadnega urejanja z izbiranjem (selection sort).
Namesto, da bi vsakič znova iskali najmanjši element med še neurejenimi, lahko ta korak po-
hitrimo. To dosežemo tako, da hranimo neurejene elemente v posebni podatkovni strukturi, ki
nam omogoča učinkovito iskanje in odstranjevanje najmanjšega elementa v njej. Točno temu je
namenjena kopica (heap). Več o tem kdaj drugič.

1.2 Praksa
Kateri algoritmi pa se uporabljajo v praksi, npr. v standardnih knjižnicah programskih jezikov, kot
so C, C++, Java, Python, itd. Običajno gre za neke kombinacije pristopov, saj se različni algoritmi
obnesejo različno dobro na manjših ali večjih primerih.

• C ponuja funkcijo qsort, kjer je že iz imena očitno, da gre za quicksort.
• C++ uporablja t.i. introsort, ki je pravzaprav quicksort v kombinaciji še z dvema drugima

algoritmoma. Če med urejanjem velikost seznama pade pod neko mejo, se uporabi navaden
insertion sort. Če rekurzija preseže neko vnaprej definirano globino, pa se od tam naprej
uporabi heapsort.

• Python uporablja timsort, ki je kombinacija mergesorta in insertion sorta.
• Java uporablja različne pristope za urejanje primitivnih tipov in za urejanje drugih objektov.

Za prve uporablja različico quicksorta, za druge pa različico timsorta.

1.3 Urejanje brez primerjav
Do sedaj smo urejali elemente v okviru zelo splošnih omejitev, ki nam omogočajo samo primerjave
med pari elementov. Včasih pa lahko izkoristimo tudi kakšno drugo lastnost podatkov, ki jih
urejamo.

5

1.3.1 Urejanje s štetjem (counting sort)

Recimo, da moramo uredi seznam števil, ki predstavljajo poštne številke. Ne glede na to, kako dolg
bo seznam, je nabor različnih poštnih številk precej majhen. Tako lahko za vsako poštno številko
preštejemo, kolikokrat se pojavi v seznamu, in jo na koncu temu primerno večkrat vnesemo v urejen
seznam.

[15]: void counting_sort(VectorInt &sez) {
int m = *max_element(sez.begin(), sez.end());
VectorInt f(m+1);
for (int x : sez) f[x]++;
int i=0;
for (int x=0; x<=m; x++) {

for (int r=0;r<f[x];r++) sez[i++]=x;
}

}

[16]: vector<int> sez = {1000,2000,2000,4000,2000,1000};
counting_sort(sez);
print(sez);

1000 1000 2000 2000 2000 4000

Časovna zahtevnost je linearna, torej 𝑂(𝑛 + 𝑚), kjer je 𝑚 največja možna vrednost. Ne pozabite
na člen 𝑚, saj ustvarjanje tabele in iteracija čez njo ni zastonj, sploh če je števil malo, njihov
razpon pa velik. Neugodna je prostorska zahtevnost, ki je odvisna od največjega elementa. Kaj
pa, če vrednosti niso prikladno majhna cela števila? To težavo bomo rešili, ko se bomo pogovarjali
o slovarjih.

1.3.2 Urejanje s koši (bucket/bin sort)

Urejanje s koši (ali vedri) je zelo splošna tehnika, iz katere izhaja veliko različnih algoritmov. Os-
novna ideja algoritma je, da razdeli elemente seznama v koše glede na njihovo vrednost. Med
koši obstaja urejenost od košev z manjšimi elementi proti tistim z večjimi. Pri tem se zanaša na
enakomerno razporejenost elementov po koših. Vsak koš lahko nato uredimo s poljubnim ureje-
valnim algoritmom, ali pa rekurzivno uporabimo enak postopek razdeljevanja elementov znotraj
koša.

Na primer, če uporabljamo dva koša, kjer prvi vsebuje elemente z vrednostmi z območja [min, med],
drugi pa [med + 1, max] in uporabimo rekurzivno strategijo, dobimo nekaj podobnega algoritmu
quicksort, kjer je kot pivot (namesto nekega elementa iz seznama) izbrana srednja vrednost med =
(min + max)/2 med najmanjšo (min) in največjo (max) vrednostjo iz seznama.

Korensko urejanje (radix sort) Kot primer urejanja s koši si oglejmo še korensko urejanje.
V tem algoritmu razporejamo elemente v koše glede na števke v primeru števil ali črke v primeru
nizov. Obstaja več različic, mi si bomo ogledali urejanje od bolj pomembnih proti manj pomembnim
znakom (MSD - Most Significant Digit) in sicer na primeru urejanja nizov po abecedi.

Nize lahko razdelimo v koše glede na njihovo prvo črko, nato pa posamezen koš uredimo po enakem
postopku, le da nize sedaj delimo v koše glede na drugo črko itd. Ko so koši urejeni, rezultate enos-

6

tavno zložimo skupaj. Vse kar potrebujemo je tabela košev buckets, ki bo na mestu buckets[c]
hranila seznam nizov, ki imajo na trenutno relevantnem mestu črko c. Relevantno mesto bomo
hranili v argumentu r in ga povečevali v rekurzivnih klicih. Dodatno pa hranimo še koš prekratkih
besed (done), ki sploh nimajo r-te črke.

[8]: void radix_sort(vector<string> &sez, int r=0) {
if (sez.size()<=1) return;
vector<string> buckets['z'-'a'+1], done;
for (string x : sez) {

if (r>=x.size()) {
done.push_back(x);

} else {
int b = x[r]-'a';
buckets[b].push_back(x);

}
}
int i=0;
for (string s : done) sez[i++] = s;
for (int b=0; b<='z'-'a'; b++) {

radix_sort(buckets[b], r+1);
for (string s : buckets[b]) sez[i++] = s;

}
}

[9]: vector<string> sez = {"bab","a","a","aabab","aa","ba","z","az"};
radix_sort(sez);
print(sez);

a a aa aabab az ba bab z

Časovna zahtevnost zgornjega algoritma je 𝑂(𝑛𝑑), če je 𝑑 največja dolžina niza. Enako velja za
prostorsko zahtevnost, saj na vsakem izmed 𝑑 nivojev hranimo v koših vseh 𝑛 elementov. Upoštevati
pa moramo tudi prazne koše, ki zasedajo prostor. Teh je lahko precej. Zato je boljša ocena
prostorske zahtevnosti 𝑂(𝑛𝑑𝑎), kjer je 𝑎 velikost abecede (če je konstantna, to lahko zanemarimo).
V vsakem izmed 𝑂(𝑛𝑑) klicev funkcije namreč alociramo 𝑎 košev.

1.4 Dvojiško iskanje (binary search)
Zakaj bi sploh želeli urejati sezname? Zato, da lahko v njih učinkovito iščemo stvari. To pa
počnemo z dvojiškim iskanje (bisekcijo). Ko iščemo neko vrednost v urejenem seznamu, jo lahko
primerjamo z nekim elementom in če je iskana vrednost manjša od izbranega elementa, moramo
nadaljevati na levi strani, sicer pa na desni. Če vedno izberemo srednji element, bomo velikost
seznama na vsakem koraku prepolovili in tako potrebovali 𝑂(log 𝑛) korakov, da najdemo element
oz. ugotovimo, da ga ni v urejenem seznamu.

Ideja je zavajujoče enostavna in pogosto vodi do nepravilnih rešitev. Oglejmo si eno tako.

[4]: bool bisekcija_narobe(VectorInt sez, int x) {
// nastavimo levo in desno mejo

7

int levo=0, desno=sez.size()-1;
while (1) {

// primerjamo s srednjim elementom
int i = (levo+desno)/2;
// popravimo meje
if (x < sez[i]) levo = i-1;
else desno = i+1;
// ce smo nasli element, ali so se meje prekrizale, ustavimo iskanje
if (sez[i] == x || desno < levo) break;

}
// ce so meje smiselne, smo ga nasli, sicer ga ni
return levo <= desno;

}

S to rešitvijo je narobe cel kup stvari:

• Popravljanje mej bi moralo biti ravno obratno. Če je iskani element manjši od srednjega,
moramo premakniti desno mejo in obratno.

• Iskanje v praznem seznamu se sesuje, ker se vedno izvede vsaj ena iteracija iskanja.
• Največjega elementa ne bomo nikoli našli, ker se takrat, ko ga najdemo, tudi prekrižajo meje.

To pa je naše merilo, ali smo našli element ali ne.
• Časovna zahtevnost ni 𝑂(log 𝑛), ampak 𝑂(𝑛) zaradi kopiranja seznama, ko pokličemo

funkcijo.

[5]: bool bisekcija(VectorInt &sez, int x) {
int levo=0, desno=(int)sez.size()-1;
while (levo<=desno) {

int i = (levo+desno)/2;
if (sez[i] == x) return true;
else if (x < sez[i]) desno = i-1;
else levo = i+1;

}
return false;

}

Oglejmo si malo težjo različice naloge. V urejenem seznamu bomo iskali mesto, kamor bi morali
vanj vstaviti nek nov element, da se bo ohranjala urejenost. Če obstaja več takih mest, ker imamo
več enakih števil, ga želimo vstaviti na najmanjše mesto. Npr. v seznam {2,3,7,7,8,10,10,10}
bi število 7 želeli vstaviti na indeks 2.

Pri implementaciji bisekcije in tudi drugih algoritmov moramo biti bolj sistematični, da se izognemo
napakam. To storimo tako, da v iteracijah vzdržujemo neke lastnosti, ki jim rečemo invariante.
V našem primeru imamo v urejenem seznamu nekaj števil, ki so manjša, nato pa števila, ki so
večja ali enaka {<, <, >=, >=, >=, >=, >=, >=}. Iščemo mejo med tema dvema območjema.
Uporabljali bomo indeksa loin hi, kjer bo prvi ves čas kazal na neko manjše, drugi pa na večje ali
enako število. Za inicializacijo teh dveh kazalcev, si lahko predstavljamo, da imamo pred seznamom
na indeksu -1 vrednost −∞, za njim pa ∞. Nato ju bomo v več korakih bisekcije bližali in ko bosta
sosednja, smo našli iskano mejo, ki je takrat shranjena v hi.

8

[6]: int lokacija(VectorInt &sez, int x) {
int lo=-1, hi=sez.size();
while (hi-lo>1) {

int i = (lo+hi)/2;
if (sez[i] < x) lo = i;
else hi = i;

}
return hi;

}

[7]: vector<int> sez = {2,3,7,7,8,10,10,10};
cout << lokacija(sez, 7) << endl;

2

Sedaj, ko to znamo, povejmo še, da C++ to funkcionalnost že ponuja v knjižnici algorithm s
funkcijo lower_bound, ki vrne iterator na iskano meso. Funkcija upper_bound pa bi med enakovred-
nimi mesti za vstavljanje vrnila največje.

[8]: vector<int> sez = {2,3,7,7,8,10,10,10};
cout << lower_bound(sez.begin(), sez.end(), 7) - sez.begin() << endl;

2

K dvojiškemu iskanju se bomo ponovno vrnili, ko se bomo pogovarjali o tehniki deli in vladaj.

9

Osnovno urejanje

December 18, 2024

1 Urejanje
V tem poglavju si bomo ogledali različne algoritme urejanja (sortiranja), od povsem neuporabnih,
do enostavnih in vse do najbolj naprednih.

Pri urejanju imamo podano neko zaporedje elementov, ki ga želimo preurediti v vrstni red, ki bo
ustrezal neki meri urejenosti. Če imamo opravka s števili, nam je že na pogled takoj očitno, kako
jih je treba urediti, računalniku pa žal ne. Zato si oglejmo primer s seznamom imen Tine, Ana,
Miha, Mojca. Imena lahko uredimo po abecedi (Ana, Miha, Mojca, Tine), lahko pa jih uredimo
po dolžini od krajših proti daljšim (Ana, Miha, Tine, Mojca). V tem drugem primeru vrstni red
niti ni enolično določen. Enako dober bi bil vrstni red, kjer bi zamenjali Miho in Tineta. Lahko pa
imena oseb uredimo glede na njihovo starost in dobimo čisto drugačen vrstni red.

Najprej se bomo posvetili algoritmom, ki temeljijo na medsebojnih primerjavah elementov. Tak
urejevalni algoritem si lahko za določanje vrstnega reda elementov v urejenem seznamu pomaga
samo s primerjavami dveh elementov (npr. 𝐴 in 𝐵), kjer dobi odgovor, ali se mora element 𝐴
nahajati pred elementom 𝐵 v iskanem urejenem vrstem redu.

1.1 Neuporabni urejevalni algoritmi
Pri urejanju pravzaprav iščemo neko preureditev elementov seznama, ki bo zadoščala pogojem
urejenosti. Zanima nas torej neka permutacija, ki nam da urejen seznam. En zelo neučinkovit način
je, da enostavno preverimo vse permutacije. Temu postopku bomo rekli urejanje s permutacijami,
znan pa je tudi kot bogosort, permutation sort, snail sort.

Za preverjanje vseh permutacij nam bo prišla prav funkcija za generiranje naslednje permutacije
next_permutation iz knjižnice algorithm. Kasneje pa nam bo za generiranje naključnih per-
mutacij prav prišla funkcija shuffle iz iste knjižnice in generator naključnih števil iz knjižnice
random.

[1]: #include <iostream>
#include <string>
#include <algorithm>
#include <random>
using namespace std;

[2]: int uredi_perm(vector<string> &sez) {
vector<int> p; // permutacija
for (int i=0;i<sez.size();i++) p.push_back(i);
int st=0;

1

// preizkusimo vse permuacije
do {

st++;
// iz permutacije sestavimo pripadajoc "urejen" seznam
vector<string> urejen(sez.size());
for (int i=0;i<sez.size();i++) {

urejen[i] = sez[p[i]];
}
// preverimo urejenost seznama
bool je_urejen = true;
for (int i=0;i+1<sez.size();i++) {

if (urejen[i] > urejen[i+1]) je_urejen = false;
}
// ustavimo iskanje, ce smo nasli resitev
if (je_urejen) {

sez = urejen;
break;

}
} while (next_permutation(p.begin(),p.end()));
return st;

}

[3]: vector<string> sez={"Tine", "Ana", "Miha", "Mojca"};
uredi_perm(sez);
for (string ime : sez) cout << ime << endl;

Ana
Miha
Mojca
Tine

Funkcijo uredi_perm smo dopolnili tako, da vrača še število obravnavanih permutacij st, ki nam bo
prišlo prav kasneje. Kako pa deluje next_permutation? Permutacije bi lahko generirali rekurzivno,
obstaja pa tudi lep iterativen postopek, ki sestavi naslednjo permutacijo. Kogar zanima, si lahko
ogleda blog in stran na wikipediji, mi pa nadaljujemo z urejanjem.

Namesto sistematičnega preverjanja vseh možnih permutacij, bi lahko generirali naključne per-
mutacije. Če je naš naključni generator pošten, bomo zagotovo nekoč našli pravo permutacijo
(povsem slučajno). Tokrat bomo preurejali kar vhodni seznam brez uporabe pomožne permutacije.

[4]: int uredi_rand(vector<string> &sez) {
default_random_engine rnd; // generator nakljucnih stevil
int st=0;
while (1) {

st++;
// nakljucno premesamo seznam
shuffle(sez.begin(),sez.end(),rnd);
// preverimo urejenost seznama
bool je_urejen = true;

2

https://wordaligned.org/articles/next-permutation
https://en.wikipedia.org/wiki/Permutation#Generation_in_lexicographic_order

for (int i=0;i+1<sez.size();i++) {
if (sez[i] > sez[i+1]) je_urejen = false;

}
if (je_urejen) break;

}
return st;

}

[5]: vector<string> sez={"Tine", "Ana", "Miha", "Mojca"};
uredi_rand(sez);
for (string ime : sez) cout << ime << endl;

Ana
Miha
Mojca
Tine

Razmislite, kako bi napisali svojo funkcijo shuffle, ki bo naključno premešala seznam. Idealno bi
bilo, če so vse permutacije enako verjetne.

Kateri izmed zgornjih algoritmov je boljši - deterministični ali naključni? V najslabšem primeru
se nam lahko zgodi, da bo imel naključni algoritem res nesrečo in zelo dolgo ne bo odkril pravega
vrstnega reda. Ali pa bo ravno obratno in ga bo uganil zelo hitro. Kaj pa v povprečju? Tega se
lahko lotimo eksperimentalno in preštejemo število permutacij, ki jih oba algoritma obravnavata.
Če imamo 𝑛 imen, je vseh možnih permutacij 𝑛! (𝑛 fakulteta). Poskusimo z 𝑛 = 7 in naredimo 100
poskusov urejanja naključno premešanega seznama z obema algoritmoma.

[15]: vector<string> sez={"Tine", "Ana", "Miha", "Mojca", "Joze", "Katja", "Vid"};
default_random_engine rnd(123);
int st_p=0, st_r=0;
int k=100;
for (int it=0; it<k; it++) {

shuffle(sez.begin(), sez.end(), rnd);
vector<string> sez1 = sez, sez2 = sez; // kopiji seznama za urejanje
st_p += uredi_perm(sez1);
st_r += uredi_rand(sez2);
assert(sez1==sez2);

}
cout << "deterministicni: " << (double)st_p/k << endl;
cout << "nakljucni: " << (double)st_r/k << endl;

deterministicni: 2671.32
nakljucni: 4929.98

Zanimivo, deterministični se v povprečju izkaže za boljšega. Vseh permutacij je 7! = 5040. De-
terministični po v povprečju našel pravo permutacijo nekje na polovici, kakšne prej, kakšne pa
kasneje. Naključni pa jih obravnava dvakrat več, približno toliko, kolikor je vseh permutacij. Zakaj
je temu tako? Razmislite, koliko metov kocke potrebujete v povprečju, da boste vrgli 6 pik. Če je
𝑥 pričakovano število metov, velja 𝑥 = 1 + 1

6 ⋅ 0 + 5
6 ⋅ 𝑥, torej 𝑥 = 6. Tu imamo opravka z 𝑛!-strano

kocko. Do rezultata bi se lahko torej dokopali tudi analitično namesto eksperimentalno.

3

1.2 Osnovni urejevalni algoritmi
Oglejmo si nekatere osnovne urejevalne algoritme, ki bodo služili tudi kot primeri za vajo prej
obravnavanih konceptov računske zahtevnosti. Pri urejevalnih algoritmih se včasih posebej obrav-
nava računsko zahtevnost glede na število narejenih primerjav med elementi. To je še posebej
smiselno, če je primerjava netrivialna. Mi se bomo omejili na primerjanje enostavnih tipov, in
bomo ocenjevali časovno zahtevnost glede na število osnovnih operacij.

Veliko bomo izpisovali vsebino seznamov, zato si pripravimo pomožno funkcijo.

[2]: void print(const vector<int> &s) {
for (int x : s) cout << x << " ";
cout << endl;

}

1.2.1 Urejanje z izbiranjem (selection sort)

Gre za najbolj enostavno strategijo, ki jo običajno izberejo ljudje. Iz seznama, ki ga želimo urediti,
bomo izbrali najmanjši element, ga odstranili in ga postavili na prvo mesto urejenega seznama, ki
ga tako gradimo. To ponavljamo, dokler nam ne zmanjka vhodnega seznama, pri tem pa smo po
vrsti od najmanjšega do največjega elementa zgradili urejen seznam.

Urejanje na mestu Hitro lahko ugotovimo, da nam ni treba vzdrževati dveh seznamov, ampak
lahko na podoben način prerazporedimo elemente kar v vhodnem seznamu. Temu rečemo urejanje
na mestu. Najmanjši element zamenjamo s prvim in ga tako premaknemo na prvo mesto. Ponovimo
postopek samo s seznamom od drugega mesta naprej itd.

Vzdržujemo invarianto, da je v 𝑖-tem koraku na začetku seznama postavljenih prvih 𝑖 elementov
urejenega zaporedja, preostali elementi pa so še neurejeni. V vsakem koraku urejeni del povečamo
za en element, ki ga postavimo na indeks 𝑖.

[3]: void selection_sort(vector<int> &s) {
int n=s.size();
print(s);
for (int i=0; i<n; i++) { // iscemo i-ti najmanjsi element

int m=i; // indeks najmanjsega elementa med neurejenimi
for (int j=i+1; j<n; j++) {

if (s[j]<s[m]) m=j;
}
swap(s[i], s[m]);
print(s);

}
}

[4]: vector<int> sez = {7,2,5,1,2,9,3};
selection_sort(sez);

7 2 5 1 2 9 3
1 2 5 7 2 9 3
1 2 5 7 2 9 3

4

1 2 2 7 5 9 3
1 2 2 3 5 9 7
1 2 2 3 5 9 7
1 2 2 3 5 7 9
1 2 2 3 5 7 9

Pri prostorski zahtevnosti lahko opazujemo celotno porabo prostora, ki je 𝑂(𝑛), ali pa samo količino
dodatnega prostora (poleg vhodnih podatkov), ki je 𝑂(1). V nadaljevanju se bomo držali prve
interpretacije.

Časovna zahtevnost (najslabša, povprečna, najboljša): 𝑂(𝑛2), 𝑂(𝑛2), 𝑂(𝑛2)

Stabilnost Zanimivo vprašanje je, ali algoritem ohranja vrstni red enakih elementov, kar imenu-
jemo stabilnost. To postane smiselno v primeru urejanja npr. imen oseb po njihovi starosti. Kakšen
bo vrsti red Ane in Jana, če sta enako stara? Bo tak, kot je bil v vhodnem seznamu, ali se lahko
zgodi, da ju algoritem premeša?

Urejanje z izbiranje je v zgornji obliki nestabilen algoritem, ker lahko pri zamenjavi najmanjšega
elementa (na indeksu 𝑚) z elementom, ki mu je v napoto (na mestu 𝑖), pokvarimo ta vrstni red.

Stabilnost lahko vedno dosežemo s tem, da vhodni seznam elementov 𝑥𝑖 zamenjamo s seznamom
parov (𝑥𝑖, 𝑖), ki vključujejo še indeks, in uredimo tega. Pri primerjavi parov pride najprej do
primerjave prvega dela para, v primeru enakosti pa se primerja drugi del.

1.2.2 Urejanje z vstavljanjem (insertion sort)

Tudi tu postopoma gradimo vedno večje urejeno zaporedje. Namesto, da bi iskali element, ki paše
na naslednje mesto (kot smo to počeli pri urejanju z izbiranjem), bomo naslednji element postavili
na pravo mesto. Po vrsti bomo jemali elemente iz vhodnega zaporedja in vsakega posebej vstavili
v novo nastajajoče urejeno zaporedje.

Tako kot prej, lahko tudi to izvedemo na mestu. Na vsakem koraku imamo urejeno zaporedje na
prvih 𝑖 − 1 mestih, v preostanku pa je še neurejeno vhodno zaporedje. V tem stanju bomo 𝑖-ti
element vstavili na pravo mesto tako, da bomo konec urejenega zaporedja, ki je večji od 𝑖-tega
elementa, zamaknili in naredili prostor zanj.

Vzdržujemo invarianto, da je v 𝑖-tem koraku urejenih prvih 𝑖 elementov (kar ni nujno tudi prvih
𝑖 elementov končnega urejenega seznama). V vsakem koraku povečamo dolžino urejenega dela z
vstavljanjem naslednjega elementa v seznamu.

[7]: void insertion_sort(vector<int> &s) {
int n=s.size();
print(s);
for (int i=1; i<n; i++) {

int x=s[i];
int j=i-1;
while (j>=0 && s[j]>x) {

s[j+1]=s[j];
j--;

}
s[j+1]=x;

5

print(s);
}

}

[8]: vector<int> sez = {7,2,5,1,2,9,3};
insertion_sort(sez);

7 2 5 1 2 9 3
2 7 5 1 2 9 3
2 5 7 1 2 9 3
1 2 5 7 2 9 3
1 2 2 5 7 9 3
1 2 2 5 7 9 3
1 2 2 3 5 7 9

Prostorska zahtevnost: 𝑂(𝑛)
Časovna zahtevnost (najslabša, povprečna, najboljša): 𝑂(𝑛2), 𝑂(𝑛2), 𝑂(𝑛)

1.2.3 Mehurčno urejanje (bubble sort)

V tem algoritmu bomo zaporedje uredili samo z zamenjavami sosednjih elementov, zato je včasih
imenovano tudi urejanje z zamenjavami. Pravzaprav je ideja zelo preprosta: dokler obstaja kakšen
par, ki je narobe urejen, ga najdemo in zamenjamo. Kljub temu bomo malo bolj sistematični. Pare
sosednjih elementov bomo pregledovali po vrsti. Ko pridemo do konca seznama, pa se bomo vrnili
nazaj na začetek. Če kdaj naredimo celoten prehod, ne da bi naredili kakšno zamenjavo, lahko
zaključimo.

[9]: void bubble_sort(vector<int> &s) {
int n=s.size();
print(s);
bool change = true;
while (change) {

change = false;
for (int i=0;i+1<n;i++) {

if (s[i]>s[i+1]) {
swap(s[i],s[i+1]);
change = true;

}
}
print(s);

}
}

[14]: vector<int> sez = {7,2,5,1,2,9,3};
bubble_sort(sez);

7 2 5 1 2 9 3
2 5 1 2 7 3 9
2 1 2 5 3 7 9

6

1 2 2 3 5 7 9
1 2 2 3 5 7 9

Pravilnost tega postopka že ni več tako očitna, kot v prejšnjih primerih. Bomo res vedno prišli
do urejenega seznama, ali se lahko algoritem zatakne v kakšnem neurejenem stanju? In koliko
prehodov potrebuje v najslabšem primeru?

Opazimo lahko, da algoritem v prvem prehodu z zamenjavami premakne na konec največji element,
nato drugega največjega na predzadnje mesto itd. Med tem premikanjem pa poskrbi za še malo
sprotnega urejanja preostalih elementov. Sedaj je jasno, da je algoritem pravilen in da potrebuje
največ 𝑛 − 1 prehodov. Če jih naredimo 𝑛, pa tudi ne bo škode. Sedaj ga lahko še nekoliko
skrajšamo, da je res enostaven, čeprav malo manj učinkovit.

[15]: void bubble_sort_n(vector<int> &s) {
int n=s.size();
for (int it=0;it<n;it++) {

for (int i=0;i+1<n;i++) {
if (s[i]>s[i+1]) swap(s[i],s[i+1]);

}
}
print(s);

}

[16]: vector<int> sez = {7,2,5,1,2,9,3};
bubble_sort_n(sez);

1 2 2 3 5 7 9

Oglejmo si še računske zahtevnosti prve različice algoritma, ki zaključi, čim je rezultat urejen.

Prostorska zahtevnost: 𝑂(𝑛)
Časovna zahtevnost (najslabša, povprečna, najboljša): 𝑂(𝑛2), 𝑂(𝑛2), 𝑂(𝑛)

7

Pozresni algoritmi

December 18, 2024

1 Požrešni algoritmi
Pogosto lahko sestavimo rešitev nekega problema z zaporedjem korakov, pri čemer se na vsakem
koraku odločimo za eno izmed več možnih izbir. Pri požrešnem (greedy) pristopu reševanje se na
vsakem koraku odločimo za izbiro, ki v tistem trenutku izgleda najbolj obetavno. S takim načinom
bomo najbrž našli kar spodobno rešitev, pa bo ta tudi optimalna? Odvisno od problema, zato
moramo znati razlikovati, kje in zakaj take strategije delujejo in kdaj ne.

Recimo, da želimo na spodnjem zemljevidu priti iz levega zgornjega vogala v desni spodnji vogal
s čim manj premiki. Na zemljevidu znaki . predstavljajo prosta polja, znaki # pa zasedena.
Očitno bomo gradili rešitev postopno po premikih. Na vsakem koraku se bomo odločili za eno
izmed največ 3 možnih smeri (ne bomo se premikali nazaj, od koder smo prišli). Smiselna mera
obetavnosti premika je razdalja sosednjega polja od cilja. Prvo dilemo imamo na polju (3,3), kjer
bolje izgleda premik navzdol, kar nas premakne bližje k cilju, kot premik navzgor. Vendar nas to
vodi do slabše rešitve zaradi kasnejših komplikacij na poti, ki jih v trenutku požrešne izbire ne
upoštevamo. Ni si težko zamisliti tudi primera, kjer taka izbira sploh ne bi vodila do rešitve.

.#..#.

.#....

...#..
##.#.#
...#.#
.###..
.#....
...##.

V nadaljevanju si bomo ogledali več primerov problemov ter dokazov (ne)pravilnosti požrešnih
strategij za njihovo reševanje, s čimer boste razvili nekaj intuicije in zdrave skeptičnosti glede
uporabe požrešnih strategij. S požrešnimi strategijami se bomo ponovno srečali tudi kasneje pri
algoritmih na grafih (Dijkstra, Prim, Kruskal). Požrešne strategije se običajno dobro obnesejo
na enostavnih problemih, medtem ko na kompleksnejših z njimi dobimo neko suboptimalno oz.
nepravilno rešitev. Posebej zanimivi pa so primeri, kjer nas v navidez kompleksnih problemih
pripeljejo požrešne rešitve do optimalnega rezultata.

[1]: #include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <queue>

1

using namespace std;

[2]: typedef pair<int,int> PII;
typedef vector<pair<int,int>> VII;
typedef vector<vector<pair<int,int>>> VVP;

1.1 Bencinske črpalke
Začnimo s potovalnim problemom polnjenja avta na bencinskih črpalkah (car fueling). Z avtom
želimo potovati do 𝐾 kilometrov oddaljenega cilja. Pri tem vemo, da se vzdolž poti nahaja 𝑁
črpalk, ki so od našega izhodišča oddaljene 0 < 𝑥1 < 𝑥2 < ⋯ < 𝑥𝑛 < 𝐾 kilometrov. Velikost
posode za gorivo oz. doseg našega avta s polnim tankom je 𝑇 kilometrov (z delno polnim pa
sorazmerno manj). Pot bomo začeli s polnim tankom goriva. Je cilj sploh dosegljiv? Kakšno je
najmanjše število postankov na črpalkah, da prisemo na cilj?

Primer: 𝐾 = 950, 𝑇 = 400, 𝑥 = [200, 375, 550, 750, 950].
Ugotovitve:

• Na črpalki je vedno smiselno povsem napolniti tank z gorivom. Če ga ne bi napolnili do vrha,
bi lahko z bolj polnim tankom opravili enako pot do naslednje črpalke. Morebiten ostanek
goriva pa “zlili stran” oz. tam dotočili temu primerno manj.

• Dosegljivost lahko preverimo tako, da tankamo na vsaki črpalki.
• Če je mogoče doseči naslednjo črpalko (ali cilj), lahko preskočimo tankanje na trenutni črpalki.

Na naslednji črpalki lahko namreč dotočimo gorivo do nivoja, ki bi ga imeli, če bi natočili
gorivo na trenutni.

[3]: int crpalke(int K, int T, vector<int> x) {
x.insert(x.begin(), 0);
x.insert(x.end(), K);
int doseg=T, postanki=0;
for (int i=0;i+1<x.size();i++) {

int razdalja=x[i+1]-x[i];
if (doseg<razdalja) { postanki++; doseg=T; } // po potrebi napolni
if (doseg<razdalja) return -1; // tudi s polnim tankom ne gre
doseg-=razdalja;

}
return postanki;

}

Da si poenostavimo implementacijo bomo dodali začetek in konec poti kot dve dodatni črpalki. Nato
se premikamo med sosednjimi črpalkami v skladu s prejšnjimi ugotovitvami. Preverimo rešitev na
začetnem primeru in par drugih posebnih situacijah, kjer ne rabimo dolivati goriva, ga dolivamo
povsod ali je nemogoče doseči cilj.

[4]: cout << crpalke(950, 400, {200,375,550,750}) << endl;
cout << crpalke(950, 950, {200,375,550,750}) << endl;
cout << crpalke(950, 200, {200,375,550,750}) << endl;
cout << crpalke(950, 199, {200,375,550,750}) << endl;

2

2
0
4
-1

1.2 Izbira aktivnosti
Izbira med seboj neodvisnih aktivnosti iz nabora ponujenih (activity selection) je klasičen problem.
Podanih imamo 𝑁 aktivnosti, kjer se 𝑖-ta aktivnost 𝑎𝑖 izvaja v obdobju (𝑠𝑖, 𝑒𝑖). Izbrati moramo
čim večjo podmnožico aktivnosti, za katero velja, da je presek poljubnih dveh aktivnosti prazen
(aktivnost se sicer lahko začne v trenutku, ko se prejšnja konča). Ker lahko aktivnosti predstavimo
z daljicami, je problem znan tudi kot interval scheduling.

Primer: [(1, 3), (2, 4), (2, 5), (4, 5), (4, 7), (6, 7), (6, 8), (7, 12), (8, 12), (9, 10), (9, 11), (11, 12), (12, 13)]
Hitro pridemo na več idej, kako bi se lahko lotili problema brez preverjanja vseh podmnožic. Katere
od njih pa so res pravilne?

• najzgodnejši začetek (earliest start)

Ne izgubljajmo časa s čakanjem! Razpored aktivnosti lahko sestavljamo po korakih tako, da vsakič
dodamo aktivnost, ki se začne prva po zaključku trenutnega razporeda.

Protiprimer: [(1, 6), (2, 3), (4, 5)]
• najkrajši (shortest)

Dolge aktivnosti zasedejo veliko časa, zato začnimo z majhnimi! Razpored sestavljamo tako, da
vanj dodajamo aktivnosti od krajših proti večjim. Če za neko aktivnost ni prostora, jo preskočimo.

Protiprimer: [(4, 7), (1, 5), (6, 10)]
• najmanj konflikten (fewest conflicts)

Težave so s konflikti med aktivnostmi, zato začnimo z najmanj konfliktnimi! Izračunajmo konflikt-
nost vsake aktivnosti in jih po vrsti poskusimo dodajati v razpored. Lahko konfliktnosti izračunamo
vnaprej ali jih moramo posodabljati, ko nekatere aktivnosti že dodamo v razpored?

Protiprimer: [(6, 9), (1, 3), (4, 7), (8, 11), (12, 14), (2, 5), (2, 5), (2, 5), (10, 13), (10, 13), (10, 13)]. Prvi
interval ima samo dva konflikta, vendar njegova izbira vodi v rešitev s tremi intervali, primer pa
lahko rešimo s štirimi.

• najzgodnejši konec (earliest finish)

Čim prej zaključimo s prvo aktivnostjo, da bomo imeli čim več časa za ostale! Med vsemi aktivnos-
tmi, ki se začnejo ob ali po koncu trenutno zadnje izberemo tisto z najzgodnejšim koncem.

Protiprimer: ?

To izgleda obetavno. Dokažimo, da je pravilno. Recimo, da obstaja boljša optimalna rešitev, ki se
na začetku strinja s požrešno, pri 𝑖-ti aktivnosti v izbranem razporedu pa pride prvič do razlike.
Optimalna izbere aktivnost 𝑜, požrešna pa 𝑝. Ker požrešna vedno izbere aktivnost z najzgodnejšim
koncem, velja 𝑒𝑝 <= 𝑒𝑜. Zato se aktivnost 𝑝 ne more pojaviti kje kasneje v predpostavljeni
optimalni razporeditvi. Obe aktivnosti nista konfliktni s predhodnimi. Če v optimalnem razporedu
zamenjamo aktivnost 𝑜 z 𝑝, bo preostanek razporeda ostal veljaven, rešitev pa ne bo nič slabša.

3

Tako smo podaljšali del optimalne rešitve, ki se se strinja s požrešno, ne da bi jo kako poslabšali. Če
ta razmislek ponovimo večkrat, bomo predpostavljeno optimalno rešitev lahko predelali v požrešno
brez poslabšanja rezultata. Tudi požrešna rešitev nas torej pripelje do optimalnega rezultata.

[5]: VII aktivnosti(VII a) {
VII razpored;
int konec=0;
while (1) {

int j=-1;
for (int i=0;i<a.size();i++) {

if (konec<=a[i].first) { // relevanten?
if (j==-1 || a[i].second<a[j].second) j=i; // boljsi?

}
}
if (j==-1) break;
razpored.push_back(a[j]);
konec=a[j].second;
a.erase(a.begin()+j);

}
return razpored;

}

[6]: VII a = {{1,3}, {2,4}, {2,5}, {4,5}, {4,7}, {6,7}, {6,8}, {7,12}, {8,12},␣
↪{9,10}, {9,11}, {11,12}, {12,13}};

VII r = aktivnosti(a);
printf("%d:",(int)r.size());
for (auto [s,e] : r) printf(" (%d,%d)",s,e);
printf("\n");

6: (1,3) (4,5) (6,7) (9,10) (11,12) (12,13)

Lahko to naredimo bolj učinkovito? Aktivnosti uredimo po njihovih koncih in jih izbiramo po
vrsti, če se začetek ne seka s koncem trenutno zadnje aktivnosti. Časovna zahtevnost je tako
samo 𝑂(𝑛 log 𝑛). Gre še hitreje? Če so vrednosti majhna cela števila, bi lahko uporabili urejanje s
štetjem.

[7]: bool cmpSecond(pair<int,int> a, pair<int,int> b) {
return a.second < b.second;

}

[8]: VII aktivnosti(VII a) {
sort(a.begin(), a.end(), cmpSecond);
VII razpored;
int konec=0;
for (auto [s,e] : a) {

if (konec<=s) {
razpored.push_back({s,e});
konec = e;

4

}
}
return razpored;

}

[9]: VII a = {{1,3}, {2,4}, {2,5}, {4,5}, {4,7}, {6,7}, {6,8}, {7,12}, {8,12},␣
↪{9,10}, {9,11}, {11,12}, {12,13}};

VII r = aktivnosti(a);
printf("%d:",(int)r.size());
for (auto [s,e] : r) printf(" (%d,%d)",s,e);
printf("\n");

6: (1,3) (4,5) (6,7) (9,10) (11,12) (12,13)

Kaj pa utežena različica problema, kjer ima vsaka aktivnost poleg začetka in konca tudi svojo
pomembnost in želimo namesto števila aktivnosti v razporedu maksimizirati vsoto pomembnosti?
To se izkaže za malo težji problem, h kateremu se bomo vrnili kasneje pri tehniki dinamičnega
programiranja.

1.3 Rezervacije učilnic
Pri problemu rezervacije učilnic (classroom scheduling, interval partitioning) moramo na fakulteti
izvesti 𝑁 predavanj, kjer posamezno predavanje poteka v časovnem intervalu (𝑠𝑖, 𝑒𝑖). Kakšno je
najmanjše število predavalnic, ki jih potrebujemo, da bomo lahko izvedli vsa predavanja?

V primerjavi s prej obravnavanim problemom izbire aktivnosti, smo morali tam izbrati čim več
aktivnosti, ki jih lahko izvedemo z eno predavalnico. V tem primeru pa moramo izvesti vse, pri
čemer nas zanima, najmanj koliko predavalnic potrebujemo.

Spodnji primer prikazuje razpored predavanj s štirimi predavalnicami, mogoče pa jih je izvesti tudi
samo s tremi.

P1: (4,10), (12,15)
P2: (0,3), (4,7), (8,11)
P3: (0,7), (10,15)
P4: (0,3), (8,11), (12,15)

Če v kakšnem trenutku sočasno poteka več predavanj, bomo zagotovo potrebovali vsaj toliko pre-
davalnic. Največjemu številu sočasnih predavanj bomo rekli globina (depth), ki predstavlja spodnjo
mejo rešitve. Je to spodnjo mejo vedno mogoče doseči, ali kdaj potrebujemo več predavalnic? Če se
razporejanja lotimo slabo, jih bomo seveda potrebovali več; kaj pa če jih razporedimo optimalno?

S požrešnim algoritmom bomo predavanja po vrsti glede na njihov začetek razporejali v pre-
davalnice. Na vsakem koraku preverimo, ali je kakšna od predavalnic že prosta in lahko vanjo
dodelimo trenutno predavanje. Če je takih več, izberemo katerokoli. Če take predavalnice ni,
odpremo/dodamo novo predavalnico (začnemo z 0 predavalnicami) in v njo dodelimo novo preda-
vanje.

Dokažimo, da prej opisani postopek doseže ravno globino množice predavanj, ki je spodnja meja
rešitve. Recimo, da postopek potrebuje 𝑑 predavalnic. Do tega pride, ko želimo nekam razporediti
predavanje 𝑖 z začetkom ob času 𝑡 = 𝑠𝑖, vendar so vse ostale predavalnice še zasedene. To pomeni,

5

da imamo 𝑑 − 1 predavanj, ki se zaključijo po času 𝑡. Vsa predavanja, ki potekajo v njih, so se
začela prej ali takrat kot 𝑖-to, ker jih dodajamo po vrsti. Torej so vsi njihovi začetki manjši ali
enaki 𝑡. V trenutku 𝑡 + 𝜖 torej poteka sočasno 𝑑 predavanj. Če je požrešen postopek uporabil 𝑑
predavalnic, je to zato, ker nekje sočasno poteka 𝑑 predavanj in torej doseže spodnjo mejo.

[10]: VVP predavalnice(VII predavanja) {
sort(predavanja.begin(), predavanja.end());
VVP urnik;
for (auto p : predavanja) {

auto [s,e] = p;
int x=-1;
for (int i=0;i<urnik.size();i++) {

if (urnik[i].back().second<=s) { x=i; break; }
}
if (x==-1) urnik.push_back({p}); // odpremo novo
else urnik[x].push_back(p);

}
return urnik;

}

[11]: VII predavanja = {{4,10}, {12,15}, {0,3}, {4,7}, {8,11}, {0,7}, {10,15}, {0,3},␣
↪{8,11}, {12,15}};

VVP urnik = predavalnice(predavanja);
for (auto ucilnica : urnik) {

for (auto [s,e] : ucilnica) printf(" (%d,%d)",s,e);
printf("\n");

}

(0,3) (4,7) (8,11) (12,15)
(0,3) (4,10) (10,15)
(0,7) (8,11) (12,15)

Dokazali smo, da je rešitev pravilna. Razmislimo še o njeni učinkovitosti. Razporediti moramo 𝑁
predavanj enega za drugim. Pri tem pa vsakič preverimo vse odprte predavalnice. Lahko se nam
zgodi, da bo vsako predavanje v svoji predavalnici, zato jih je na vsakem koraku treba preveriti
𝑂(𝑁). Časovna zahtevnost zgornje implementacije je torej 𝑂(𝑁2).
Kako bi lahko to izboljšali? Najbolj problematičen del je iskanje proste predavalnice. Predavalnice
bi lahko hranili urejene v prioritetni vrsti glede na čas zaključka zadnjega predavanja. Namesto v
poljubno prosto predavalnico, bomo razporedili predavanje v tisto, ki je že najdlje prosta oz. se
je čim bolj zgodaj sprostila. Če ta ni primerna, ne bo tudi nobena druga. Če uporabimo dvojiško
kopico, je časovna zahtevnost 𝑂(𝑁 log 𝑁).

[12]: VVP predavalnice(VII predavanja) {
sort(predavanja.begin(), predavanja.end());
VVP urnik;
priority_queue<PII, VII, greater<PII>> pq; // min-heap
pq.push({predavanja.back().second, -1}); // dummy
for (auto p : predavanja) {

6

auto [s,e] = p;
auto [konec, x] = pq.top();
if (konec<=s) {

pq.pop(); pq.push({e,x});
urnik[x].push_back(p);

} else {
pq.push({e, urnik.size()});
urnik.push_back({p});

}
}
return urnik;

}

[13]: VII predavanja = {{4,10}, {12,15}, {0,3}, {4,7}, {8,11}, {0,7}, {10,15}, {0,3},␣
↪{8,11}, {12,15}};

VVP urnik = predavalnice(predavanja);
for (auto ucilnica : urnik) {

for (auto [s,e] : ucilnica) printf(" (%d,%d)",s,e);
printf("\n");

}

(0,3) (4,7) (8,11) (12,15)
(0,3) (4,10) (10,15)
(0,7) (8,11) (12,15)

1.4 Datoteke na traku
Pred časom trdih diskov so se podatki hranili na trakovih. Slaba stran trakov je, da je treba za
dostop do podatka na mestu 𝑥 prevrteti celoten trak od začetka do tega mesta. Oglejmo si problem
optimalnega shranjevanja datotek na traku (storing files on tape). Podanih imamo 𝑁 datotek, ki
so opisane s pari števil 𝑑𝑖 = (𝑠𝑖, 𝑓𝑖), kjer 𝑠𝑖 velikost datoteke, 𝑓𝑖 pa pogostost dostopa do nje.
Ceno zapisa datotek na trak bomo ocenili z ∑𝑖 𝑥𝑖𝑓𝑖, kjer je 𝑥𝑖 začetno mesto zapisa datoteke. Pri
tem se zapisi datotek seveda ne smejo prekrivati. Kakšen je optimalen razpored datotek in z njim
povezana minimalna cena?

Primer: 𝑑 = [(60, 5), (27, 3), (1, 20), (32, 4)]
Ugotovitve:

• Datoteke je smiselno zapisovati v strnjenem zaporedju, saj morebiten prazen prostor med
njimi samo škodi.

• Ni enostavno.

Preizkusimo najprej obnašanje problema na manjših različicah. S tem dobimo tudi občutek za
glavne ovire pri reševanju. Pripravimo si funkcijo za ocenjevanje razporeda in preizkusimo različne
permutacije.

[14]: int score(vector<pair<int,int>> d) {
int x=0, sc=0;
for (auto [s,f] : d) { sc+=x*f; x+=s; }

7

return sc;
}

[15]: VII d = {{60,5}, {27,3}, {1,20}, {32,4}};
cout << score(d) << endl;
sort(d.begin(),d.end());
do {

cout << score(d) << ' ';
} while (next_permutation(d.begin(),d.end()));

2272
415 495 403 448 540 528 952 1032 1588 2783 2227 2863 1039 1084 1576 2771 2279
2816 1735 1723 2272 2908 2359 2896

Problem deluje zapleteno, zato najprej rešimo poenostavljene različice.

Recimo, da so vse datoteke enako dolge, npr. 𝑠𝑖 = 1. Intuitivno bi rekli, da morajo biti bolj pogosto
dostopane datoteke na začetku, da bo dostop do njih hiter. Naj bosta sosednji datoteki 𝑖 in 𝑗, pred
njima pa se nahaja 𝑥 datotek. K ceni prispevata 𝑥𝑓𝑖 +(𝑥+1)𝑓𝑗. Če ju med seboj zamenjamo, bosta
prispevali 𝑥𝑓𝑗 + (𝑥 + 1)𝑓𝑖, kar je sprememba za 𝑓𝑖 − 𝑓𝑗. Če je negativna (kar zmanjša ceno), ko je
𝑓𝑖 < 𝑓𝑗, ju je smiselno zamenjati, da bo bolj pogosto dostopana datoteka pred manj dostopano. S
tem lahko utemeljimo, da je optimalen naraščajoč vrstni red po pogostosti dostopa.

Recimo, da imajo vse datoteke točno en dostop, torej 𝑓𝑖 = 1. Intuitivno bi želeli imeti kratke
datoteke na začetku, saj naredijo manj “škode” kot daljše. S podobnim argumentom o zamenjavi
lahko dokažemo, da morajo biti datoteke na traku urejene naraščajoče po velikosti. Če primerjamo
oba možna vrstna reda dveh sosednjih datotek 𝑖 in 𝑗 sta njuna doprinosa k ceni 𝑥 + (𝑥 + 𝑠𝑖) in
𝑥 + (𝑥 + 𝑠𝑗). Na ceno ostalih njuna medsebojna zamenjava nima vpliva. Vrstni red, kjer je 𝑖 pred
𝑗, je torej boljši, če je 𝑠𝑖 < 𝑠𝑗.

Obravnavajmo sedaj splošen primer, kjer opazujemo možna vrstna reda dveh sosednjih datotek na
traku. Ceni dostopa sta 𝑥𝑓𝑖 + (𝑥 + 𝑠𝑖)𝑓𝑗 in 𝑥𝑓𝑗 + (𝑥 + 𝑠𝑗)𝑓𝑖, če bi bila datoteka 𝑗 pred 𝑖. Hitro
lahko izračunamo, kdaj je cena ureditve 𝑖 pred 𝑗 manjša od obratne. Tako pridemo do zaključka,
da morajo biti v optimalnem vrstnem redu datoteke urejene naraščajoče glede na razmerje med
velikostjo in pogostostjo dostopa 𝑠𝑖/𝑓𝑗. Torej jih lahko v rešitev požrešno zložimo po vrsti od tistih
z nižjim proti tistim z višjim razmerjem.

𝑥𝑓𝑖 + (𝑥 + 𝑠𝑖)𝑓𝑗 ≤ 𝑥𝑓𝑗 + (𝑥 + 𝑠𝑗)𝑓𝑖
𝑠𝑖𝑓𝑗 ≤ 𝑠𝑗𝑓𝑖

𝑠𝑖/𝑓𝑖 ≤ 𝑠𝑗/𝑓𝑗

[16]: bool cmpRatio(pair<int,int> a, pair<int,int> b) {
return a.first*b.second < b.first*a.second; // a.first/a.second < b.first/

↪b.second ... racunska napaka?
}

[17]: int trak(vector<pair<int,int>> d) {
sort(d.begin(), d.end(), cmpRatio);

8

return score(d);
}

[18]: cout << trak(d) << endl;

403

1.5 Minimizacija zamude
Pri razvrščanju z minimizacijo največje zamude (minimum lateness scheduling) imamo opravka z 𝑁
opravili, ki jih moramo izvesti na enem računalniku. Vsako opravilo je opisano s parom 𝑜𝑖 = (𝑡𝑖, 𝑑𝑖),
ki predstavlja čas izvajanja in rok, do katerega mora biti opravilo zaključeno. Če je 𝑠𝑖 čas začetka
izvajanja, se konča ob času 𝑓𝑖 = 𝑠𝑖 + 𝑡𝑖. Zamuda opravila je 𝑧𝑖 = max(0, 𝑓𝑖 − 𝑑𝑖). Cilj razvrščanja
opravil je minimizirati največjo zamudo opravila v razporedu. Minimiziramo torej 𝑍 = max 𝑧𝑖.

Primer: 𝑜 = [(2, 5), (1, 2), (3, 6), (2, 7)]
Očitno ni koristi od tega, da bi imel urnik kakšne proste luknje. Z odstranitvijo lukenj zago-
tovo ne moremo poslabšati urnika oz. maksimalne zamude, morda pa ga izboljšamo. Odločiti se
moramo samo za vrstni red opravil. Namesto preverjanja vseh permutacij, se ponovno ponuja nekaj
požrešnih strategij.

[19]: int late(VII o) {
int Z=0,now=0;
for (auto [t,d] : o) {

now+=t;
int z=max(0, now-d);
if (z>Z) Z=z;

}
return Z;

}

[20]: VII o = {{2,5}, {1,2}, {3,6}, {2,7}};
sort(o.begin(),o.end());
do {

cout << late(o) << ' ';
} while (next_permutation(o.begin(),o.end()));

2 1 2 3 1 3 2 1 3 6 4 6 2 3 3 6 4 6 2 3 4 6 4 6

• najkrajši čas izvajanja (shortest processing time)

Kratka opravila izvedemo prej, da ne bodo zamujala zaradi dolgih opravil! Kaj pa, če imajo dolga
opravila kratke roke in obratno?

Protiprimer: [(1, 100), (10, 10)]
• najkrajši prosti čas (smallest slack)

Poleg časa izvajanja 𝑡𝑖 moramo upoštevati tudi rok opravila 𝑑𝑖. Opravila izvajamo glede na narašča-
joč prosti čas oz. “manevrski prostor” 𝑑𝑖 − 𝑡𝑖!

Protiprimer: [(1, 2), (10, 10)]

9

• najzgodnejši rok (earliest deadline)

Opravila izvajamo samo glede na rok za zaključek opravila 𝑑𝑖!

Protiprimer: ?

Izgleda ok, pa je res optimalno? Naj bodo opravila urejena naraščajoče po rokih, torej 𝑑1 ≤ 𝑑2 ≤
... ≤ 𝑑𝑁 . Recimo, da obstaja neka optimalna rešitev, ki je boljša od požrešne. V njej se zagotovo
pojavljata dve sosednji opravili 𝑗 in 𝑖, kjer ima prvo kasnejši rok od drugega (𝑑𝑗 > 𝑑𝑖); sicer bi
bila ta rešitev enaka požrešni. Ob njuni zamenjavi se nova zamuda (𝑧′) vseh drugih opravil razen
𝑖 in 𝑗 ne spremeni. Zamuda opravila 𝑖 se kvečjemu zmanjša, ker se opravilo po zamenjavi zaključi
prej. Če opravilo 𝑗 po zamenjavi ne zamuja, ni problema. Recimo torej, da zamuja in sicer za
𝑧′

𝑗 = 𝑓 ′
𝑗 − 𝑑𝑗 = 𝑓𝑖 − 𝑑𝑗 ≤ 𝑓𝑖 − 𝑑𝑖 = 𝑧𝑖 (končata se ob enakem času; 𝑗 ima manjši rok).

Vemo torej, 𝑧′
𝑘 = 𝑧𝑘 ∀𝑘 ∉ {𝑖, 𝑗}, 𝑧′

𝑖 ≤ 𝑧𝑖, 𝑧′
𝑗 ≤ 𝑧𝑖. Iz tega sledi, da je 𝑍′ = max 𝑧′

𝑘 ≤ max 𝑧𝑘 =
𝑍. Če ti dve opravili zamenjamo med seboj, ne bomo povečali največje zamude. Če to ponavljamo,
bomo prišli do lepo urejene požrešne rešitve, ne da bi povečali zamudo, kar pa je v protislovju s
predpostavko, da požrešna rešitev ni optimalna. Skonstruiramo lahko namreč požrešno rešitev, ki
je tako dobra ali celo boljša od predpostavljene optimalne.

[21]: int zamuda(VII o) {
sort(o.begin(),o.end(),cmpSecond);
return late(o);

}

[22]: cout << zamuda(o) << endl;

1

1.6 Dokazovanje pravilnosti
Za dokazovanje pravilnosti požrešnih strategij smo uporabiljali naslednje pogosto uporabljene vrst
argumentov, ki pa seveda niso edini.

Prednost (stay ahead) Dokažemo, da je po vsakem koraku rešitev požrešne strategije vsaj tako
dobra kot katerakoli druga. Kot primer smo obravnavali bencinske črpalke.

Zamenjava (exchange argument) Dokažemo, da lahko z določenimi spremembami pretvorimo
predpostavljeno boljšo rešitev v tako, ki bi jo našla tudi požrešna metoda, pri tem pa ne poslabšamo
njene kvalitete. Pravilnost požrešnega algoritma smo dokazali s protislovjem po naslednjem prin-
cipu:

1. Predpostavimo, da obstaja optimalna rešitev, ki je boljša od požrešne rešitve. Med njimi
izberemo tisto, ki se čim bolj strinja s požrešno. Torej ima mesto 𝑖, kjer se prvič razlikuje
od požrešne, čim večje. Lahko bi ji rekli najbolj ekstremen protiprimer (največji, najmanjši,
najkasnejši, …) Cilj je pokazati, da obstaja še ekstremnejši, ki pa je vsaj tako dober, če ne
boljši.

2. Argumentiramo, da bi lahko na tem mestu izbrali tudi požrešno potezo in zato rešitev ne bi
bila nič slabša, morda pa celo boljša.

10

3. Našli smo protislovje, ker smo lahko skonstruirali rešitev, ki se ujema s požrešno na prvih 𝑖
mestih in je enako dobra ali celo boljša od predpostavljene “optimalne”, hkrati pa se od nje
razlikuje kasneje. Predpostavljena optimalna rešitev torej ni bila najbolj ekstremna.

4. Predpostavka, da obstaja drugačna rešitev, ki je boljša od požrešne, torej ne drži in je požrešna
rešitev zato optimalna.

Kot primer smo obravnavali izbiro aktivnosti, datoteke na traku in minimizacijo zamude.

Struktura (structural argument) Dokažemo neko strukturno lastnost (vrednost) optimalne
rešitve, ki predstavlja mejo in dokažemo, da jo požrešna rešitev res doseže. Kot primer smo obrav-
navali rezervacijo učilnic.

1.7 Menjava kovancev
V blagajni imamo kovance (in bankovce) različnih vrednosti v evrih: 1, 2, 5, 10, 20, 50, 100, 200 in
500 €. Predpostavimo, da je blagajna dobro založena z vsemi vrednostmi. Blagajniki se običajno
poslužujejo požrešne strategije za vrnitev določene vrednosti 𝑋 s čim manjšim številom kovancev.
Uporabijo največji kovanec, ki ne presega vrednosti 𝑋 in nato ponovijo postopek na zmanjšani
vrednosti.

Ali s tem za vsako možno vrednost 𝑋 res uporabijo najmanjše število kovancev? Izkaže se, da v
primeru evrskih kovancev to drži.

Ali to velja za poljuben nabor vrednosti kovancev? Hitro najdemo protiprimer, npr. plačilo 6 s
kovanci [1, 3, 4]. Požrešna metoda bi uporabila tri kovance (6 = 4 + 1 + 1), optimalna pa zgolj dva
(6 = 3 + 3).

Kako bi lahko dokazali, da za podan nabor kovancev požrešna strategija deluje za poljubno vred-
nost, ki jo moramo sestaviti? Tega se bomo lotili tako, da bomo preverili pravilnost požrešne
strategije do neke meje in dokazali, da če deluje do tja, bo delovala tudi za vse večje. Za velike
vrednosti bo optimalna rešitev izbirala največje kovance, kar pa je enako kot pri požrešni rešitvi,
torej mora priti do razlike med njima pri neki manjši vrednosti.

Najprej moramo znati izračunati optimalno število kovancev za menjavo neke vrednotsi 𝑋, da lahko
primerjamo, ali to število požrešna strategija doseže. To lahko naredimo s preverjanjem vseh možnih
kombinacij, ali pa malo učinkoviteje, kot se bomo naučili v poglavju o dinamičnem programiranju.
Predpostavimo torej, da imamo postopek, ki zna izračunati optimalno število kovancev za menjavo
dane vrednosti.

Naj bodo kovanci urejeni po velikosti 𝑎1 < 𝑎2 < ... < 𝑎𝑛. Naj bo 𝑆 najmanjši protiprimer, kjer
požrešna strategija ne najde optimalne rešitve. Razmislimo, kaj lahko povemo o optimalni strategiji
pri menjavi vrednosti 𝑆.

• Optimalna rešitev ne uporabi 𝑎𝑛. Če bi ga uporabila optimalna, bi ga tudi požrešna, zato bi
se na prvem koraku rešitvi strinjali in bi moral obstajati manjši protiprimer 𝑆 − 𝑎𝑛.

• Optimalna rešitev uporabi kovanec 𝑎𝑖 manj kot 𝑎𝑛-krat. Če bi optimalna rešitev vzela kovanec
𝑎𝑖 kar 𝑎𝑛-krat (ali še večkrat), bi bilo bolje vzeti kovanec 𝑎𝑛 zgolj 𝑎𝑖-krat, s čimer dosežemo
enako vrednosti.

Iz tega sledi, da je največja vrednost, ki jo optimalna strategija lahko zamenja (in se pri tem
razlikuje od požrešne) enaka 𝑈 = (𝑎1 + ... + 𝑎𝑛−1)(𝑎𝑛 − 1). Vemo torej, da mora biti najmanjši
protiprimer 𝑆 ≤ 𝑈 . Če preverimo rešitve do 𝑈 in ne najdemo razlike, bo to veljalo tudi za vsa

11

večja števila. Meja 𝑈 je za nabor vrednosti v evrih dovolj nizka. Obstajajo pa tudi boljše (in bolj
zapletene) zgornje meje 𝑈 ′ < 𝑈 .

12

Racunska geometrija

December 18, 2024

1 Računska geometrija
Računska geometrije je področje algoritmov in podatkovnih struktur, ki se ukvarja z učinkovitim
reševanjem geometrijskih problemov. Ti vključujejo delo s točkami, daljicami, večkotniki in drugimi
geometrijskimi objekti ter relacijami med njimi, kot sta npr. razdalja ali vsebovanost. Računska
geometrija je očiten del računalniške grafike, vida, robotike. Manj očitno pa je prisotna tudi v
številnih drugih problemih, ki dopuščajo geometrijsko formulacijo.

Omejili se bomo na reševanje problemov v ravnini, saj se problemi v višjih dimenzijah običajno
dodatno zakomplicirajo. Poleg tega je reševanje ravninskih problemov enostavno za vizualizacijo.
Kljub temu pa moramo biti pri reševanju pozorni na številne posebne primere, kot so kolinearne
točke, sovpadanje točk, vzporedne daljice, … Pomembna ovira je tudi računska natančnost. Če
imamo opravka s celoštevilskimi objekti, želimo rešiti problem z uporabo celih števil, da ne vpeljemo
računske napake, ki bi lahko povzročila povsem napačen rezultat.

[1]: #include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;

typedef pair<int,int> PII;
typedef vector<PII> VII;

[2]: template<class A, class B>
ostream& operator<<(ostream& os, pair<A,B> &p) {

os << "(" << p.first << ", " << p.second << ")";
return os;

}

[3]: template<typename T>
void print(const vector<T> &sez) {

for (T x : sez) cout << x << " ";
cout << endl;

}

1

1.1 Razdalje in presečišča
Razdalje in presečišča so najbolj osnovni koncepti, ki jih moramo obvladati. Ne vključujejo kakšnih
novih algoritmičnih prijemov, vendar služijo kot ponovitev geometrije in linearne algebre. Za
naštete probleme seveda obstaja več formul. Ogledali si bomo najbolj enostavne, ki jih lahko
izpeljemo brez prepisovanja iz kakšnega učbenika. Glede na predstavitev premic imamo različne
pristope. Predpostavili bomo, da imamo premico 𝑃 predstavljeno s točko 𝑃0 in smernim vektorjem
𝑉𝑃 .

Razdalje:

• Točki 𝑆 in 𝑇 : Pitagorov izrek poznamo še iz osnovne šole.
• Točka 𝑆 in premica 𝑃 : Izračunamo projekcijo 𝑆′ točke 𝑆 na premico 𝑃 in izračunamo razdaljo

med 𝑆 in projekcijo 𝑆′. Projekcijo točke na premico izračunamo s pomočjo skalarnega
produkta: proj𝑏 𝑎 = 𝑎⋅𝑏

||𝑏||2 𝑏. Če delamo projekcijo na enotski smerni vektor premice, je
dolžina projekcije kar enaka skalarnemu produktu.

• Točka 𝑆 in daljica 𝐴𝐵: Izračunamo projekcijo točke na nosilko (premico) daljice. Če je
projekcija izven daljice, bo najkrajša razdalja do krajišča 𝐴 ali 𝐵, sicer pa do projekcije 𝑆′.

• Daljici 𝐴𝐵 in 𝐶𝐷: Predpostavimo, da se daljici ne sekata, sicer je odgovor 0. Najkrajša
razdalja med daljicama bo enaka razdalji med enim izmed krajišč in drugo daljico. Izberemo
najmanjšo izmed štirih možnosti.

Presečišča:

• Točka 𝑆 in premica 𝑃 : Če je vektorski produkt vektorja 𝑃0𝑆 in smernega vektorja premice
𝑃 enak 0, leži točka na premici.

• Točka 𝑆 in daljica 𝐴𝐵: Preverimo, ali točka leži na nosilki daljice in znotraj očrtanega
pravokotnika (bounding box).

• Premici 𝑃 in 𝑅: Če sta premici vzporedni, imamo neskončno ali nobenega presečišča. Sicer
rešimo sistem enačb 𝑃0 + 𝑎𝑉𝑃 = 𝑅0 + 𝑏𝑉𝑅 za obe koordinati.

• Premica in daljica: Izračunamo presečišče premice in nosilke daljice ter preverimo, ali leži
presečišče na daljici.

• Daljici 𝐴𝐵 in 𝐶𝐷: Ugotoviti moramo, ali se daljici sploh sekata, nato pa uporabimo rešitev
za izračun presečišča nosilk obeh daljic. Daljici se sekata natanko takrat, ko sta krajišči prve
daljice 𝐴 in 𝐵 na nasprotnih straneh nosilke daljice 𝐶𝐷 in obratno. Stran/smer ugotovimo
s pomočjo vektorskega produkta. Točka 𝐴 je na levi strani vektorja 𝐶𝐷 (v pozitivni smeri
oz. nasprotni smeri urinega kazalca), če je vektorski produkt 𝐶𝐷 × 𝐶𝐴 pozitiven (na drugi
strani bi bil negativen). Posebej pozorni moramo biti na primere, ko se daljici dotikata, kjer
je vektorski produkt lahko 0.

1.2 Površina večkotnika
Začnimo s trikotnikom 𝐴𝐵𝐶. Če imamo podane koordinate oglišč, si lahko izberemo oglišče 𝐴 za
izhodišče in izračunamo polovico absolutne vrednost vektorskega produkta 𝑝 = 1

2 |𝐴𝐵 × 𝐴𝐶|.
Konveksen večkotnik lahko enostavno razbijemo na trikotnike in uporabimo prejšnji rezultat.

Na težave naletimo pri večkotnikih, ki niso nujno konveksni. Uporabimo formulo s predznačenimi
vsotami trapezov 𝑝 = | ∑𝑛

𝑖=1
1
2(𝑦𝑖 + 𝑦𝑖+1)(𝑥𝑖 − 𝑥𝑖+1)|. Predpostavimo lahko, da se večkotnik v

celoti nahaja nad x-osjo (formula deluje tudi brez te predpostavke). Postavimo se nekam na x-
os in opazujmo ozek vertikalen stolpec. Vsakič, ko bomo pri obhodu večkotnika prečkali stolpec

2

v desno stran, bomo območje pod njim odšteli, pri prehodu v levo pa prišteli. Marsikaj se bo
izničilo in ostala bodo samo območja, ki imajo nad seboj liho število prečkanj (ta se izmenjujejo v
levo in desno), kar je ravno notranjost večkotnika. Če naredimo obhod v drugo smer, bo rezultat
negativen, po absolutni vrednosti pa enak.

Omenimo še, da deluje enak argument, če si izberemo poljubno izhodišče (npr. (0,0)) in sešte-
vamo predznačene površine trikotnikov, ki jih z izbranim izhodiščem formirajo stranice na robu
večkotnika.

1.3 Vsebovanost točke
Začnimo z najenostavnejšim primerom točke 𝑇 , ki se nahaja v trikotniku 𝐴𝐵𝐶 ali pač ne. Točka
se nahaja v trikotniku, če se pri obhodu trikotnika ves čas nahaja na isti strani, kar preverimo z
vektorskim produktom. Ali je to pozitivna ali negativna stran, je odvisno od smeri obhoda. Sledeči
vektorski produkti morajo imeti enak predznak: 𝐴𝐵×𝐴𝑇 , 𝐵𝐶 ×𝐵𝑇 in 𝐶𝐴×𝐶𝑇 . Pozorni moramo
biti, kaj problem zahteva v primeru, da se točka nahaja točno na robu trikotnika.

Naslednji primer je vsebovanost točke v konveksnem večkotniku. Enostavno ga lahko razbijemo
na trikotnike (ki imajo skupno izbrano oglišče) in prevedemo problem na vsebovanost točke v
trikotniku. Deluje pa tudi prej omenjeni pristop z lokacijo točke na isti strani obhoda večkotnika.

Kako pa rešimo problem za poljuben večkotnik (point in polygon), ki ni nujno konveksen? V
tem primeru uporabimo tehniko metanja žarka (ray casting). Če sledimo poltraku iz točke 𝑇 v
poljubno smer, se ob vsakem križanju z robom večkotnika spremeni lokacija znotraj/zunaj. Če je
število križanj liho, je točka znotraj večkotnika, sicer je izven. Pomembna podrobnost je, kaj se
zgodi, če žarek seka večkotnik v enem od oglišč. Sprememba je namreč odvisna od sosednjih oglišč.
Če več sosednjih oglišč leži na žarku, nas zanima prvo oglišče, ki ne. Če sta obe na isti strani žarka,
ni spremembe, sicer pa je. Prikladna izbira smeri je npr. 𝑧 = (−1, 0). Lahko pa se tej komplikaciji
izognemo s tako izbiro smeri (naključno), da do tega ne pride.

V spodnji implementaciji bomo predpostavili, da se točka ne nahaja na robu večkotnika. Če to ni
res, bi lahko to posebej preverili. Pretvarjali se bomo, da ima točka za 𝜖 večjo y koordinato. To
ne spremeni rešitve, vendar poenostavi razmislek, ker so vsa oglišča nad ali pod njo, ne pa na isti
višini (oglišča z enako višino bodo obravnavana kot nižja). Problem bi z malo več truda lahko rešili
tudi v celih številih, vendar zaradi preglednosti ne bomo dodatno komplicirali.

[4]: #define OPERATOR_SUBTRACT operator- // workaround for a bug of cling

[5]: PII OPERATOR_SUBTRACT(PII a, PII b) {
return {a.first-b.first, a.second-b.second};

}

[6]: int point_in_polygon(vector<PII> poly, PII t) {
int n=poly.size(), cnt=0;
auto [x,y] = t;
for (int i=0;i<n;i++) {

int j=(i+1)%n;
if ((poly[i].second<=y) != (poly[j].second<=y)) { // stranica seka␣

↪vodoravno premico
PII s = poly[j]-poly[i]; // vektor stranice: i -> i+1

3

PII v = t-poly[i]; // vektor do tocke: i -> t
double k = (double)v.second/s.second;
double xp = poly[i].first + k*s.first; // presecisce z vodoravno␣

↪premico
if (xp < x) cnt++;

}
}
return cnt%2;

}

[7]: vector<PII> poly = {{0,0}, {1,1}, {3,1}, {4,2}, {5,1}, {6,2}, {7,0}, {8,1},␣
↪{9,0}, {10,1}, {10,3}, {0,3}};

cout << point_in_polygon(poly, {9,1}) << endl;
cout << point_in_polygon(poly, {9,2}) << endl;
cout << point_in_polygon(poly, {6,1}) << endl;
cout << point_in_polygon(poly, {5,0}) << endl;

1
1
0
0

1.4 Konveksna ovojnica
Konveksna ovojnica/ogrinjača/lupina (convex hull) množice točk v ravnini je najmanjša konveksna
množica, ki vsebuje vse podane točke. Običajno nas zanima rob konveksne ovojnice, ki je najkrajša
sklenjena črta, ki vsebuje vse točke. Včasih tudi lomljeni črti, ki predstavlja rob konveksne ovojnice,
rečemo kar konveksna ovojnica. Predstavljamo si jo lahko kot elastiko, ki se skrči okoli množice
točk.

Iščemo ekstremne (robne) točke na robu ovojnice, ki jo definirajo. V primeru več kolinearnih točk
na robu, je stvar definicije problema, ali želimo poročati samo oglišča ali tudi točke vzdolž stranic
konveksne ovojnice. V nadaljevanju se bomo omejili na primere, kjer ni treh kolinearnih točk.

Ogledali si bomo par najbolj klasičnih algoritmov, obstaja pa jih še veliko več. Problem seveda
postane težji, če ga rešujemo v treh ali še več dimenzijah.

[8]: vector<PII> points = {{4,0}, {2,3}, {5,2}, {6,1}, {8,4}, {6,6}, {5,4}, {4,5},␣
↪{2,6}, {1,1}, {1,5}, {3,2}};

1.4.1 Identifikacija stranic

Rob konveksne ovojnice je sestavljen iz daljic med pari točk. Če lahko za posamezen par točk oz.
daljico med njima ugotovimo, ali je del konveksne ovojnice, lahko zgradimo konveksno ovojnico.
Daljica je del roba konveksne ovojnice, če se vse ostale točke nahajajo na isti strani (recimo na
levi/pozitivni). Časovna zahtevnost takega postopka je 𝑂(𝑛3), kjer je 𝑛 število točk.

[9]: int cross(PII u, PII v) {
return u.first*v.second - u.second*v.first;

4

}

[10]: int n=points.size();
for (int i=0;i<n;i++) {

for (int j=0;j<n;j++) if (i!=j) { // vektor daljice i-j
PII d=points[j]-points[i];
int ok=1;
for (int k=0;k<n;k++) if (k!=i && k!=j) {

PII v=points[k]-points[i];
if (cross(d,v)<0) ok=0;

}
if (ok) cout << char('A'+i) << " " << char('A'+j) << endl;

}
}

A D
D E
E F
F I
I K
J A
K J

Stranice seveda niso izpisane v vrstnem redu, kot si sledijo na konveksni ovojnici, vendar bi jih
lahko uredili, če bi bilo treba.

1.4.2 Zavijanje darila

Pri iskanju konveksne ovojnice smo lahko bolj učinkoviti. Naraven pristop zavijanja darila (gift
wrapping, Jarvis march) začne z izbiro točke, ki je gotovo del konveksne ovojnice. V ta namen
lahko izberemo npr. najbolj levo točko 𝐴 (najnižjo med najbolj levimi) in raztegnemo ovojni papir
navzgor. Papir ovijamo v smeri urinega kazalca dokler se ne dotakne naslednje točke. Postopek
ovijanja ponavljamo, dokler ne pridemo do začetne točke.

Naslednjo točko, ki se jo dotakne papir pri ovijanju, lahko poiščemo na več načinov. Ker so med
gradnjo konveksne ovojnice vedno vse točke na isti strani zadnje točke A (del neke polravnine skozi
A), lahko med njimi poiščemo najbolj levo z uporabo vektorskega produkta 𝐴𝐶×𝐴𝐵 za primerjavo,
ali je točka C bolj levo (oz. v nasprotni smeri urinega kazalca) od točke B.

[11]: VII gift_wrapping(VII points) {
int n=points.size();
PII start=*min_element(points.begin(), points.end());
vector<PII> hull;
PII a=start;
while (a!=start || hull.empty()) {

hull.push_back(a);
PII b = (a!=points[0])?points[0]:points[1]; // katerakoli tocka, ki ni␣

↪a
for (PII c : points) if (c!=a) {

5

PII ac=c-a, ab=b-a; // vektorja AC, AB
if (cross(ab,ac)>0) b=c;

}
a = b;

}
return hull;

}

[12]: auto hull = gift_wrapping(points);
print(hull);

(1, 1) (1, 5) (2, 6) (6, 6) (8, 4) (6, 1) (4, 0)

Časovno zahtevnost algoritma lahko analiziramo v odvisnosti od velikosti rezultata (output-
sensitive) - število točk ℎ na konveksni ovojnici. V tem primeru je časovna zahtevnost 𝑂(ℎ𝑛).
Če pa velikosti rezultata ne upoštevamo, so lahko v najslabšem primeru vse točke na robu ovojnice,
zato je časovna zahtevnost 𝑂(𝑛2).

1.4.3 Grahamov pregled

Konveksno ovojnico točk v ravnini lahko poiščemo bolj učinkovito kot v kvadratnem času in sicer z
uporabo Grahamovega pregleda (Graham scan). Ponovno si izberimo neko ekstremno točko 𝑇 , ki
je zagotovo del konveksne ovojnice (npr. najnižjo med najbolj levimi točkami). Uredimo preostale
točke glede na kote vektorjev iz točke 𝑇 (od tistih, ki kažejo navzdol, proti vodoravnim in tistim,
ki kažejo navzgor). Naj bo ta urejen seznam točk 𝑃1, 𝑃2, … Če jih povežemo, dobimo ovojnico, ki
vsebuje vse točke (kar v ogliščih), vendar ni konveksna. Vemo tudi, da bo konveksna ovojnica neka
podmnožica tega seznama točk. Vrstni red točk je že pravilen, samo izbrati moramo prave.

Algoritem gradi konveksno ovojnico postopno z dodajanjem novih točk v izbranem vrstnem redu
po kotih. Po vsaki dodani točki popravi konveksnost zgrajene ovojnice, če je nova točka podrla
konveksnost z obratom v napačno smer. To naredi z odstranjevanjem točk s konca zgrajene ovojnice,
dokler zaključek ovojnice z novo točko ni konveksen.

Grahamov pregled pravzaprav gradi vedno večjo konveksno ovojnico z dodajanjem posameznih točk
po kotih. V 𝑖-tem koraku doda točko 𝑃𝑖 in iz konveksne ovojnice točk 𝑇 , 𝑃1, 𝑃2, … , 𝑃𝑖−1 izračuna
konveksno ovojnico točk 𝑇 , 𝑃1, 𝑃2, … , 𝑃𝑖.

Časovna zahtevnost algoritma je zaradi urejanja 𝑂(𝑛 log 𝑛). Preostanek algoritma vključuje doda-
janje in odstranjevanje točk z ovojnice, vendar je vsaka točka lahko dodana in odstranjena kvečjemu
enkrat. Zato je ta del algoritma linearen v odvisnosti od števila točk.

[13]: VII graham_scan(VII points) {
int n=points.size();

PII t=*min_element(points.begin(), points.end());

vector<pair<double,PII>> angles;
for (PII p : points) if (p!=t) {

PII v = p-t;
angles.push_back({atan2(v.second, v.first), p});

}

6

sort(angles.begin(), angles.end());

vector<PII> hull = {t}; // stack
for (auto [_,c] : angles) {

while (hull.size()>=2) { // restore convexity
PII a=hull[hull.size()-2], b=hull[hull.size()-1];
PII ab=b-a, ac=c-a;
if (cross(ab,ac)>0) break;
hull.pop_back();

}
hull.push_back(c);

}
return hull;

}

[14]: auto hull2 = graham_scan(points);
print(hull2);

(1, 1) (4, 0) (6, 1) (8, 4) (6, 6) (2, 6) (1, 5)

7

Racunska zahtevnost

December 18, 2024

1 Računska zahtevnost
Poskusimo odgovorit na par vprašanj, ki si jih lahko zastavimo v zvezi s prejšnjimi urejevalnimi
algoritmi.

• Kateri algoritmi so dobri in kateri slabi?
• Kateri algoritem je najboljši oz. kateri izmed dveh je boljši?
• Kako merimo učinkovitost oz. računsko zahtevnost algoritma?

Za algoritma s permuacijami lahko brez škode rečemo, da sta slaba. Poznamo precej hitrejše
postopke urejanja, ki niso bistveno kompleksnejši (morda celo enostavnejši). Za ostale osnovne
algoritme urejanja pa že ni povsem jasnega odgovora. Poznamo namreč učinkovitejše vendar tudi
kompleksnejše algoritme. Tudi osnovni pristopi so lahko povsem primerni.

Pri iskanju najboljšega algoritma naletimo na podobno dilemo. Poleg tega ni jasno, na kakšnih
podatkih želimo, da je algoritem najboljši - povsem naključnih, kakšnih posebnih, kako velikih?

To nas pripelje do tretjega vprašanja, kako sploh merimo učinkovitost algoritma?

• Lahko merimo čas izvajanja, vendar je te čase problematično primerjati na različnih raču-
nalnikih.

• Lahko merimo število operacij, ki jih potrebuje algoritem. Dogovoriti pa se moramo, katere
operacije bomo šteli (primerjave, aritmetične, logične, pomnilniške, …)

• Dogovoriti se moramo, kakšen primer podatkov bomo obravnavali (najboljšem, najslabšem,
povprečnem).

• Dogovoriti se moramo o velikosti primerov, s katerimi imamo opravka. En algoritem je
lahko boljši za manjše primere, drugi pa se izkaže pri večjih.

Kot bomo videli v nadaljevanju, običajno ocenjujemo asimptotično zgornjo mejo števila operacij v
najslabšem primeru.

Računska zahtevnost (kompleksnost) je količina virov, ki jih potrebuje algoritem za rešitev
problema dane velikosti. Pri virih se običajno osredotočamo na čas in prostor, zato govorimo o
časovni in prostorski zahtevnosti.

Ker imamo lahko različne podatke enake velikosti, moramo definirati, ali gre za najboljšo, najs-
labšo ali povprečno računsko zahtevnost. Običajno se osredotočamo na najslabšo (worst-case),
če ni določeno drugače.

Natančno količino virov je pogosto težko izračunati, poleg tega pa ni pretirano praktično uporabna.
Na računalniku z malenkost drugačno arhitekturo je že lahko drugačna. Poleg tega pa nas za majhne
probleme običajno ne zanima, ker je takrat preglednost bolj pomembna od učinkovitosti. Zato se

1

običajno ukvarjamo z asimptotično zahtevnostjo, ki opisuje porabo virov algoritma pri zelo
velikih problemih. Pri tem pogosto ocenjujemo neko mejo asimptotične zahtevnosti. Najpogosteje
ocenjujemo zgornjo mejo, za kar se uporablja notacija z velikim O-jem (Big O notation).
Rečemo, da ima funkcija 𝑓(𝑛) kompleksnost reda 𝑔(𝑛), kar zapišemo kot 𝑂(𝑔(𝑛)) ali 𝑓(𝑛) ∈ 𝑂(𝑔(𝑛))
ali celo kar 𝑓(𝑛) = 𝑂(𝑔(𝑛)) (čeprav ne gre za enakost). Formalno to pomeni:

∃𝑘 > 0 ∃𝑛0 ∀𝑛 > 𝑛0 ∶ 𝑓(𝑛) ≤ 𝑘 𝑔(𝑛)
ali enakovredno z limitami

lim𝑛→∞
𝑓(𝑛)
𝑔(𝑛) < ∞.

Poleg zgornje meje asimptotične zahtevnosti (veliki O) poznamo še notacije za druge meje (velika
omega - Ω, velika theta - Θ, …). Več o njih pa pri drugih algoritmičnih predmetih. Omenjene
definicije lahko posplošimo tudi na funkcije z več spremenljivkami, če opazujemo časovno zahtevnost
algoritma v odvisnosti od več parametrov velikosti problema.

Najpogostejši primer je analiza zgornje meje asimptotične računske zahtevnosti v na-
jslabšem primeru. S tem postavimo pesimistično oceno za najbolj neugoden primer
velikih podatkov. Kadar govorimo o časovni zahtevnosti, običajno mislimo kar zgornjo
mejo asimptotične časovne zahtevnosti v najslabšem primeru, če seveda ni pojasnjeno
drugače.

Recimo, da smo izračunali čas izvajanja oz. število operacij za rešitev problema velikost 𝑛 s funkcijo
𝑓(𝑛) = 1

2(𝑛−1)(𝑛+2) log 𝑛+√𝑛. Če izraz razširimo, dobimo 𝑓(𝑛) = 1
2𝑛2 log 𝑛+ 1

2𝑛 log 𝑛−log 𝑛+√𝑛.
Časovno zahtevnost takega algoritma bi lahko ocenili kot 𝑂(2𝑛3), kar je sicer pravilno, vendar precej
nenatančna meja. Boljša ocena časovne zahtevnosti bi bila 𝑂(𝑛2 log 𝑛). Vsi ostali členi so namreč
zanemarljivi v primerjavi z 𝑛2 log 𝑛, ko gre 𝑛 proti neskončnosti (za potrebe zgornje meje bi jih
lahko nadomestili z 𝑛2 log 𝑛), konstantni člen pred njim pa po definiciji ni relevanten. Primeren (ne
pa edini) izbor konstant v zgornji definiciji bi bil npr. 𝑛0 = 2 in 𝑘 = 3, ker so vsi trije pozitivni
členi manši ali enaki 𝑛2 log 𝑛 pri 𝑛 >= 2. V praksi to pomeni, da:

• pri vsoti obdržimo samo najhitreje rastoči člen,
• pri produktu pa lahko zanemarimo konstantne faktorje.

Tipične časovne zahtevnosti so:

• 𝑂(1), konstantna (neodvisna od velikosti problema 𝑛)
• 𝑂(log 𝑛), logaritemska
• 𝑂(√𝑛), korenska
• 𝑂(𝑛), linearna
• 𝑂(𝑛 log 𝑛), loglinearna, linearitmična
• 𝑂(𝑛 log𝑐 𝑛) za konstanto 𝑐 > 0, npr. 𝑂(𝑛 log2 𝑛) kvazilinearna
• 𝑂(𝑛2), kvadratna
• 𝑂(𝑛3), kubična
• 𝑂(𝑛𝑐) za konstanto 𝑐 > 0, npr. 𝑂(𝑛5), polinomska
• 𝑂(𝑐𝑛) za konstanto 𝑐 > 1, npr. 𝑂(2𝑛), eksponentna

Kako velike probleme lahko rešujemo z algoritmi določene časovne zahtevnosti, npr. 𝑂(𝑛2)? Ker
ta sintaksa skriva konstantni faktor, tega ne moremo reči natančno. Dobra praktična ocena pa je,
da lahko na tipičnem osebnem računalniku trenutno izvedemo približno 108 osnovnih operacij na
sekundo.

2

1.0.1 Primeri

Oglejmo si nekaj primerov funkcij, ki predstavljajo računske zahtevnosti, in jih ocenimo z notacijo
z velikim O-jem.

• 𝑓1(𝑛) = 100 + 2𝑛 + 3𝑛2 = 𝑂(𝑛3) (ali 𝑂(𝑛4 log 𝑛), kar je sicer pravilna, vendar slaba meja)
• 𝑓2(𝑛) = 3𝑛 cos(2𝜋𝑛) + 𝑛

log 𝑛 + 2𝑛 = 𝑂(𝑛)
• 𝑓3(𝑛) = 1 + 𝑛 log 𝑛 + 𝑛1.5 = 𝑂(𝑛1.5) (da logaritem raste počasneje kot koren, se lahko

prepričate z uporabo l’Hôpitalovega pravila za izračun lim𝑛→∞
log 𝑛√𝑛 = 0)

Funkcija lahko vsebuje vsote kakšnih vrst.

• 𝑓(𝑛) = ∑𝑛
𝑘=1 𝑛/𝑘 = 𝑛 ∑𝑛

𝑘=1 1/𝑘 = 𝑂(𝑛 log 𝑛) (Harmonična vrsta)

Pogoste so tudi rekurzivne funkcije.

• 𝑓(𝑛) = 𝑛 + 𝑓(𝑛/2) = 𝑛 + 𝑛/2 + 𝑛/4 + ... < 2𝑛 = 𝑂(𝑛)
Lahko imamo funkcije več spremenljivk.

• 𝑓(𝑛, 𝑚) = 𝑎𝑛2 + 𝑛√𝑚 + 𝑏 log 𝑚 = 𝑂(𝑛2 + 𝑛√𝑚) (𝑎 in 𝑏 sta konstanti)

Parametriziran algoritem Načrtujemo algoritem, v katerem bomo problem velikosti 𝑛
enakomerno razbili na skupine velikosti 𝑘, ki jih bo torej 𝑛/𝑘. Izračunali smo, da lahko prob-
lem za posamezno skupino rešimo z algoritmom s korensko časovno zahtevnostjo (v odvisnosti od
velikosti skupine), časovna zahtevnost postopka združevanja rezultatov več skupin pa je kubična (v
odvisnosti od števila skupin). Kako naj izberemo parameter 𝑘, da bo časovna zahtevnost algoritma
čim boljša?

𝑓(𝑛; 𝑘) = 𝑛/𝑘 ⋅ 𝑂(
√

𝑘) + 𝑂((𝑛/𝑘)3). Oglejmo si ekstremne primere. Pri 𝑘 = 1 dobimo 𝑓(𝑛) =
𝑛 + 𝑛3 = 𝑂(𝑛3), pri 𝑘 = 𝑛 pa 𝑓(𝑛) = √𝑛 + 1 = 𝑂(√𝑛) = 𝑂(𝑛0.5). V prvem primeru je večji drugi
člen, v drugem primeru pa prvi člen. Želimo, da noben od njiju ne dominira, torej naj bosta enaka.
Iz enačbe 𝑛

√
𝑘/𝑘 = (𝑛/𝑘)3 lahko določimo 𝑘 = 𝑛4/5 in 𝑓(𝑛) = 𝑂(𝑛2/5) = 𝑂(𝑛0.4).

Analiza programa Ocenimo časovno zahtevnost spodnjega programa.

for (int x = 1; x <= n; x *= 2) {
for (int i = 0; i < x; i++) {

for (int j = 0; j < n; j += 2) {
// konstantno število operacij

}
for (int j = 1; j < n; j *= 2) {

// konstantno število operacij
}

}
}

Na for zanke se bomo sklicevali kar s prva, druga, tretja in četrta, kot se pojavijo v programu.
Določimo, največ kolikokrat se izvede katera od njih: prva log 𝑛-krat, druga: 𝑛-krat, tretja: 𝑛/2-
krat in četrta: log 𝑛-krat. Tretja in četrta se izvedeta zaporedno, pri čemer dominira tretja. Časovno
zahtevnost lahko zato ocenimo z 𝑂(log 𝑛 ⋅ 𝑛 ⋅ (𝑛/2 + log 𝑛)) = 𝑂(𝑛2 log 𝑛).

3

Pri ocenjevanju časovne zahtevnosti pa smo lahko bolj natančni. Število ponovitev druge zanke
je namreč odvisno od trenutne iteracije prve zanke (v prejšnjem odstavku smo vzeli kar najbolj
pesimistično oceno). Število izvedb druge zanke bo 1 + 2 + 4 + 8 + … + 𝑛 = 𝑂(𝑛), za vsako od teh
ponovitev pa tretja zanka prispeva še 𝑂(𝑛) operacij. Bolj natančna ocena časovne zahtevnosti je
torej 𝑂(𝑛2).

4

Uvod

December 18, 2024

1 Algoritmi in podatkovne strukture 1
Namen predmeta APS1 je naučiti udeležence algoritmičnega razmišljanja. Ukvarjali se bomo
s pravilnostjo in učinkovitostjo algoritmov. Spoznali bomo več osnovnih algoritmov in z njimi
povezanih podatkovnih struktur, ki bodo predstavljali našo osnovno orodjarno. Poleg tega bodo
služili kot primeri, na katerih se bomo učili načrtovanja ter analiziranja algoritmov in podatkovnih
struktur. S konkretnimi implementacijami zasnovanih idej pa bomo utrjevali in poglabljali znanje
programiranja.

Algoritem - Postopek za reševanje določenega problema, ki ga reši v končnem številu korakov in
je nedvoumno opisan s končnim številom ukazov, izvedljivih mehanično brez rabe uma in običajno
podanih v obliki psevdokode, diagrama poteka ali v nekem programskem jeziku.

Primeri: iskanje največjega elementa v seznamu, Evklidov algoritem, Kruskalov algoritem, …

Včasih med algoritme štejemo tudi nekoliko bolj dvoumne postopke opisane v naravnem jeziku, kot
so npr. recepti, razni birokratski postopi (npr. postopek za prijavo začasnega prebivališča) itd.

Podatkovna struktura - Način organizacije podatkov, ki omogoča učinkovito izvajanje operacij
na njih.

Primeri: seznam, množica, uravnoteženo iskalno drevo, …

Algoritmi in podatkovne strukture se močno prepletajo. Algoritmi (postopki) v svojih ko-
rakih potrebujejo učinkovito organizirane podatke (podatkovne strukture). In obratno. Po-
datkovne strukture potrebujejo določene postopke (algoritme), da vzdržujejo podatke organizirane
in omogočajo učinkovite operacije. Glede na delež enega ali drugega, govorimo o algoritmu ali
podatkovni strukturi.

1.1 Izvajanje predmeta
Predmet se izvaja v tedenskih sklopih s predavanji, ki jim sledijo vaje. Na predavanjih so bomo
ogledali teorijo in kakšen praktičen primer rešili tudi skupaj. Na vajah boste vsak teden samostojno
(ob pomoči asistentov) reševali programersko nalogo v programskem jeziku C++, ki bo vključevala
nek algoritmičen problem povezan z vsebino predavanj. Za domačo naloga vas bo čakal podoben
problem. Ob koncu sklopa se bodo vaše rešitve avtomatsko testirale. Za opravljeno nalogo mora
vaša rešitev uspešno prestati vse primere. Prejeli boste povratno informacijo o številu uspešno
prestalih testov, ne pa o njihovi vsebini. Kdor bo želel svojo rešitev popraviti, bo imel za to čas do
konca naslednjega sklopa.

1

1.2 Delovno okolje
Vaše programe bomo ocenjevali na Ubuntu 22.04 s prevajalnikom GCC 11 in s standardom C++20.
Če je vaš oddani program resitev.cpp, ga bomo prevedli in pognali z

g++ -std=c++20 -o program resitev.cpp
./program < test.in > test.res

Če si boste pripravljali virtualko z Ubuntu 22.04, morate dodatno namestiti build-essential paket,
s katerim dobite C++ prevajalnik.

sudo apt install build-essential

1.3 Ocenjevanje
Za pristop k izpitu morate imeti uspešno opravljeno sprotno delo, kar pomeni povsem pravilno
rešenih vsaj 50% tedenskih nalog. Skoraj pravilna rešitev je še vedno nepravilna in je zato ne
upoštevamo. Oceno predmeta prejmete na izpitu, ki ga rešujete na papir.

Če odkrijemo dve ali več prepisanih rešitev, vsem udeleženim ne priznamo sprotnega dela in tako
v tekočem študijskem letu ne morete opravljati izpita. Zato ne objavljajte svojih rešitev. Posebej
drzne kršitve bomo prijavili disciplinski komisiji.

1.4 Literatura
Algoritmi in podatkovne strukture:

• Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms.
MIT press.

• Sedgewick R. & Wayne K. (2011). Algorithms fourth edition. Addison-Wesley.
• Aho A. V. Hopcroft J. E. & Ullman J. D. (1983). Data structures and algorithms. Addison-

Wesley.
• Kononenko, I., Robnik Šikonja, M., & Bosnić, Z. (2008). Programiranje in algoritmi. Fakul-

teta za računalništvo in informatiko.

Programiranje v C++:

• cplusplus, cppreference
• Modern C++ for C Programmers
• Stroustrup, B. (2013). The C++ Programming Language.-4th. Addison-Wesley.

1.5 Dodatne vaje
Na spletu je kup strani, ki omogočajo reševanje programerskih in algoritmičnih nalog (po tematikah)
s preverjanjem pravilnost: Codeforces, SPOJ, LeetCode, HackerEarth, HackerRank, …

2

https://cplusplus.com/reference/
https://en.cppreference.com/w/
https://berthub.eu/articles/posts/cpp-intro/
https://codeforces.com/problemset
https://www.spoj.com/problems
https://leetcode.com/problemset/all
https://www.hackerearth.com/practice/
https://www.hackerrank.com/dashboard

Vpeta drevesa

December 18, 2024

1 Disjunktne množice
Čeprav poglavje obljublja delo z vpetimi drevesi, se bomo najprej posvetili neki drugi podatkovni
strukturi, ki nam bo kasneje prišla prav. Prav pa nam pride v številnih aplikacijah, kjer imamo
opravka z združevanjem množic ali kakšnih drugih ekvivalenčnih razredov objektov.

Podatkovna struktura disjunktnih množic (disjoint-set) hrani množico disjunktnih množic (ali
razbitje množice na podmnožice) in omogoča naslednje operacije:

• add(x): Doda novo množico {𝑥} z enim samim elementom.
• find(x): Najde množico, ki ji pripada element x.
• union(x,y): Združi množici elementov x in y.

Poleg disjunktnih množic se za to podatkovno strukturo uporablja tudi izraz union-find. Pogosto
se problemi začnejo s množicami posameznih elementov, ki jih nato zdržujemo z uporabo funkcij
union in find, zato se bomo omejili na ta primer. Dopolnitev razvitih rešitev s funkcijo add za
dodajanje novega elementa je enostavna.

Posamezne množice bomo predstavili z drevesi. Koren drevesa pa bo predstavnik posamezne
množice. Funkcija find(x) bo torej morala poiskati in vrniti koren drevesa, funkcija union(x,y) pa
združiti dve drevesi v eno. Koren drevesa z elementom x lahko pripnemo kot otroka korenu drevesa
z elementom y. Združevanje je torej učinkovito, vendar lahko s takimi združevanji nastanejo zelo
izrojena drevesa, zato je časovna zahtevnost operacije find linearna.

Ker imamo opravka z dvema funkcijama, pri analizi učinkovitosti običajno opazujemo zaporedje
𝑛 − 1 združevanj (kar postopoma združi vseh 𝑛 posameznih elementov v eno samo množico), med
tem pa izvedemo še 𝑚 ≥ 𝑛 klicev funkcije find.

[1]: #include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;

typedef pair<int,int> PII;
typedef vector<int> VI;
typedef vector<pair<int,int>> VII;
typedef vector<vector<int>> VVI;

1

[2]: template<typename T>
void print(const vector<T> &sez) {

for (T x : sez) cout << x << " ";
cout << endl;

}

1.0.1 Združevanje po velikosti

Prva izboljšava temelji na pametnejšem združevanju. Pri združitvi dveh dreves je smiselno manjšega
pripeti k večjemu. Velikost drevesa lahko merimo po število vozlišč (union by size) ali po oceni
višine (union by rank). Osredotočili se bomo na prvo možnost, ker dobimo z drugo enake rezultate.

Ob vsaki združitvi se višina drevesa lahko poveča za največ 1 (če združujemo enako globoki drevesi).
Pri združevanju postane vozlišče manjšega drevesa del vsaj dvakrat večjega združenega drevesa.
Zato lahko vsako vozlišče nastopa v največ 𝑂(log 𝑛) združevanjih (sicer bi moralo imeti združeno
drevo več kot 𝑛 vozlišč, kar ni mogoče). Časovna zahtevnost operacije join je 𝑂(1), find pa 𝑂(log 𝑛).

1.0.2 Stiskanje poti

Druga možna izboljšava temelji na iskanju korena drevesa (find). Če smo že prehodili dolgo pot,
da smo našli koren, bi lahko vsa vozlišča na poti tudi povezali direktno nanj, da nam kasneje ne
bo treba tega početi ponovno.

Če imamo opravka samo z operacijami find (brez združevanj), je amortizirana časovna zahtevnost
operacije find 𝑂(1) (v zaporedju 𝑚 ≥ 𝑛 find-ov). V zaporedju operacij find bomo vsako vozlišče
pri iskanju korena prehodili enkrat (morda jih bomo prehodili cel kup že v prvi operaciji in kasneje
nobenega, ali pa v vsaki operaciji nekaj, skupaj pa ravno vse).

Če upoštevamo še združevanja, je amortizirana analiza nekoliko kompleksnejša. Povejmo samo, da
je časovna zahtevnost postopnega združevanja vseh elementov v eno množico (𝑛 − 1 operacij join)
z 𝑚 ≥ 𝑛 vmesnimi operacijami find enaka 𝑂(𝑚 log 𝑛). Amortizirana zahtevnost operacije find je
torej 𝑂(log 𝑛). S strategijo združevanja po velikosti smo dosegli enako zahtevnost, ki pa ni bila
amortizirana.

1.0.3 Skupna rešitev

Obe izboljšavi lahko tudi združimo, saj ne vplivata ena na drugo. Združevanje po velikosti skrajša
poti, ki jih stiskanje poti kasneje še dodatno skrajša. Stiskanje poti ne spremeni velikosti drevesa,
temveč ga zgolj preuredi, zato ne vpliva na združevanje po velikosti.

Rezultat je podatkovna struktura s skoraj konstantnimi amortiziranimi časovnimi zahtevnostmi
posameznih operacij. Časovna zahtevnost je 𝑂(𝑚 log∗ 𝑛), še tesnejša meja pa je 𝑂(𝑚𝛼(𝑛)). Obe
funkciji (iterirani logaritem in inverzna Ackermannova funkcija) rasteta izjemno počasi in sta prak-
tično konstantni za vse razumne vrednost, npr. 𝑛 = 265536 ≈ 1020000, log∗

2(𝑛) = 5, 𝛼(𝑛) = 4.
Amortizirana časovna zahtevnost posamezne operacije v procesu združevanja posameznih elemen-
tov v eno končno množico je torej praktično konstantna!

[3]: class DisjointSet { // Union-Find
public:

vector<int> parent, size;

2

DisjointSet(int n) {
parent = vector<int>(n);
size = vector<int>(n);
for (int i=0;i<n;i++) { // individual sets

parent[i] = i;
size[i] = 1;

}
}

int root(int x) { // find
if (parent[x]==x) return x; // reached the root
int r = root(parent[x]);
parent[x] = r; // path compression
return r;

}

void join(int x, int y) { // union by size
x=root(x); y=root(y); // replace by roots
if (x==y) return;
if (size[x]>size[y]) swap(x,y); // make x smaller
parent[x] = y; // attach to larger root
size[y] += size[x];

}
};

[4]: DisjointSet ds(10);
ds.join(3,4); ds.join(5,7); ds.join(0,3); ds.join(8,9); ds.join(7,9);
cout << (ds.root(3) == ds.root(7)) << endl;
cout << (ds.root(5) == ds.root(8)) << endl;

0
1

2 Minimalno vpeto drevo
Vpeto drevo (spanning tree) grafa G je drevo T, ki vključuje vsa vozlišča grafa G in podmnožico
njegovih povezav. Minimalno vpeto drevo (minimum spanning tree, MST) je tisto vpeto drevo,
ki ima najmanjšo vsoto uteži povezav. Če imamo opravka z več komponentami, govorimo o mini-
malnem povezanem gozdu. Tam za vsako povezano komponento ločeno poiščemo minimalno vpeto
drevo.

Vpeto drevo lahko enostavno poiščemo s preiskovanjem v širino ali globino iz poljubnega vozlišča.
Kako pa poiščemo minimalno vpeto drevo?

[5]: ifstream fin("mst.txt");
int n,m;
fin >> n >> m;
vector<VI> edges;

3

vector<VII> adj(n);
for (int i=0;i<m;i++) {

int a,b,w;
fin >> a >> b >> w;
edges.push_back({a,b,w});
adj[a].push_back({b,w});
adj[b].push_back({a,w});

}

2.0.1 Prerezna lastnost

Razbitju vozlišč grafa na dve disjunktni množici pravimo prerez grafa (cut). Povezavam s krajišči
v različnih delih razbitja pa prerezne povezave (cut-edge, cut-set).

Prerezna lastnost (cut property) pravi, da je najmanjša prerezna povezava vedno del nekega min-
imalnega vpetega drevesa (ne glede na izbrani prerez). Naj bo 𝑒 najmanjša prerezna povezava v
razbitju vozlišč na množici 𝐴 in 𝐵 = 𝑉 − 𝐴. Recimo, da ta povezava ni del nobenega minimalnega
vpetega drevesa. Potem mora v minimalnem vpetem drevesu obstajati neka druga povezava 𝑒′

med 𝐴 in 𝐵. Vemo, da je 𝑤(𝑒) ≤ 𝑤(𝑒′). Povezavo 𝑒′ lahko zamenjamo z 𝑒 in pri tem ohranimo ali
zmanjšamo vsoto povezav v vpetem drevesu.

2.1 Prim
Primov algoritem je požrešen algoritem, ki gradi minimalno vpeto drevo s širjenjem od
izhodiščenega vozlišča navzven proti sosedom. Za izhodišče lahko uporabimo poljubno vozlišče,
saj morajo biti vsa del minimalnega vpetega drevesa. Oglejmo si prerez grafa na množico A, ki
vključuje vsa vozlišča do sedaj zgrajenega drevesa in množico B, ki vsebuje preostala. Iz prerezne
lastnosti sledi, da je najmanjša povezava med A in B del nekega minimalnega vpetega drevesa.
Zato jo lahko dodamo v drevo in ponovimo enak razmislek.

Analizirajmo časovno zahtevnost takega postopka. V drevo moramo dodati 𝑛 vozlišč, vsakič pa
moramo obravnavati 𝑚 povezav, da najdemo najmanjšo med že dodanimi vozlišči in preostankom.
Časovna zahtevnost bi bila 𝑂(𝑛𝑚).
Lahko pa jo izboljšamo. Za vsako še nedodano vozlišče bomo vzdrževali njegovo razdaljo do že
zgrajenega drevesa. Na začetku so vse te razdalje enake ∞, razen za začetno vozlišče, ki ima razdaljo
0. Na vsakem koraku poiščemo vozlišče z najmanjšo razdaljo, ga dodamo v drevo in posodobimo
razdalje do drevesa vseh njegovih sosedov. Vse skupaj bomo obravnavali 𝑂(𝑚) povezav. Na vsakem
koraku dodajanja novega vozlišča v drevo pa bomo iskali vozlišče z najmanjšo razdaljo do drevesa.
Časovna zahtevnost je 𝑂(𝑛2 + 𝑚) = 𝑂(𝑛2).
Namesto večkratnega iskanja vozlišča z najmanjšo razdaljo lahko hranimo vozlišča v prioritetni vrsti
podobno kot v Dijkstrovem algoritmu. Posodobljene razdalje dodajamo v vrsto, če dobimo iz vrste
kakšno staro vrednost, pa jo ignoriramo. Časovna zahtevnost take implementacije je 𝑂(𝑚 log 𝑛).

[6]: int Prim(int n, vector<VII> &adj, vector<PII> &mst) {
vector<int> dist(n,-1); // distance from the tree
vector<int> done(n), parent(n);
int cost=0;
priority_queue<PII, vector<PII>, greater<PII>> pq;

4

dist[0]=0; pq.push({0,0});
while (!pq.empty()) {

auto [d,x]=pq.top(); pq.pop();
if (done[x]) continue; // ignore old items in queue
cost+=d;
done[x]=1;
for (auto [y,w] : adj[x]) if (!done[y]) { // update unfinished␣

↪neighbors
if (dist[y]==-1 || w<dist[y]) { // new or smaller distance

dist[y]=w; pq.push({w,y});
parent[y]=x;

}
}

}
for (int x=1;x<n;x++) { // skip root

mst.push_back({x,parent[x]});
}
return cost;

}

[7]: vector<PII> mst;
cout << Prim(n, adj, mst) << endl;
for (PII edge : mst) cout << edge.first << " " << edge.second << endl;

37
1 0
2 1
3 2
4 3
5 2
6 5
7 6
8 2

2.2 Kruskal
Kruskalov algoritem je prav tako požrešne narave. Začne z množico vozlišč in dodaja povezave
od manjših proti večjim povezavam glede na uteži. Pravzaprav postopoma pretvarja gozd z več
manjšimi drevesi v eno veliko drevo. Vsako povezavo (𝑥, 𝑦) doda, če njena vključitev ne ustvari cikla.
Povedano drugače, vozlišči 𝑥 in 𝑦 ne smeta pripadati istemu drevesu oz. povezani komponenti.

Vodi ta postopek res do optimalne rešitve? Tudi tu si lahko pomagamo s prerezno lastnostjo.
Recimo, da smo že sestavili nek gozd in želimo dodati povezavo (𝑥, 𝑦). Naj bo drevo z vozliščem
𝑥 množica 𝐴, vsa ostala vozlišča pa množica 𝐵. Povezava (𝑥, 𝑦) je globalno najcenejša nedodana
povezava in zato tudi najcenejša povezava med množicama 𝐴 in 𝐵. Torej jo lahko gotovo dodamo
v vpeto drevo in pri tem ne bomo zgrešili optimalne rešitve.

Za začetek moramo povezave urediti po velikosti, kar zahteva 𝑂(𝑚 log 𝑚) časa. Nato pa obrav-
navamo po vrsti vseh 𝑚 povezav in za vsako preverjamo, ali sta krajišči del iste povezane kom-

5

ponente. Povezano komponento lahko vsakič znova določimo z uporabo preiskovanja v širino
ali globino, ki ima časovno zahtevnost 𝑂(𝑚). Časovna zahtevnost celega postopka bi bila
𝑂(𝑚 log 𝑚 + 𝑚𝑚) = 𝑂(𝑚2).
Lahko pa uporabimo podatkovno strukturo disjunktnih množic, ki predstavljajo povezane kompo-
nente. Posamezna vozlišča združujemo v povezane komponente, da dobimo na koncu eno samo
komponento, ki je minimalno vpeto drevo. Operacije v strukturi disjunktnih množic so praktično
konstantne in zanemerljive v primerjavi z začetnim urejanjem povezav. Časovna zahtevnost je
𝑂(𝑚 log 𝑚 + 𝑚𝛼(𝑛)) = 𝑂(𝑚 log 𝑚) = 𝑂(𝑚 log 𝑛).

[8]: bool cmpW(VI e1, VI e2) { return e1[2] < e2[2]; }

[9]: int Kruskal(int n, vector<VI> &edges, vector<PII> &mst) {
sort(edges.begin(), edges.end(), cmpW); // sort by weights
DisjointSet ds(n);
int cost=0;
for (VI e : edges) {

int a=e[0], b=e[1], w=e[2];
if (ds.root(a)==ds.root(b)) continue; // same component?
ds.join(a,b);
cost+=w;
mst.push_back({a,b});

}
return cost;

}

[10]: vector<PII> mst;
cout << Kruskal(n, edges, mst) << endl;
for (PII edge : mst) cout << edge.first << " " << edge.second << endl;

37
7 6
8 2
6 5
0 1
2 5
2 3
0 7
3 4

2.3 Steinerjevo drevo v grafu
V problemu minimalnega vpetega drevesa smo morali poiskati podmnožico povezav z najmanjšo
vsoto, ki med seboj povezujejo vsa vozlišča grafa v obliki drevesa. Problem lahko posplošimo tako,
da zahtevamo, da je med seboj povezana samo neka izbrana podmnožica vozlišč (ki jim rečemo
terminali, njihovo število pa bomo označili s 𝑡), vključuje pa lahko tudi druga vozlišča

• 𝑡 = 𝑛: Če so vsa vozlišča terminali, imamo opravka s problemom minimalnega vpetega
drevesa.

• 𝑡 = 2: Če moramo povezati samo dve vozlišči, imamo opravka s problemom najkrajše poti.

6

• V splošnem se temu problemu reče Steinerjevo drevo v grafu. Vozliščem, ki so del rešitve
(drevesa), čeprav niso terminali, pa Steinerjeve točke.

Problem Steinerjevega drevesa spada med težke probleme, za katere ne poznamo algoritmov s
polinomsko zahtevnostjo v odvisnosti od števila terminalov 𝑡. Soroden geometrijski problem Stein-
erjevega drevesa v ravnini, kjer želimo povezati 𝑡 točk z ravnimi črtami, pri čemer lahko dodajamo
vmesne točke/križišča, je prav tako težek.

7

