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1 CH4++

V C-ju Ze znate programirati, C++ pa vam ponuja nekaj dodatnih funkcionalnosti, ki vam bodo
olajsale zivljenje. VeCinoma preko svoje standardne knjiznice in raznih sintakti¢nih bliznjic. Stan-
dardna knjiznica vsebuje Stevilne uporabne podatkovne tipe/strukture (containters) in algoritme.
Osnovana je bila po knjiznici Standard Template Library (STL), ki se Se danes pogosto uporablja
kar kot sinonim za C++ standardno knjiznico.

Prav vam bo prisla dokumentacija: - cplusplus - cppreference

1.1 Branje in pisanje

V C-ju ste navajeni branja in pisanja podatkov s knjiznico stdin.hin funkcijami kot so scanf,
printf, gets, ..

C++ pa v knjiznici iostream ponuja t.i. tokove (stream). Prav nam bosta prisla cin (character
input) in cout (character output). Podpirata operatorje >> oz. <<, ki poleg branja/pisanja tudi
vrneta isti objekt, da lahko operatorje verizimo.

#include <iostream>
std::cout << "Zivjo!\n";

Zivjo!

Vecina funkcionalnosti, ki jih ponuja C++ v svoji standardni knjiznici, se nahaja v imenskem
prostoru std, do objektov v njem pa dostopamo z std::ime. Malo pisanja si lahko prihranimo z
deklaracijo uporabe imenskega prostora std.

using namespace std;

int a,b;

cin >> a >> b;

cout << "vsota = " << a+b << endl;
9 10

vsota = 19


https://cplusplus.com/reference/
https://en.cppreference.com/w/
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1.2 Nizi

C++ ponuja podatkovno strukturo string, ki nam olajsa delo z nizi v primerjavi s C-jem, kjer
smo bili obsojeni na delo s tabelami znakov.

#include <string>

string ime, priimek;
cin >> ime >> priimek;

string oseba = priimek + " " + ime;

cout << "Pozdravljen, " << oseba << "!" << endl;

cout << "Zacetnice: " << ime[0] << priimek[0] << endl;
cout << "Dolzina imena: " << ime.size() << endl;

Tomaz Hocevar

Pozdravljen, Hocevar Tomaz!
Zacetnice: TH
Dolzina imena: 5

1.3 Pari

Pari vrednosti so zelo koristni, da nam ni treba za vsako malenkost ustvarjati novih struktur ali
razredov. V jezikih, kot je npr. Python, pa je koncept terk (tuple) Se bolj prisoten. Paru moramo
dolo¢iti tudi tipe vsebovanih komponent. Sintaksa z “oklepaji” oz. znaki manjse/vecje je podobna
tisti, ki ste je navajeni iz Jave. Do obeh elementov dostopamo preko atributov first in second.

#include <utility>
pair<int,int> xy;

xy = make_pair(10,12);
cout << xy.first << " " << xy.second << endl;

10 12

1.3.1 Inicializacija s seznamom

Nekatere podatkovne tipe lahko inicializiramo tudi s seznami vrednosti (initializer list). Poleg parov
bomo videli primere uporabe tudi kasneje pri drugih strukturah.

pair<int,int> p = {2,3};
cout << p.first << " " << p.second << endl;

23

1.3.2 Avtomatska dolocitev tipa

Ko zacnemo uporabljati gnezdene strukture (npr. par osebe in ocene, pri ¢emer je oseba prav
tako par sestavljen iz imena in priimka), postanejo opisi podatkovnih tipov precej dolgi. Ker
zna prevajalnik med prevajanjem ugotoviti, da se nek tip ne ujema, ga lahko tudi kar dolo¢i, kar
oznacimo s tipom auto.
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pair<pair<string,string>, int> ocena = {{"Tomaz", "Hocevar"l}, 10};
auto o = ocena;
cout << o.first.first << endl;

Tomaz

1.4 Seznam

V C-ju smo imeli na voljo tabele fiksne velikosti. Ce smo zeleli hraniti seznam elementov, ki
smo ga podaljsevali, pa smo naleteli na manjsi problem. Tega nam resuje poatkovnih tip vector,
ki predstavlja razsirljivo tabelo (resizable array), podobno kot ArrayList v Javi. V njem lahko
shranjujemo samo elemente enakega tipa, ki ga moramo navesti ob deklaraciji (za razliko od npr.
Pythona).

#include <vector>

vector<int> v;

for (int x=1; x<=1024; x*=2) v.push_back(x);

for (int i=0; i<v.size(); i++) cout << v[i] << " ";
cout << endl;

1248 16 32 64 128 256 512 1024

1.4.1 Iteratorji

Koncept iteratorjev vam je ze poznan iz Jave. V C++ so iteratorji kazalci na elemente v struk-
turah, s katerimi se lahko premikamo po elementih v tej strukturi. Vsaka struktura ima svoj tip
iteratorja (npr. ‘vector<int>::iterator) in ponuja iteratorja na svoj zaetek in konec

(.begin()in.end()).

for (vector<int>::iterator it=v.begin(); it!=v.end(); it++) {
cout << *it << " ",

}

cout << endl;

1248 16 32 64 128 256 512 1024

1.4.2 For each

Iteracija Cez vse elemente strukture je zelo pogosta operacija, zato je v stevilnih programskih jezikih
na voljo tudi temu prilagojena sintaksa. V C++ je to for (tip element : struktura).

vector<pair<int,int>> koordinate = {{2,6},{1,4},{-2,6}};
for (pair<int,int> xy : koordinate) cout << "[" << xy.first << ", " << xy.
wsecond << "]" << endl;

(2, 6]
(1, 4]
(-2, 6]
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1.4.3 Razpakiranje

Dostop do posameznih elementov kompleksnejSega tipa (npr. seznama parov) je lahko kar dolg. To
si lahko skrajSamo z uporabo razpakiranja (structured binding declaration). Sintaksa je auto [a,

b, ...] = x.

for (auto [x, y] : koordinate) cout << "[" << x << ", " << y << "]" << endl;
[2, 6]

[1, 4]

(-2, 6]

1.5 Vrsta, sklad, slovar, mnoZica, povezani seznam, ...

C++ pozna Se cel kup drugih podatkovnih tipov, kot so queue, stack, map, set, 1ist .. Vec o njih
pa takrat, ko bomo obravnavali abstraktne podatkovne tipe.

#include <map>

#include <set>

map<string,int> vpisna = {{"Ana", 123}, {"Miha", 456}, {"Tine", 7893}};
set<string> prisotni = {"Ana", "Tine"};

for (auto ime : prisotni) cout << vpisnalime] << endl;
123
789
1.6 Reference
Referenca je drugo ime za isto spremenljivko. Oznac¢imo jo s znakom &. V spodnjem primeru je
y referenca na spremenljivko tipa int, kar zapiSemo kot int &y. Referenca ne more biti prazna,
inicializirati jo moramo z drugo spremenljivko ob deklaraciji. Deklaracija reference brez inicializacije
(int &y;) ali inicializacija s konstantno vrednostjo (int &y = 9;) nista mozni.

int x = 10;

int &y = x;

cout << x << " " << y << endl;

10 10

Ce sedaj spremenimo vrednost spremenljivke x, se ta sprememba odraza tudi v spremenljivki y, in
obratno.

x = 11;

cout << x << " " << y << endl;

y = 12;

cout << x << " " << y << endl;

11 11

12 12



V CH+ se argumenti funkcij prenasajo po vrednosti. Funkcija torej prejme kopijo podanega argu-
menta. V Pythonu ali Javi bi z dodajanjem elementov seznamu, ki ga sprejme funkcija, spremenili
tudi zunanji seznam. V C++ temu ni tako.

[7]: void izpisi(vector<int> v) {
for (int x : v) cout << x << " ",
cout << endl;

}

[8]: auto podvoji(vector<int> v) {
int n=v.size();
for (int i=0; i<n; i++) {
v.push_back(v[i]);
}

return v;

[9]: vector<int> a
vector<int> b
izpisi(a);
izpisi(b);

{1’2,3’4’5};
podvoji(a);

12345
1234512345

Ce zelimo, lahko to funkcionalnost dosezemo s prenosom argumentov po referenci. Funkcija
podvoji_ref sprejme argument po referenci, vrednost te spremenljivke spremeni in ne vrne nicesar.

[10]: void podvoji_ref(vector<int> &v) {
int n=v.size();
for (int i=0; i<n; i++) {
v.push_back(v[i]);

}

[11]: podvoji_ref(a);
izpisi(a);

1234512345

Prenos po referenci se uporablja za podajanje velikih spremenljivk, da se izognemo ustvarjanju
kopije. Druga pogosta uporaba je vracanje ve¢ vrednosti iz funkcije preko nastavljanja argumentov,
ki so podani po referenci. Slednje smo v C-ju lahko dosegli tako, da smo funkciji podali kazalec na
spremenljivko in jo nato spreminjali preko tega kazalca.

V spodnjem primeru funkcija stat sprejme seznam celih stevil v po referenci, da se ne ustvari
kopija po nepotrebnem, ker funkcija seznama ne spreminja. Presteje pozitivna in negativna Stevila
ter rezultate vpiSe v argumenta poz in neg, ki sta prav tako podana po referenci.
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void stat(vector<int> &v, int &poz, int &neg) {
poz=0;
neg=0;
for (int x : v) {
if (x>0) poz++;
if (x<0) negt+;

}
}
vector<int> st = {5, -7, 8, 9, -3, -2, -1, -4};
int poz, neg;
stat(st, poz, neg);
cout << "poz/meg: " << poz << " " << neg << endl;
poz/neg: 3 5

1.7 Algoritmi

Knjiznica algorithm ponuje cel kup uporabnih funkcij, kot so min, max, min_element, swap, count,

#include <algorithm>

cout << min(5,2) << endl;
cout << min({5,3,9}) << endl;

vector<int> v={4,7,1,8};
cout << *min_element(v.begin(), v.end()) << endl;

2

1

Verjetno najpogosteje uporabljena funkcija pa je sort. Funkcija sort sprejme iteratorja na zacetek
in konec seznama vrednosti, ki jih bo uredila. Tako lahko uporabljamo funkcijo sort na razli¢nih
strukturah, ki implementirajo pravo vrsto iteratorjev.

vector<int> sez = {8,41,11,7,2};
sort(sez.begin(), sez.end());

for (int x : sez) cout << x << " ";
cout << endl;

27 8 11 41

1.7.1 Anonimne funkcije

Pogosto pisemo kratke funkcije za enkratno uporabo. Zato vecina modernih programskih jezikov
(Java, Python, C++, ..) pozna anonimne oz. lambda funkcije. Sintaksa v C++ je [zunanje
spremenljivke] (argumenti funkcije) { vsebina }. Ce so zunanje spremenljivke prazne, to
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pomeni, da lahko vsebina funkcije dostopa samo do svojih argumentov in do globalnih spremenljivk.
Vse spremenljivke in argumente lahko funkcija sprejme po vrednosti ali po referenci.

V spodnjem primeru bomo ponovno uredili seznam stevil, vendar jih bomo tokrat primerjali po
abecedi namesto po vrednosti.

sort(sez.begin(), sez.end(), [](int a, int b) {
return to_string(a) < to_string(b);

b

for (int x : sez) cout << x << " ",

cout << endl;

11 2417 8

1.8 Ostalo

C++ seveda ponuja Se veliko ve¢. Do tu smo predstavili samo nekaj osnov, ki nam bodo koristile
pri resevanju algoritmicénih problemov v nadaljevanju.

Kogar zanima vec, si lahko na spletu prebere o temah, kot so: razredi (classes), predloge (templates),
pametni kazalci (smart pointers), niti (threads), izjeme (ezceptions), preobremenjevanje operatorjev
(operator overloading), ...
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1 Deli in vladaj

Pristop deli in vladaj (Divide and Conquer) smo Ze srecali pri dvojiskem iskanju, hitrem urejanju
(quick sort) in urejanju z zlivanjem (merge sort). Gre za preprosto idejo, da problem razdelimo na
ve¢ manjsih podproblemov, te reSimo rekurzivno po enakem postopku, nato pa zdruzimo dobljene
rezultate manjsih problemov v resitev vec¢jega problema. Umetnost pa je v podrobnostih, kako
razbiti problem in kako zdruzevati resitve, da bo celoten postopek res ucinkovit.

Oglejmo si to na primeru racunanja vsote seznama, ki vsebuje n Stevil. Seznam razbijemo na levo
in desno polovico, rekurzivno izra¢unamo njuni vsoti, ter ju nato preprosto sestejemo. Enostavno.
Kaj pa u¢inkovito? Navadno sestevanje v zanki ima ¢asovnost zahtevnost O(n). Ce smo ustvarjali
nove kopije za levo in desno polovico, je ta resitev pravzaprav slabsa, ker ima ¢asovno zahtevnost
O(nlogn). Ce smo za podsezname uporabljali indekse, pa tudi nismo ni¢ na boljsem. Casovna
zahtevnost je Se vedno O(n), samo vrstni red seStevanja elementov se je spremenil.

Omenimo nekaj klasi¢nih primerov algoritmov, ki temeljijo na pristopu deli in vladaj, vendar jih v
okviru APS1 ne bomo utegnili obravnavati:

« mnozenje velikih stevil (Karatsuba, FFT)
« mnozenje matrik (Strassen),

e najblizji par tock v ravnini

e konveksna ovojnica

1.1 Krovni izrek

Obic¢ajno razbijemo problem velikosti n na podprobleme velikosti n/b. Rekurzivno moramo resiti
a takih podproblemov. Obicajno je a < b, ni pa nujno. Poleg tega pa za razbitje in zdruzevanje
resitev potrebujemo f(n) operacij:

o dvojisko iskanje: b=2,a =1, f(n) = O(1)
o quick/merge sort: b =2,a =2, f(n) = O(n)

Za izracun Stevila operacij imamo torej rekuzivno formulo T'(n) = aT'(n/b) + f(n), pri ¢emer je
T(n) = O(1) za dovolj majhen n. Stevili a in b sta konstanti, ki nista odvisni od n-ja. Gre
za druzino rekurzivnih funkcij, za katere nam krovni izrek (tudi mojstrova metoda) v dolo¢enih
primerih navaja resitve.

Primera b = 2,a =1 in b = 2,a = 2 smo ze analizirali. Oglejmo si Se primer b = 2,a = 4 za npr.
n=_8.

o Na zaetnem (ni¢tem) nivoju imamo 1 problem velikosti n.
o Na prvem nivoju dobimo a problemov velikosti n/b.



« Na i-tem imamo a’ problemov velikosti n/b'.

Stevilo nivojev je log, n, torej je listov tega rekurzivnega drevesa a8 = plog,e  Eksponent
oznacimo z ¢ = log, a, ker bo pomemben v nadaljevanju.

Ce je funkcija koli¢ine dela na posameznem nivoju f(n) dovolj majhna, predstavlja velikost
rekurzivnega drevesa glavni del $tevila izvedenih operacij, ¢as f(n) pa je zanemarljiv. Ce pa je
koli¢ina dela f(n) dovolj velika funkcija, je glavnina operacij izvedena na zaCetnem nivoju v ko-
renu, ker problem nato razpade na manjse podprobleme, ki imajo “zanemarljivo” majhno koli¢ino
dela v primerjavi s korenom.

Za obicajni konstanti b = 2, a = 2 si oglejmo nekaj primerov funkcije f(n).

e f(n) =logn: V korenu imamo logn dela, v otrocih ponovno 2logn/2 = logn, .. Skupaj
torej O(n + log” n) = O(n), ker prevladuje velikost rekurzivnega drevesa.

o f(n)=mn: Tega ze poznamo. Imamo logn nivojev in na vsakem nivoju n dela, skupaj torej
O(nlogn).

o f(n)=n?: Vkorenuimamo n? dela, v otrocih 2(n/2)? = 1/2n?, v vnukih 4(n/4)? = 1/4n>.
Vsota je O(n?), ker prevladuje delo v korenu.

Krovni izrek (master theorem) nam poda reSitve rekurzivne enacbe T'(n) = aT'(n/b) + f(n)
pri konstantah a > 1,b > 1 za tri skupine enacb glede na razmerje med ¢ = log, a in funkcijo f(n).
Velikostni red funkcije f(n) bomo primerjali z n¢ in lo¢ili tri primere.

1. f(n)=0(n°) = T(n)=06(n°
Ce je ¢as za zdruzevaje “manjsi” od n°, je velikost rekurzivnega drevesa (n¢) prevladujoca
vrednost.

2. f(n)=0(n°) = T(n)=0O(nlogn)
Ce sta vrednosti “enaki”, dobimo dodaten logaritemski faktor. Obstaja $e natancnejsa for-

mulacija tega primera:
f(n) =0(nlog"n),k >0 = T(n)=0(n"log""

3. f(n) =) = T(n)=06(f(n)
Ce je cas za zdruZevanje “vecji”, je to prevladujoc¢a vrednost. Ta primer zahteva Se dodaten
pogoj regularnosti, ki pravi, da je koli¢ina dela v vozlis¢u vsaj tako velika kot koli¢ina dela v
otrocih (kar je skoraj vedno res): af(n/b) < kf(n) za dovolj velike n-je in nek k < 1.

1TL)

Oglejmo si nekaj primerov razpolavljanja z b = 2:

e a=2,f(n) =1 (rekurzivno sestevanje): ¢ =1, velja 1. primer, zato je T'(n) = O(n)
e a=2,f(n)=logn: ¢=1,velja 1. primer, zato je T'(n) = O(n)
(n) = n (Karatsuba): ¢~ 1.6, velja 1. primer, zato je T'(n) = O(n'°).
e a=1, f(n) =1 (dvojisko iskanje): ¢ =0, velja 2. primer, zato je T'(n) = O(logn).
o a=2,f(n) =n (quick/merge sort): ¢ =1, velja 2. primer, zato je T'(n) = O(nlogn).
e a=2,f(n)=2" ¢=1, velja 3. primer, zato je T'(n) = 2".

Primeri, kjer si ne moremo pomagati s krovnim izrekom:

e T(n)=1/2T(n/4) +n: a <1 nima smisla, reSujemo pol problema velikosti n/4?

e T(n)=2T(n/1)+mn: b=1, zato se problem sploh ne zmanjsuje.

e« T(n)=3T(n/2) —n?: Delo f(n) ne more biti negativno.

e T(n)=n/2T(n/2)+n: a=n/2 nikonstanta.

o T(n)=2T(n/2)+n/loglogn: Tega ne pokriva noben izmed treh primerov.
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Posplositev krovnega izreka na primere, kjer imamo opravka s podproblemi razli¢nih velikosti (niso
vsi enako veliki n/b), je znana kot Akra-Bazzi metoda.

1.2 Primeri nalog

Sedaj smo opremljeni s teorijo pristopa deli in vladaj, ki jo v nadaljevanju poskusimo uporabiti na
nekaj primerih.

#include <tostream>
#include <vector>
using namespace std;

template<typename T>

void print(const vector<T> &s) {
for (T x : s8) cout << x << " ",
cout << endl;

1.2.1 Potenciranje

Izracunati zelimo potenco z™. Pri tem predpostavimo, da lahko mnozimo poljubno velika stevila v
konstantnem casu (kar seveda ni res). Ali pa izra¢unajmo resitev po nekem modulu M (v kolobarju
ostankov), kjer lahko pri seStevanju in mnozenju sproti racunamo z ostanki.

Ce je n sod, bi nam prisla prav potenca p = z"/2. Iskani rezultat je ravno p?. Ce pa je n lih,

mu odstejemo 1 (in mnozimo rezultat z n) ter tako pridemo do sodega primera. Obakrat smo s
konstantnim Stevilom operacij razpolovili velikost problema, zato je ¢asovna zahtevnost O(logn),
za kar nam niti ni treba komplicirati s krovnim izrekom. Postopek se imenuje potenciranje s
kvadriranjem (ezponentiation by squaring).

int potenca(int x, int n) {

if (n==0) return 1;

if (n%2==0) {
//return potenca(z, n/2) * potenca(z, n/2); // nmarobe! ... O0(n)
int p = potenca(x, n/2);
return p*p;

} else {
return x*potenca(x, n-1);

}
cout << potenca(2,10) << endl;

1024

Pozorni moramo biti, da ne ra¢unamo vrednosti potenca(x, n/2) dvakrat. V tem primeru bi bila
¢asovna zahtevnost O(n), kar ni ni¢ boljse od zaporednega mnozenja. Vrednost izra¢unamo enkrat
in jo nato kvadriramo.
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1.2.2 Enakomerno razbitje seznama

Podan imamo seznam n stevil a4, ay, ..., a,, z vsoto V = Z? a;, ki ga zelimo razbiti na k strnjenih
podseznamov (ki so lahko tudi prazni). Zelimo si, da je razbitje tako, da so si vsote podseznamov
¢im bolj podobne. Idealno bi bilo, ¢e bi imel vsak podseznam vsoto V' /k, vendar to ni vedno mogoce.
Odlo¢ili smo se, da bomo to dosegli tako, da bomo zahtevali, da je najvecja vsota v posameznega
podseznama ¢im manjSa (minimiziramo maksimalno vsoto). Kaksno je optimalno razbitje?

Za primer vzemimo seznam 12, 8, 3, 5, 4, 13, 5, 3, 7 in kK = 3. Vsota je 60, zato bi bilo
idealno, ¢e bi naredili skupine po 20. Prva dva elementa se ravno sestejeta v 20, zato bi ju bilo
smiselno dati v svojo skupino. Potem nam ostane Se dilema glede meje med drugo in tretjo skupino,
kjer lahko preizkusimo obe meji okoli vsote 20. Smo s tem pozresnim razmislekom prisli do opti-
malne resitve? Nismo. Prvo skupino se splaca podaljsati, da pride do lepse delitve med drugo in
tretjo. Optimalno razbitje je (12, 8, 3), (5, 4, 13), (5, 3, 7), kjer so vsote 23, 22 in 15.

Pogosto so odlocitveni problemi lazji od optimizacijskih. Je neka konkretna meja v sprejemljiva?
Ali obstaja razbitje na k kosov, katerih vsota ne presega v? Vedja kot je meja za vsoto, lazji je
problem. Ce obstaja razbitje z mejno vsoto v, obstaja tudi pri meji v+ 1 (veljavno je isto razbitje).
In obratno, ¢e pri meji v ne obstaja, potem ne obstaja tudi pri v—1. IS¢emo mejo med situacijama,
kjer razbijte Se obstaja in kjer ne. To lahko pois¢emo z dvojiskim iskanjem. Pravzaprav delamo
dvojisko iskanje po moznih resitvah v in preverjamo, ali so sprejemljive.

Kako ugotovimo, ali obstaja veljavno razbitje pri neki mejni vsoti v? Poiskali bomo razbitje s ¢im
manj kosi, ki ne presegajo vsote v (vedno lahko dodamo kaksnega praznega, da jih bo toc¢no k).
Tega se lahko lotimo na pozresen nacin. Prvi kos naj bo najvecja predpona seznama, ki Se ne preseze
vsote v. To bo vedno vodilo do neke optimalne resitve. Recimo, da ne bi, in bi moral biti prvi kos
krajsi (daljsi o¢itno ne more biti). Potem bi lahko v tej predpostavljeni optimalni resitvi premaknili
nekaj elementov iz drugega kosa v prvega. Vemo, da je v prvem kosu Se prostor, z zmanjsevanjem
drugega kosa pa tudi ne pokvarimo resitve. Pozresno strategijo lahko torej uporabimo za dolocanje
vsakega kosa znova. Ce s tem nismo presegli k kosov, je mejna vsota v sprejemljiva, sicer pa ne.

Razmislimo Se o ¢asovni zahtevnosti opisanega postopka. Za dvojisko iskanje meje v bomo potre-
bovali O(logV') korakov. Za dolo¢anje sprejemljivosti posamezne meje pa O(n). To je skupaj
O(nlogV).

int partition(vector<int> a, int k) {
int total=0, largest=0;
for (int x : a) {
total+=x;
largest = max(largest, x);
}
int lo=largest-1, hi=total; // lo=infeasible, hi=feasible
while (lo+1<hi) {
int 1lim=(lo+hi)/2;
int sum=0, chunks=1;
for (int x : a) {
if (sum+x<=lim) sum+=x; // extend last chunk
else { chunks++; sum=x; } // start new chunk
}
if (chunks<=k) hi=lim;
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else lo=lim;
}
return hi;

¥

vector<int> a={12,8,3,5,4,13,5,3,7};
cout << partition(a, 3) << endl;
for (int k=1;k<=a.size();k++) {
cout << k << ": " << partition(a, k) << endl;

}

N
w

: 60
1 32
: 23
17
15
13
13
13
13
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1.2.3 K-ti element

V problemu izbire k-tega elementa (selection problem) imamo podan (neurejen) seznam n Stevil
ay,Gq,...,a,. Zanima nas, katero Stevilo je k-to po velikosti oz. bi bilo na k-tem mestu, ¢e bi
seznam uredili.

Seznam lahko uredimo in preverimo, kateri element konca na k-tem mestu. Casovna zahtevnost
je odvisna od ¢asa urejanja in je v splosnem O(nlogn). Smo lahko kaj bolj uc¢inkoviti? Vsakakor
moramo preveriti vseh n elementov, morda pa lahko izboljsamo faktor logn.

Ker bomo uporabili podoben prostop kot pri hitrem urejanju (quick sort), se algoritmu, ki ga bomo
opisali, rece hitro izbiranje (quick select). Izbrali bomo delilni element (pivot) in razdelili Stevila na
manjsa (ali enaka) in vedja. Naj bo manjsih Stevil m. Ce je k <= m, moramo k-tega iskati med
manjSimi. Sicer pa moramo med vecjimi poiskati (k —m)-tega.

Ob predpostavki, da nam seznami razpadajo na prbilizno enako velike skupine, bo pri¢akovana
¢asovna zahtevnost O(n+n/2+n/4+...) = O(n). S tem se strinja tudi krovni izrek pri b = 2,a =
1, f(n) =n (3. primer).

V C++ je ta funkcionalnost Ze na voljo kot funkcija nth_element iz knjiznice algorithm, ki delno
uredi seznam tako, da je n-ti element na pravem mestu, pred njim so samo manjsi ali enaki elementi,
za njim pa vecji ali enaki.

vector<int> v = {3,5,2,8,1,10,2,3,8,5,1};
nth_element(v.begin(), v.begin(O+4, v.end());
print(v);

sort(v.begin(),v.end());

print(v);
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1.2.4 Stetje inverzij

V seznamu n Stevil aq,a,, ..., a, je inverzija par indeksov i in j (i < j), za kateri velja, da sta
pripadajoci stevili v seznamu narobe urejeni (a; > a;). Zanima nas, koliko inverzij vsebuje podani
seznam? Seveda lahko preverimo vse pare indeksov, vendar ima to kvadratno ¢asovno zahtevnost.

Prilagodili bomo algoritem urejanja z zlivanjem (merge sort). Poleg urejanja podseznamov naj
funkcija izracuna Se Stevilo inverzij v njem (pred urejanjem). Recimo, da smo seznam razbili na
levo in desno polovico, ter rekurzivno resili manjsa problema. S tem smo dobili stevilo inverzij v
levi polovici in urejeno levo polovico, ter enako za desno polovico. Urejeni polovici znamo zliti v
urejeno celoto. Kaj pa inverzije?

Inverzije v levi in desni polovici sestejemo, vendar nam manjkajo Se tiste inverzije, kjer je eno
stevilo v levi, drugo pa v desni polovici. Za vsako stevilo x iz leve polovice bomo izracunali Stevilo
inverzij, v katerih nastopa - koliko je v desni polovici manjsih stevil od z? To lahko ucinkovito
izracunamo med zlivanjem obeh polovic. Recimo, da smo ze zlili [ stevil iz leve polovice in d iz
desne ter je naslednje na vrsti stevilo x iz leve polovice. Pred njim je v zlitem urejenem seznamu
ze d manjsih Stevil iz desne polovice, s katerimi je formiral inverzije in jih pristejemo k rezultatu.
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Dinamicno programiranje
December 18, 2024

1 Dinamicno programiranje

Dinami¢no programiranje je algoritmicen pristop, ki je podoben pristopu deli in vladaj. Tudi
pri uporabi dinamic¢nega programiranja bomo razbili problem na manjSe podprobleme, poiskali
optimalne resitve podproblemov in si z njimi pomagali pri resitvi zacetnega problema. Pomembne
lastnosti problema, pri katerem si lahko pomagamo z dinami¢nim programiranjem so:

e neodvisnost podproblemov: Posamezen podproblem lahko resujemo neodvisno od drugih pod-
problemov.

e optimalna podstruktura: Optimalna resitev problema vsebuje optimalne resitve podproble-
mov.

» prekrivanje/ponavljanje podproblemov: To je glavna lastnost, ki jo bomo izkoristili za
izboljsave in v ¢emer se pristop razlikuje od tehnike deli in vladaj.

Tehniko lahko enostavno povzamemo z nasvetom “ne racunaj enakih stvari veckrat”, v praksi pa
je kljub temu nekoliko bolj zapleteno - kako to doseci, katere stvari sploh so enake, ...

Pristop nima nobene veze z dinami¢no alokacijo pomnilnika. Poimenoval ga je njen avtor Richard
Bellman. “Programiranje” se nanasa na resevanje optimizacijskega problema, poodobno kot matem-
ati¢no programiranje/optimizacija. Pridevnik “dinami¢no” pa se nanasa na razli¢ne podprobleme.

#include <iostream>
#include <string>
#include <vector>
#include <algorithm>
using namespace std;

1.1 Fibonaccijevo zaporedje

Osnovno idejo dinamic¢nega programiranja si oglejmo na trivialnem primeru Fibonacijevega za-
poredja, ki je definirano rekurzivno kot: F, =0, F, =1, F, =F, |+ F, 5. Zanima nas n-to
stevilo v zaporedju. Pri vecjih n-jih bodo vrednosti zaporedja precej velike, vendar se s tem ne
bomo ukvarjali in bomo zadovoljni z rezultatom, ki je posledica preliva (overflow).

int fib(int n) {
if (n<=1) return n;
return fib(n-1)+fib(n-2);
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for (int n=0;n<10;n++) {

cout << n << ": " << fib(n) << endl;

}

0: 0
1: 1
2: 1
3: 2
4: 3
5: b
6: 8
7: 13
8: 21
9: 34

Vrednosti izgledajo pravilne. Hitro pa ugotovimo, da na ta nac¢in ne bomo mogli ra¢unati vrednosti
ze za malo vecje n-je. Tezava je v eksponentni velikosti drevesa rekurzivnih klicev. Listov tega
drevesa, kjer je rezultat funkcije 1, je natanko F),. Poleg tega pa imamo Se liste z vrednostjo 0 in
vsa notranja vozlis¢a. Skratka, ogromno Stevilo vozlis¢ oz. klicev funkcije.

//cout << fib(100) << endl; // prepocast

Opazimo lahko, da se bo funkcija izvedla veckrat z istim argumentom n. Ce se nismo kje zmotili,
bi moral imeti vsak tak klic funkcije tudi enak rezultat. Rezultat si lahko ob prvem klicu funkcije
shranimo, v kasnejsih klicih pa ga samo vrnemo. To je pristop od zgoraj navzdol (top-down),
ki je znan tudi pod imenom memoizacija (memoization, brez “r”). Funkcija se bo torej za vsak
mozen argument izvedla natanko enkrat, ob ostalih klicih pa bo takoj vrnila vrednost, ¢esar niti ne
bomo $teli kot klic funkcije. Stevilo klicev funkcije bo torej O(n), ¢as izvedbe posameznega klica

funkcije pa O(1). Resitev ima ¢asovno in prostorsko zahtevnost O(n).

Za ugotavljanje, ali je bil nek podproblem zZe resen ali ne, lahko v tem primeru izkoristimo kar
vrednost 0, saj bomo kot izracunane rezultate vpisovali samo vecja Stevila. V splosnem pa bi lahko
imeli eno tabelo, ki bi nam povedala, ali je bil nek podproblem ze reSen, ter drugo tabelo, ki bi
hranila dejanske rezultate. Zaradi enostavnosti bomo uporabili dovolj veliko fiksno tabelo dovolj.
Namesto tega bi lahko uporabili katerokoli implementacijo slovarja, ki bi imel kot klju¢ argumente,
ki predstavljajo opis podproblema, za pripadajoco vrednost pa njegovo resitev.

const int N=10000;
int memo[N+1]; // memoizactijska tabela

int fib2(int n) {
if (n<=1) return n;
if (memo[n]'!=0) return memo[n];
memo [n]=fib2(n-1)+fib2(n-2);
return memo [n];

¥

Ce smo malo bolj sistemati¢ni, lahko resujemo podprobleme v takem vrstnem redu, da imamo
resitve manjsih podproblemov vedno ze resene, ko jih potrebujemo. Podprobleme bomo torej
resevali od manjsih proti vecjim, kar v tem primeru pomeni od manjsih proti ve¢jim n-jem. Takemu
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reSevanju re¢emo od spodaj navzgor (bottom-up). Casovna in prostorska zahtevnost sta enaki
kot v prejsnjem primeru, le da sta Se bolj ocitni.

int fib3[N+1];

£ib3[0]=0;

£ib3[1]1=1;

for (int n=2;n<=N;n++) fib3[n]=fib3[n-1]1+fib3[n-2];
cout << £ib3[100] << endl; // overflow

cout << fib3[10] << endl;

-980107325
55

Zaradi sistemati¢nosti pa smo lahko malo bolj prostorsko uc¢inkoviti. Vedno namre¢ potrebujemo
rezultate samo zadnjih dveh izrac¢unanih problemov. Tako lahko prostorsko zahtevnost zmanjsamo

na O(1).

int fib4(int n) {
int £2=0, f1=1;
for (int i=2;i<=n;i++) {
int fi=f1+£f2;

f2=£f1;
f1=£fi;
}
return f1;

}
cout << fib4(10) << endl;

55

1.2 Zabji skoki

Vzdolz potoka gleda iz vode n skal na koordinatah x; < x4 < ... < ,,. Zabec sedi na prvi skali in
bi rad z zaporedjem skokov po skalah prispel do zadnje skale. V enem skoku lahko sko¢i najmanj
a in najve¢ b enot dale¢ v smeri proti cilju. Kaksno je najmanjse stevilo skokov, ki jih potrebuje
za to?

Ce je a = 0, smo ze v poglavju o pozresnih algoritmih na podobnem problemu ugotovili, da lahko
z vsakim skokom skoc¢i do najbolj oddaljene skale, ki jo se doseze, in bo s tem minimiziral Stevilo
svojih skokov. Vpeljava spodnje meje dolzine skoka pa problem zakomplicira.

Ce razmisljamo rekurzivno, se bo zabec v prvem skoku premaknil na neko skalo x;, ki je oddaljena
med a in b od skale ;. Ce take skale sploh ni, pot do cilja ne obstaja. Za to je porabil en skok, nato
pa se mora v ¢im manjSem Stevilu skokov premakniti s skale z,; do cilja. Definirajmo podproblem
f(i) kot najmanjse Stevilo skokov, ki ga zabec potrebuje, da pride na cilj z i-te skale:

° f(Z) = minj>i: agwjfa:igb (1 + f(]))

Ocitno bo prislo do ponavljanja podproblemov. Do neke skale lahko Zzabec pride na ve¢ nacinov,
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ampak za optimalno pot od tam do cilja je povsem nepomembno, kako je do tja prisel. Pomembno je
samo, na kateri skali se nahaja. Zato si lahko resitev shranimo in jo kasneje po potrebi uporabimo,
ne da bi jo racunali ponovno. Lahko pa bi probleme resevali tudi sistemati¢no po principu od
spodaj navzgor, kar v tem primeru pomeni od skal blizje cilju proti tistim blizje zacetku.

Resiti moramo O(n) podproblemov, za resitev vsakega od njih pa moramo preveriti O(n) moznosti
za naslednji skok. Casovna zahtevnost je O(n?), prostorska pa O(n).

const int inf=1e9;
int a=3, b=4;
int mem_jump[1000];

int jump(int i, vector<int> &x) {
int n=x.size();
if (i==n-1) return 0;
if (mem_jump[i] !=0) return mem_jump[i];
int best=inf;
for (int j=i+1;j<n;j++) {
int d=x[j]-x[i];
if (a<=d && d<=b) best=min(best, 1+jump(j,x));
}
mem_jump [i]=best;
return best;

vector<int> x = {0,3,4,6,10};
cout << jump(0,x) << endl;

3

1.3 Rezanje palice

Pri problemu rezanja palice (rod cutting) imamo podano palico dolzine n, ki jo Zelimo razrezati na
manjse kose in te kose prodati posamicno za ¢im vecjo skupno ceno. Dolzina palice in dolzine kosov
morajo biti celostevilske. Podano imamo tabelo cen ¢, v kateri nam ¢-to Stevilo ¢; pove, za kaksno
ceno bomo lahko prodali palico dolzine . Daljsi kot je kos, za vec¢jo ceno ga bomo lahko prodali:
veljalo bo ¢; < ¢;, ;. KakSen je najvecji mozen izkupicek od prodaje razrezane palice?

Oglejmo si primer s spodnjo tabelo cen:
)

1

2
3
4
5
6
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Naj bo dolzina palice n = 8:

+ Ce razrezemo palico na kose dolzine 1, bomo zanjo dobili n - ¢; = 16.

« Ce pustimo palico celo, dobimo zanjo cg = 20.

« Ce jo razrezemo na dva kose dolzin 2 in 6, pa bomo dobili ¢, + cg = 21.

« Ce jo razrezemo na dva kose dolzin 1, 2 in 5, bomo dobili ¢; + ¢y + ¢5 = 22.

Rekurzivni razmislek o zasluzku f(n) pri optimalnem rezanju palice dolzine n nam pove, da bomo
morali izbrati dolZino prvega reza. Ce je palica dolZine n, si moramo izbrati enega od rezov dolzine
x < n (s ¢imer zasluzimo c¢,) ter optimalno zrezati preostanek palice dolzine n — z. Ker ne vemo,
katera dolzina reza bo najboljsa, rekurzivno preverimo vse. Uporabimo tokrat pristop od spodaj
navzgor in izracunajmo zasluzke za vedno daljSe palice: f(n) = max,, f(n —z) +c,.

[13]: vector<int> ¢ = {0,2,5,6,9,15,16,17,20%};
int N=8;
int £[1000];
£[0]1=0;
for (int n=1;n<=N;n++) {
f[n]=0;
for (int x=1;x<=n;x++) {
f[n]=max(f[n], fln-x]+clx]);

}

cout << f[N] << endl;

22
Casovna zahtevnost algoritma je O(n?), prostorska pa O(n).

Razmislimo Se o rekonstrukciji resitve. Katere reze je treba narediti, da dosezemo optimalno
ceno? Za vsak podproblem pois¢emo potezo, ki je vodila do optimalnega rezultata. Druga moznost
pa je, da si Ze ob reSevanju podproblema shranimo optimalno potezo: npr. v dodatni tabeli g(n)
bi lahko hranili z, pri katerem funkcija f(n) doseze svoj maksimum.
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int n=N;
while (n>0) {
for (int x=1;x<=n;x++) {
if (f[nl==f[n-x]+c[x]) {

cout << x << ": " << ¢[x] << endl;
n-=x;
break;
+
}
+
1: 2
2: 5
5: 15

1.4 Pot v mrezi

V labirintu visine A in Sirine w oz. tabeli znakov ’, ki predstavljajo prosto polje in ‘#’, ki pred-
stavlajo blokirano polje, nas zanima, na koliko nac¢inov lahko pridemo iz levega-zgornjega kota v
desni-spodnji kot, pri ¢emer se lahko premikamo samo desno in navzdol. V spodnjem primeru
obstajajo tri take poti.

Rekurzivno bi problem resevali tako, da bi se s trenutne celice poskusili premakniti desno in navzdol
(Ce sta oba premika sploh mozna) in sesteli mozne poti do cilja iz nove lokacije (sosednje celice).
Dosedanji problemi so imel eno-dimenzionalen opis podproblema, kjer smo podproblem opisali z
eno spremenljivko. Tokrat pa podproblem opiSemo z dvema dimenzijama - vrstico in stolpcem
celice. Ce je polje zasedeno ali se nahaja izven mreZe, je Stevilo poti do cilja enako 0, sicer pa velja
fli,5) = fi+1,5) + f(i,7+ 1). Robni pogoj v desnem-spodnjem kotu je f(h—1,w—1) = 0.

Podprobleme lahko resujemo sistemati¢no po vrsticah od spodaj navzgor in znotraj vrstice od desne
proti levi. Tako imamo potrebne resitve podproblemov vsaki¢ ze na voljo. Casovna in prostorska
zahtevnost sta O(hw).

vector<string> lab = {".#....",
P RN
L S SR
D oo "};
int h=lab.size(), w=1labl[0].size();
int £[10] [10];
memset (f,0,sizeof (£f));
for (int i=h-1;i>=0;i--) {
for (int j=w-1;3j>=0;j--) {
if (i==h-1 && j==w-1) £[il[jl1=1;
else if (lab[i][jl=='#') £[i]l[j1=0;



else f[i] [jI1=f[i+11[jI1+£[i][j+1];

}
cout << f[0][0] << endl;

4

Prostorsko zahtevnost bi lahko izboljsali na O(w), ker pri ra¢unanju vrednosti f(,*) potrebujemo
samo Ze izra¢unane rezultate desno v isti vrstici f(7,*) in eno vrstico nizje f(i + 1, *).

1.5 Najdaljse skupno podzaporedje

Pri problemu najdaljSega skupnega podzaporedja (longest common subsequence, LCS) nizov S in T
(dolzine n in m), i8¢emo najdaljsi niz LCS(S, T'), ki se pojavi kot podzaporedje (ne nujno podniz)
v S in v T. Oglejmo si primer S = ABCBDAB in T = BDCBBA, kjer je eno izmed najdaljsih
skupnih podzaporedij LCS(S,T) = BCBA dolzine 4.

Drugacen pogled na isti problem je poravnava obeh nizov, da se pri tem ¢im ve¢ znakov ujema.

AB CB DAB
BDCBB A

Rekurzivni razmislek je sledec:

« Ce se oba niza za¢neta z enakim znakom, je ta znak lahko zacetek LCS-ja, preostanek pa je
LCS za en znak krajsih nizov.

« Ce se niza razlikujeta v prvem znaku, potem vsaj en od teh dveh znakov ne bo del LCS-ja.
Preizkusimo obe moznosti in resimo problem z nizoma, kjer je en malo krajsi.

Naj bo LCS(i, j) najdaljsi skupni podniz nizov S;5;,; ... S, in T;T; 4 ...T,, ;:

(3 m—

1+LCS(i+1,5+1) ¢ S; =T,
LCS(4, j) = max < LCS(i + 1, )
LCS(i,j + 1)

Robni primeri pa so LCS(n,*) = 0 in LCS(x,m) = 0.

Problem lahko resujemo sistemati¢no od vecjih proti manjsim i-jem in enako za j. ReSujemo torej
probleme z vedno dalj$imi priponami nizov S in T'. S tem pravzaprav izpolnjujemo 2D tabelo od
desnega spodnjega kota proti levemu zgornjemu, tako da izberemo veéjo od spodnje in desne celice.
Ce sta zacetna znaka enaka, pa upostevamo e diagonalen rezultat povecan za 1. Dokazemo lahko
tudi, da bo ta diagonalna poteza vedno optimalna, ¢e je na voljo.

[18]: string LCS(string s, string t) {

int n=s.size(), m=t.size();

int lcs[n+1] [m+1]; // dodatna vrstica in stolpec nicel

memset (1lcs,0,sizeof (1cs));

for (int i=n-1;i>=0;i--) {

for (int j=m-1;j>=0;j--) {

lcs[il [jl=max(lcs[i+11[j], lcs[il[j+11);
if (sl[il==t[j1) lecsl[i] [jl=max(lcs[i]l[j], 1+lcs[i+1][j+11);



}
// tzpis izracunane tabele
for (int i=0;i<n;i++) {
for (int j=0;j<m;j++) {
cout << les[i][j] << '"\t';
}
cout << endl;
}
// rekonstrukcija
string 1="";
int i=0, j=0;
while (i<n && j<m) {
if (Qes[il[j]==1lcs[i+1]1[j]) i++;
else if (lcs[il[jl==1lcs[il[j+1]1) j++;
else { l+=s[i]; i++; j++; }

}

return 1;
}

[19]: string 1 = LCS("ABCBDAB", "BDCBBA");

cout << "LCS = " << 1 << endl;
4 3 3 3 2 1
4 3 3 3 2 1
3 3 3 2 2 1
3 2 2 2 2 1
2 2 1 1 1 1
1 1 1 1 1 1
1 1 1 1 1 0
LCS = BCBA

Casovna in prostorska zahtevnost sta O(nm). Problem lahko re$ujemo tudi v obratni smeri od
konca proti zacetkom nizov, kjer se vprasamo, kaj se bo zgodilo z zadnjima znakoma obeh nizov
(namesto prvima), kar boste pogosto videli v drugih virih.

Kako pa bi problem resili za tri nize? LCS(S,T,U) namre¢ ni enak LCS(LCS(S,T),U)! Stanje
bi opisali s trojico indeksov LCS(i, j, k) in obravnavali primere podobno kot za dva niza. Ce velja
S; = T; = Uy, je ta znak lahko del LCS-ja, sicer pa vsaj en izmed njih ne bo in lahko enega od
nizov skrajSamo.

Soroden problem je iskanje najdaljSega skupnega podniza (ne podzaporedja; longest common sub-
string), kjer mora biti pojavitev podniza strnjena v obeh nizih. Ta problem ima drugacne in bolj
uéinkovite resitve.

1.6 Nahrbtnik

Problem nahrbtnika (knapsack, backpack) je Se en klasien primer uporabe dinamicnega programi-
ranja. Podan imamo nabor n predmetov, za katere poznamo njihove teze ¢, in vrednosti v; (oboje
so cela $tevila). Izbrali bi radi neko podmnozico S teh predmetov, ki bo imela ¢im veéjo vrednost
(}:ESQQinjﬂ1bomo]ahh)ﬂﬁaﬂh\/nﬁnbmﬁkz mmﬂmﬁﬁofT(E:ES%-g T). Problemu se

8
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natancneje rece 0-1 nahrbtnik, ker vsak predmet vzamemo v celoti ali pa ga pustimo, ne moremo
pa vzeti samo dela predmeta.

V rekurzivni resitvi bi se lahko za vsak predmet odli¢ili, ali ga bomo vzeli ali ne. Ce ga vzamemo,
imamo za preostale predmeta na voljo nekoliko manjso nosilnost. Podproblem torej opiSemo z
dvema atributoma.

« Nabor predmetov, za katere se moramo e odlo¢iti, kaj bomo z njimi. Ce smo sistemati¢ni,
se lahko o vkljucenosti predmetov odlocamo po vrsti od prvega do zadnjega.
e Nosilnost nahrbtnika, ki je na voljo za preostale predmete.

Naj bo f(i,z) najvecja vrednost, ki jo lahko dobimo v nahrbtniku z nosilnostjo z, ¢e lahko vanj
dodajamo predmete 7, i+1, ..., n. Obravnavamo dva primera, glede na (ne)uporabo i-tega predmeta.
Robni primer je f(n,*) =0 (¢e nam zmanjka predmetov, lahko dobimo samo vrednost 0).

. {f(z +1,z) ne uporabimo i-tega predmeta
fli,x) = max 97 . o
f+1,z—t,)+wv; ¢&ejet, <z, lahko uporabimo i-ti predmet

Casovna zahtevnost je O(nT). Ce nimamo meje za T, vemo, da teza predmetov ne bo presegla
> t,. Ta resitev z dinamiénim programiranjem izkoris¢a majhne celostevilske teze predmetov in
nosilnost nahrbtnika. Ce bi bile teZe in vrednosti neka realna $tevila, postane problem izrazito
tezji (NP-tezek). V tem primeru imajo razlicne kombinacije predmetov razliéne teze in vrednosti,
zato se nam podproblemi ne bi ponavljali. V primeru celih Stevil pa so bile te vrednosti samo
z omejenega intervala celih stevil. Ceprav obstaja O(2") podmnozic, je na razpolago samo O(T)
razlicnih nosilnosti nahrbtnika.

const int n = 4;

const int nosilnost = 40;

vector<int> teza = {30,10,40,20%};
vector<int> vrednost = {10,20,30,40};

int f[n+1] [nosilnost+1];

memset (f,0,sizeof (f));

for (int i=n-1;i>=0;i--) {

for (int x=0;x<=nosilnost;x++) {
flil[x] = £[i+11[x]; // me uporabimo i-tega predmeta
if (tezalil<=x) { // poskusimo uporabiti i-ti predmet
f[i] [x] = max(£f[i] [x], vrednost[i]l+f[i+1] [x-tezal[il]l);

+

}

cout << f[0] [nosilnost] << endl;
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Grafi
December 18, 2024

1 Grafi

Graf G je abstraktni podatkovni tip, ki ga sestavljata mnozica vozliS¢ (nodes, vertices, points)
V' in mnozica povezav (edges, links) E, ki predstavljajo relacije med pari vozlis¢. Vozliséema, ki
sestavljata povezavo, reCemo krajisci (endpoints). Vozlis¢a in povezave lahko hranijo tudi kaksne
dodatne lastnosti.

Obicajne operacije, ki jih Zelimo izvajati na grafu so:

+ dodajanje/odstranjevanje vozlis¢a/povezave
 nastavljanje/ugotavljanje lastnosti vozlis¢a/povezave
o ugotavljanje sosednosti dveh vozlis¢

 iskanje vseh sosednjih vozlis¢

Kadar z grafom modeliramo nek resnicen pojav ali proces, namesto grafa pogosto uporabimo izraz
omrezje (network). Grafe lahko uporabimo za modeliranje Stevilnih procesov, kot so razna druzbena
ali komunikacijska omrezja, omrezja soavtorstev ali celo bioloska omrezja, ki modelirajo razne
kemijske procese. Mi pa se bomo ukvarjali samo s strukturami brez njihovega ozadja, torej z grafi.

1.1 Terminologija

Glavni lastnosti grafa sta stevilo vozlis¢ n = |V| in Stevilo povezav e = |E| (za Stevilo povezav
bomo v¢asih uporabljali tudi m).

Poznamo vec¢ vrst grafov glede na njihove lastnosti:

o Neusmerjeni (undirected) grafi vsebujejo same neusmerjene povezave, ki predstavljajo
simetricne relacije, kjer vrstni red krajis¢ ni pomemben, npr. med dvema bratoma. Us-
merjeni (directed) grafi (digraphs) pa so sestavljeni iz usmerjenih povezav, ki predstavljajo
asimetri¢no relacijo, npr. od otroka k starsu. Te obic¢ajno ponazorimo z puscicami.

o Glede na lastnost povezav lo¢imo med neutezenimi (unweighted) in utezenimi (weighted)
grafi. V neutezenih grafih so vse povezave enakovredne, v utezenih pa vsaki povezavi prired-
imo neko numeri¢no vrednost, ki ji recemo utez, in lahko predstavlja npr. dolzino, ceno,

o Enostavni (simple) grafi ne vsebujejo zank (loop), ki povezujejo vozlisée s samim seboj, in
vzporednih povezav (multiple/parallel edges) med istimi pari vozlisc.

 Glede na prisotnost ciklov v grafih poznamo acikli¢ne (acyclic) in cikli¢ne (cyclic) grafe.

o Grafe precej grobo locujemo tudi po razmerju med Stevilom povezav in Stevilom vozlis¢. V
gostih (dense) grafih je Stevilo vozlis¢ velikostnega reda, ki je blizu maksimalnemu Stevilu
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moznih povezav, e = O(n?). V redkih (sparse) grafih pa je Stevilo povezav linearno odvisno
od stevila vozlis¢ e = O(n).

Oglejmo si se nekaj drugih terminov povezanih z grafi:

Tako kot pri drevesih, tudi v grafih poznamo stopnjo (degree) vozlis¢a, ki je enaka Stevilu
povezav, ki vkljucujejo to vozlisée. Ce govorimo o stopnji grafa (kar bomo oznacevali z d),
pa mislimo najvecjo stopnjo njegovega vozlis¢a. V usmerjenih grafih lo¢ujemo vhodno in
izhodno stopnjo (indegree/outdegree), ki sta Stevilo povezav, ki kazejo v vozlis¢e oz. izven
njega.

Dve vozlisci sta sosednji (adjacent) oz. soseda, ¢e ju povezuje katera izmed povezav v grafu.
Mnozici sosednjih vozlis¢ izbranega vozliséa recemo tudi soseséina (neighbourhood).

Poleg Ze omenjenih splosnih vrst grafov, poznamo tudi ve¢ razredov grafov, ki imajo podobne
strukturne lastnosti. Poznamo:

drevesa (trees), ki so v kontekstu novih terminov pravzaprav acikliéni povezani neusmerjeni
graf

polne grafe (complete graph), ki vsebujejo vse mozne povezave

regularne grafe (regular graph), v katerih imajo vsa vozlis¢a enako stopnjo

dvodelne grafe (bipartite graph), ki so sestavljeni iz dveh skupin vozlis¢, povezave pa
potekajo samo med obema skupinama

Na grafih nas pogosto zanimajo premiki med sosednjimi vozliSci:

1.2

Sprehod (walk) je poljubno zaporedje vozlisé, med katerimi se premikamo po povezavah v
grafu. Ce obstaja sprehod med dvema vozlis¢ema, bomo rekli, da sta povezani. Spomnimo
se, da ce sta povezani neposredno z eno samo povezavo, jima recemo tudi sosednji.

Obhod (closed walk) je sprehod, ki se zacne in konc¢a v istem vozliscu.

Steza (trail) je sprehod brez ponovljenih povezav.

Pot (path) je sprehod brez ponovljenih vozlis¢é. Uporablja se nekoliko nekonsistentno, npr.
za sprehod. V nekaterih primerih pa je to celo nepomembno - najkrajSa pot v pozitivno
utezenem grafu bo zagotovo pot in ne sprehod, kjer bi se kaj ponavljalo.

Cikel (cycle) je obhod brez ponovljenih vmesnih vozlis¢ (z izjemo zacetnega in konc¢nega, ki
sta enaka).

V anglescini se pojavlja tudi termin tour, ki pa nima poenotene definicije (npr. knight’s tour,
Euler tour). Obic¢ajno pomeni, da zaporedje premikov obisce celoten graf (npr. vsa vozlisca,
vse povezave) ob moznih dodatnih omejitvah (npr. vsako povezavo samo enkrat, vrne se na
izhodisce).

Predstavitve

Strukturo grafa, ki jo definirajo vozlis¢a in povezave, moramo nekako predstaviti oz. shraniti, da
bomo lahko na njej izvajali kaksne izracune. Glede na funkcionalnost, ki jo potrebujemo, poznamo
tri pogoste nacine predstavitve grafov. Ce je treba, pa si lahko pomagamo kar z veé¢ razli¢nimi
predstavitvami socasno.

#include <itostream>

#include <fstream>
#include <vector>



#include <queue>
#include <algorithm>
using namespace std;

typedef pair<int,int> PII;

typedef vector<int> VI;

typedef vector<pair<int,int>> VII;
typedef vector<vector<int>> VVI;

[2]: | template<typename T>
void print(const vector<T> &sez) {
for (T x : sez) cout << x << " ",
cout << endl;

o Seznam povezav (edge list) je najbolj enostavna predstavitev. Vse povezave v grafu pre-
prosto shranimo v seznam. Ta predstavitev bo primerna, ¢e zelimo obravnavati vse povezave
ne glede na vrstni red.

[3]: VII read_graph(string fname, int &n, int &m) {
ifstream fin(fname);
fin >> n >> m;
vector<PII> povezave;
for (int i=0;i<m;i++) {
int a,b;
fin >> a >> b;
povezave.push_back({a,b});
}
fin.close();
return povezave;

[4]: int n,m;
vector<PII> povezave = read_graph('"graph.txt",n,m);
for (auto [a,b] : povezave) cout << '(' << a << ',;!' << b << ") <<y
cout << endl;

(0,1) (0,4) (1,3) (1,4) (1,5 (1,7) (2,3) (2,5) (4,5) (6,7)

o Seznam sosedov (adjacency list) hrani za vsako vozlis¢e seznam njegovih sosedov. Kadar
se premikamo po grafih od enega vozliséa k drugemu, nam to pride zelo prav.

[6]: VVI adjacency_list(VII &edge_list, int n, bool dir=false) {
vector<VI> adj(n);
for (auto [a,b] : edge_list) {
adj[a] .push_back(b) ;
if (!dir) adj[b].push_back(a);
}

return adj;
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[7]:

[8]:

vector<VI> sosedi = adjacency_list(povezave, n);
for (int i=0;i<n;i++) {

cout << i << " "y,

print(sosedilil);
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Matrika sosednosti (adjacency matriz) je namenjena ucinkovitemu preverjanju sosednosti

dveh vozlis¢. Sestavimo namre¢ matriko M, kjer na mestu M, , hranimo informacijo o
b

prisotnosti ali tezi povezave med vozliS¢ema z in y.

VVI adjacency_matrix(VII &edge_list, int n) {
vector<VI> mat(n, vector<int>(n));
for (auto [a,b] : edge_list) {
mat [a] [b] 1;
mat [b] [a] 1;

¥

return mat;

vector<VI> sosednost = adjacency_matrix(povezave, n);
for (int i=0;i<n;i++) {
print (sosednost[i]);

}
01001000
10011101
00010100
01100000
11000100
01101000
00000O0OO01
01000010

Predstavitev s seznami povezav ali sosedov bi lahko nadgradili z uporabo mnozic. Namesto v
seznamu hranimo povezave ali sosede v mnozicah, ki so implementirane z razprseno tabelo ali
kaksno uravnotezene drevesno strukturo.

Omenjene predstavitve imajo svoje prednosti in slabosti. Primerjajmo jih med seboj glede na
prostorsko zahtevnost in ¢asovne zahtevnosti nekaterih operacij na enostavnih grafih.



seznam povezav
seznam sosedov
matrika sosednosti
Prostorska zahtevnost
O(e)

O(n+e)

O(n?)

Dodajanje povezave
0(1)

0(1)

0(1)

Brisanje povezave
O(e)

O(n)

0(1)

Dodajanje vozlisca
0(1)

0(1)

O(n?)

Brisanje vozlisca
O(e)

O(e)

O(n?)

Sosednost vozlis¢
O(e)

O(n)

o(1)

1.3 Preiskovanje grafov

Preiskovanje grafa (graph traversal/search) je sistematicen postopek, ki obis¢e vsa vozlis¢a grafa v
nekem vrstnem redu. Poznamo dve pogosti vrsti preiskovanj.



1.3.1 Preiskovanje v Sirino (breadth-first search, BFS)

Preiskovanje v Sirino preiskuje vozliséa podobno kot nivojski obhod v drevesih, le da se izogiba
povezavam, ki vodijo do ze obiskanih vozlis¢. Najprej obisce zacetno vozlisce, nato njegove sosede,
njihove sosede, itd.

[9]: void BFS(int x, vector<VI> &adj, vector<int> &vis, vector<int> &seq) {
queue<int> q;
q.push(x); vis[x]=1;
while (!q.empty()) {
x=q.front(); q.popQ);
seq.push_back(x);
for (int y : adjlx]) if (vislyl==0) {
q.push(y); visl[yl=1;
}

}

[10]: lvector<int> visB(n), seqB;
BFS(0,sosedi,visB,seqB);
print(seqgB);

01435726

Iskanje v Sirino ima to lepo lastnost, da obiskuje vozliséa po nivojih od blizjih proti bolj oddaljenim.
Z minimalno prilagoditvijo ga lahko uporabimo za racunanje najkrajsih poti iz zacetnega vozlisca
do vseh ostalih vozlis¢ v neutezenem grafu, kjer je dolzina poti definirana s Stevilom povezav na
njej!

1.3.2 Preiskovanje v globino (depth-first search, DFS)

Preiskovanje v globino je podobno prememu obhodu v drevesu, ki se izogiba povezam do ze
obiskanih vozlis¢. Najprej obisce zacetno vozlisce. Nato izvede preiskovanje v globino na prvem
otroku. Ko se to zakljuci in ¢ée drugi otrok Se ni bil obiskan, izvede preiskovanje v globino Se iz
drugega otroka itd.

[11]: void DFS(int x, vector<VI> &adj, vector<int> &vis, vector<int> &seq) {
seq.push_back(x);
vis[x]=1;
for (int y : adjlx]) if (vislyl==0) {
DFS(y, adj, vis, seq);
}
}

[12]: vector<int> visD(n), seqD;
DFS(0,sosedi,visD,seqD);
print (seqD);

0132547€6
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Oba opisana postopka obisceta samo del grafa, ki je dosegljiv iz zacetnega vozlisca. Tej mnozici
vozlis¢ v neusmerjenem grafu, ki so vsa povezana med seboj, re¢emo povezana komponenta
grafa (connected component). Za iskanje povezanih komponent lahko uporabimo kateregakoli od
omenjenih postopkov za preiskovanje.

Prostorska zahtevnost obeh preiskovanj je O(n). Casovno zahtevnost bi lahko ocenili z O(n?),
vendar smo lahko bolj natanéni z O(e), ker bomo vsako povezavo obravnavali najve¢ dvakrat
(enkrat iz vsakega krajisca).

Drevo preiskovanja v globino Tudi iskanje v globino ima svoje lepe lastnosti. Prva je jedr-
natost. Druga pa je v strukturi povezav, ki jih postopek obiS¢e med preiskovanjem. Prehojene
povezave bodo imele obliko drevesa (to sicer velja tudi za iskanje v Sirino). Poleg tega pa bodo vse
ostale povezave v grafu vedno povezovale vozlis¢a z nekim svojim prednikom (back-edge) ali potom-
cem (forward-edge) v drevesu. Nemogoce je, da bi obstajala povezava med dvema poddrevesoma
(cross-edge). Razmislite, zakaj je temu tako. To lastnost izkoris¢ajo pomembni algoritmi za iskanje
mostov, prereznih vozlis¢ in mocno povezanih komponent. Razmislite tudi, kaksne povezave lahko
nastopajo v drevesu preiskovanja v globino na usmerjenem grafu.

1.4 Detekcija ciklov

Podan imamo graf, za katerega ne vemo, ali vsebuje kaksen cikel ali ne. Ugotovili bi radi prisotnost
cikla in tudi nasli konkreten primer cikla v grafu. Problem se nekoliko razlikuje med neusmerjenimi
in usmerjenimi grafi. Ce bi vsako neusmerjeno povezavo modelirali z dvema nasproti usmerjenima,
bi vsaka povezava predstavljala cikel, ¢esar no¢emo.

Oglejmo si najprej primer neusmerjenega grafa. Pri razmisleku nam bo prav prislo drevo preisko-
vanja v globino. Cikel bo v tem drevesu izgledal tako, da bo obstajala povezava med dvema
vozlis¢ema, ki imata relacijo prednik-potomec. To povezavo bomo pri preiskovanu v globino nasli
takrat, ko bomo obravnavali neko vozlis¢e = in nasli povezavo do nekega zZe obiskanega prednika y.
Vozlisca na poti od x proti y bodo formirala cikel, ker med njima obstaja pot po drevesu poleg tega
pa Se novo odkrita direktna povezava. Prav nam bo prislo, ¢e bi drevo preiskovanja v globino hranili
v obliki tabele starsev za vsako vozlisée. Ce je ta vrednost nenastavljena (npr. -1), je vozlisce Se
neobiskano, koren pa naj ima za starsa kar samega sebe. Tako lahko za izgradnjo cikla preprosto
sledimo tem starsevskim povezavam od x do y.

int cycle(int x, vector<VI> &adj, vector<int> &par, vector<int> &cyc) {
if (par[x]==-1) par[x]=x;
for (int y : adjlx]) if (y!=par[x]) {
if (parlyl!=-1) { // cikel
for (int z=x; z!=y; z=par[z]) cyc.push_back(z);
cyc.push_back(y);

return 1;
}
par [yl=x;
if (cycle(y,adj,par,cyc)) return 1;
}
return O;
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[15]:

[16]:

[17]:

vector<int> vis(n), par(n,-1), cyc;
cout << cycle(0,sosedi,par,cyc) << endl;
print(cyc);

1
5231

V usmerjenem grafu je situacija nekoliko druga¢na. Povezave na ciklu morajo kazati v isto smer. Ce
ponovno razmislimo o situaciji na drevesu preiskovanja v globino, bo cikel tudi tu nastal s povezavo
od nekega vozliséa x do njegovega prednika y. Povezave iz vozlis¢a x do nekega drugega dela
drevesa, ki je ze bil obiskan, ne vzpostavijo cikla zaradi usmerjenosti. Poleg obiskanosti vozlis¢
bomo hranili Se informacijo o vozlis¢ih na poti od korena do trenutnega vozlis¢a. S tem lahko
ucéinkovito ugotovimo, ali je vozlis¢e prednik z-a. Pri sestavljanju cikla bomo zaradi premikanja
proti prednikom cikel sestavili v obratnem vrstnem redu.

int cycleDir(int x, vector<VI> &adj, vector<int> &par, vector<int> &path,,
wvector<int> &cyc) {

if (par[x]==-1) par[x]=x;

path[x]=1;

for (int y : adjlx]) if (y!=par[x]) {

if (pathl(yl) { // prednik (cikel)

for (int z=x; z!=y; z=par[z]) cyc.push_back(z);
cyc.push_back(y);
reverse(cyc.begin(), cyc.end());

return 1;
}
if (parl[yl==-1) { // neobiskano
par [yl=x;
if (cycleDir(y,adj,par,path,cyc)) return 1;
}
}
path[x]=0;
return O;

3

Za testiranje si bomo izposodili spodnji usmerjeni graf z dodatno povezavo 5 — 4, da ustvarimo
cikel. Paziti moramo tudi na to, od kod za¢nemo iskanje. Ce cikel ni dosegljiv iz zacetnega vozlisca,
ga ne bomo nasli. V tem primeru bi morali zaceti iskanje na novo iz nekega neobiskanega vozlisca,
dokler niso obiskana vsa in Sele takrat lahko zagotovimo, da cikla ni.

povezave = read_graph("directed.txt",n,m);
povezave.push_back({5,4});
vector<VI> sosediDir = adjacency_list(povezave, n, true);

vector<int> visDir(n), parDir(m,-1), path(n), cycDir;
cout << cycleDir(2,sosediDir,parDir,path,cycDir) << endl;
print(cycDir);

1
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1.5 Topolosko urejanje

Naj usmerjeni graf predstavlja medsebojne odvisnosti izvedbe opravil. Vozlis¢a ustrezajo opravilom,
povezava x — y pa pomeni, da je treba opravilo x izvesti pred opravilom y. V kaksnem vrstnem
redu naj izvajamo opravila, da bomo lahko izvedli vsa oz. je to sploh mogoce?

Topoloski vrstni red vozlis¢ v usmerjenem grafu je tak vrstni red, da vse povezave v grafu kazejo od
zgodnejsega proti kasnejSemu vozlis¢u v topoloskem vrstnem redu. Topoloski vrstni red ni enoli¢en.
Za zgornji primer bi bil mozen topoloski vrstni red npr. [4,0,2,3,1,6,5]. Ker v grafu nastopa
povezava 0 — 5, se v topoloskem vrstnem redu 0 pojavi pred 5. Preverimo lahko, da to velja za
vse povezave.

povezave = read_graph("directed.txt",n,m);
sosedi = adjacency_list(povezave, n, true);
for (int i=0;i<n;i++) {

cout << i << ": "y

print (sosedil[i]);

+

0: 135
1: 5
2: 3
3: 16
4: 0 3
5:

6:

Razmislimo o algoritmu za izgradnjo topoloskega vrstnega reda. Vozlisc¢a brez predhodnikov lahko
postavimo na zacetek topoloskega vrstnega reda. Ce je takih vozlis¢ ve¢, njihov medsebojni vrstni
red ni pomemben. Za povezave, ki izhajajo iz njih, je torej poskrbljeno. Zato lahko ta vozlisca
in njihove povezave odstranimo iz grafa ter ponovimo postopek z morebitnimi novimi vozlis¢i brez
predhodnikov. Postopek se ne zakljuci, ¢e topoloski vrstni red ne obstaja zaradi prisotnosti cikla
v grafu. Usmerjeni acikliéni grafi (directed acyclic graph - DAG) so svoj razred grafov, ki jih je
mogoce topolosko urediti.

Kako naj opisani postopek uc¢inkovito implementiramo? Odstraniti moramo n vozlis¢ in na vsakem
koraku iS¢emo med preostalimi vozlis¢i kaksnega z vhodno stopnjo 0. Direktna implementacija
takega postopka bo imela kvadratno ¢asovno zahtevnost. To pa lahko izboljSamo v vodenjem
seznama vozlis¢ z vhodno stopnjo 0. Vsaki¢, ko odstranimo vozlis¢e in njegove izhodne povezave,
dodamo v seznam morebitna novo nastala zacetna vozliséa. Tako dobimo algoritem s ¢asovno
zahtevnostjo O(n + e). Obicajno je Stevilo povezav vsaj toliksno kot Stevilo vozlisé, zato lahko brez
vecje skode poenostavimo na O(e).

VI toposort(vector<VI> &sosedi, int n) {
vector<int> indeg(n);
for (int x=0;x<n;x++) {
for (int y : sosedil[x]) indegly]++;
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queue<int> q;
for (int x=0;x<n;x++) {
if (indeglx]==0) q.push(x);
}
vector<int> seq;
while (!q.empty()) {
int x=q.front(); q.popQ);
seq.push_back(x) ;
for (int y : sosedil[x]) {
indeglyl--;
if (indegly]l==0) q.push(y);

by

return seq;

vector<int> topo = toposort(sosedi, n);
print (topo);

2403165

1.6 Kriticna pot

Potek izvajanja projekta lahko modeliramo z mejniki in aktivnostmi, ki doprinesejo k izpolnjevanju
teh mejnikov. Mejnike predstavimo z vozlis¢i, aktivnosti pa s povezavami v usmerjenem grafu. Ko
so konc¢ane vse potrebne aktivnosti, je mejnik dosezen. Poleg tega poznamo ¢as w(z,y) za izvedbo
dolocene aktivnosti med mejnikoma z in y. Oc¢itno mora biti graf aciklicen. Kaksen je najkrajsi ¢as
za izvedbo projekta ob “neomejeni” koli¢ini resursov, pri ¢emer lahko vsako aktivnost izvaja ena
oseba, vendar imamo na voljo poljubno stevilo oseb? Ta c¢as predstavlja najdaljSa pot v utezenem
usmerjenem aciklicnem grafu, ki ji recemo tudi kriticna pot.

Kako pa jo izracunamo? Vozlis¢a naprej topolosko uredimo v linearnem c¢asu. Nato pa lahko racu-
namo najdaljSe poti d(x), ki se za¢nejo v v posameznem vozlis¢u x, v obratnem topoloskem vrstnem
redu. Ce vozlisée nima naslednikov, je d(z) = 0. Sicer pa velja d(z) = max,, ,_, (@wyer (W@, y) +

d(y))-

Opravka imamo z utezenim grafom, ki ga moramo najprej prebrati. V seznamu sosedov bomo
poleg sosednjega vozlisca hranili Se tezo povezave, ki vodi do njega.

ifstream fin("critical.txt");
fin >> n >> m;
vector<VI> adj(n);
vector<VII> adjw(n);
for (int i=0;i<m;i++) {
int a,b,c;
fin >> a >> b >> c;
adj[al .push_back(b);
adjw[al .push_back({b,c});

10
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fin.close();

Algoritem za izrac¢un topoloskega vrstnega reda ze imamo, samo obrnemo ga.

vector<int> ord = toposort(adj, n);
reverse(ord.begin(), ord.end());

V tem obratnem topoloskem vrstem redu lahko izracunamo dolzino najdaljse poti iz vsakega vo-
zlis¢a, saj bo vsaka vrednost odvisna samo od naslednikov, za katere imamo rezultat ze izracunan.
Zapomnimo si tudi vozlis¢e z najvecjim rezultatom, ki je zacetek najdaljSe poti.

vector<int> d(n);

int start = ord[0];

for (int x : ord) {
for (auto [y,w] : adjwlx]) {

dlx] = max(d[x], w+dlyl);

}
if (d[x]>d[start]) start=x;

}

cout << "dolzina = " << d[start] << endl;

dolzina = 10

Izra¢unane vrednosti so dovolj, da lahko pot tudi rekonstruiramo. Iz trenutnega vozlis¢a nadalju-
jemo tam, kjer je izracunana najdaljSsa pot ravno za dolzino povezave krajSa. Druga moznost bi
bila, da si pri racunanju najdaljsih poti za vsako vozlisée poleg razdalje shranjujemo tudi naslednje
vozlisce, ki je vodilo do te maksimalne vrednosti.

cout << start;

int x=start;

while (d[x]!=0) {

for (auto [y,w] : adjwlx]) {
if (d[x]==wt+dlyl) {

cout << " " <K< y;
X =Yy;
break;

3

cout << endl;

46052

1.7 Eulerjev obhod

Dobro znan problem na neusmerjenih grafih je iskanje FEulerjevega obhod (Eulerian
tour/cycle/circuit). Pri tem iS¢emo obhod, ki obis¢e vse povezave v grafu (vsako povezavo natanko
enkrat, vozlis¢a pa morda tudi veckrat). Podoben problem je iskanje Eulerjevega sprehoda (FEule-
rian trail/path/walk). Pravzaprav iS¢emo stezo (sprehod brez ponovljenih povezav vendar morda s
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ponovljenimi vozlis¢i), ki obisce vse povezave v grafu. Za razliko od obhoda pa se lahko zacne in
konca na razliénih mestih.

S tem problemov ste se najbrz ze srecali pri risanju oblik z eno potezo (npr. odprtega
pisma/ovojnice). Euler pa pri problemu sedmih mostov v Kénigsbergu (danes Kaliningrad). Zani-
malo ga je, kako bi lahko na sprehodu prehodil vsak most natanko enkrat.

Eulerjev izrek pravi, da v povezanem grafu obstaja Eulerjev obhod natanko takrat, ko so vsa
vozlisca sode stopnje. Eulerjev sprehod pa natanko takrat, ko so vsa vozlisca sode stopnje razen
morda toéno dveh vozlis¢, kjer se zacne in konca. Dokazimo to trditev za primer obhoda (za
sprehod velja podobno).

e Recimo, da obstaja Fulerjev obhod. Potem ta obhod na prehodu skozi vsako vozlis¢e zmanjsa
stopnjo tega vozlis¢a za 2. Ce sproti odstranjujemo prehojene povezave, imajo na koncu vsa
vozliséa stopnjo 0. Torej morajo biti na zacetku vsa sode stopnje.

e Obratna smer je bolj kompleksna in jo lahko dokazemo kar s konstrukcijo Eulerjevega obhoda
na povezanem grafu z vozliséi sodih stopenj. Zacnemo v poljubnem vozlis¢u z in sledimo
povezavam, dokler se ne vrnemo v zacetno vozlisSée z. Pri tem se ne moremo zatakniti v
nekem drugem vozliséu y, ker bi ze porabili vse njegove povezave. V vsakem prehodu skozi
vozlis¢e namre¢ porabimo dve povezavi - ¢e je na voljo vsaj ena za vstop, bo tudi druga za
izstop, ker so vsa vozlis¢a sode stopnje. Morda pa smo se vrnili v zacetno vozlisée, pri tem
pa Se nismo obiskali vseh povezav. Postopek ponovimo na enem od ze obiskanih vozlis¢, ki
ima Se kaksne neobiskane povezave. Od tam na enak nacin zgradimo obhod in ga zdruzimo s
prejsnjim. To ponavljamo dokler niso obiskane vse povezave. To je Hierholzerjev algoritem,
ki ga lahko implementiramo v linearnem casu.

12
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Najkrajse poti
December 18, 2024

1 Najkrajse poti

Klasi¢en problem na grafih je iskanje najkrajsih poti. Zanima nas na primer najkrajSa pot med
parom vozlis¢ A in B (single-pair shortest path). Naj bo ta najkrajSa pot sestavljena iz vozlisé
A, .. X, B, kjer je X predzadnje vozlis¢e na poti. V tem primeru mora biti tudi pot od A do X
najkrajsa, sicer bi lahko pot od A do B izboljsali. Pri iskanju najkrajse poti od A do B posledi¢no
izra¢unamo tudi najkrajse poti do ostalih vozlis¢ na tej poti.

Ce bomo Ze morali izra¢unati najkrajse poti iz A do veé¢ drugih vozlis¢, pa jih lahko izra¢unamo iz
zacetnega vozliséa kar do vseh (single-source shortest path). Opazimo tudi, da bodo te najkrajse
poti v grafu formirale drevo najkrajsih poti. Vsako vozlis¢e bo imelo namre¢ enega optimalnega
predhodnika/starsa na najkrajsi poti (npr. X bo predhodnik B-ja). Koren drevesa pa bo seveda v
vozliséu A.

Za problem iskanja najkrajsih poti med vsemi pari toc¢k, lahko N-krat pozenemo algoritem za
iskanje drevesa najkrajsih poti iz posameznega zacCetnega vozlisca. Obstajajo pa tudi drugi algo-
ritmi, ki si namenjeni prav iskanju poti med vsemi pari tock. Tak primer je Floyd-Warshall-ov
algoritem, ki ga tu ne bomo obravnavali.

Ukvarjali se bomo predvsem z neusmerjenimi grafi. V usmerjenih grafih je situacija namre¢ podobna
in lahko uporabimo enake razmisleke.

#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;

typedef pair<int,int> PII;

typedef vector<int> VI;

typedef vector<pair<int,int>> VII;
typedef vector<vector<int>> VVI;

template<typename T>

void print(const vector<T> &sez) {
for (T x : sez) cout << x << " ",
cout << endl;
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1.1 Neutezeni grafi

V neutezenih grafih ni potrebe po kompliciranju, saj ze poznamo metodo iskanja v Sirino (BFS),
ki obiskuje vozlis¢a od bliznjih proti bolj oddaljenim glede na sStevilo povezav. Potrebuje je
malenkostno dopolnitev, da bo poleg obiskovanja vozliS¢ belezila Se dolzine poti in prednike vozlis¢
v drevesu najkrajsih poti.

ifstream fin("graph.txt");
int n,m;
fin >> n >> m;
vector<vector<int>> sosedi(n);
for (int i=0;i<m;i++) {
int a,b;
fin >> a >> b;
sosedi [a] . push_back(b) ;
sosedi [b] .push_back(a) ;
}

void BFS_distance(vector<VI> &adj, int start, vector<int> &dist, vector<int>
~&prev) {
int n=adj.size();
dist=vector<int>(n,-1); prev=vector<int>(n);
vector<int> vis(n);
queue<int> q;
q.push(start); vis[start]=1;
dist[start]=0; prev[start]=-1;
while (!q.empty()) {
int x=q.front(); q.popQ);
for (int y : adj[x]) {
if (lvisl[yl) {
q.push(y); vis[yl=1;
dist[yl=dist[x]+1; prevlyl=x; // distance, previous node

vector<int> dist, prev;
BFS_distance(sosedi,0,dist,prev);
print(dist);

print (prev) ;

01321232
-10310171

1.2 UteZeni grafi

V utezenih grafih pa je situacija malo bolj zapletena. Omejili se bomo na grafe s pozitivnimi
(nenegativnimi) utezmi, s kakrsnimi imamo vecinoma opravka v praksi, kasneje pa se bomo
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vrnili Se k negativnim utezem. Utez (ceno, dolzino) povezave med vozliséema X in Y bomo oznacili
zw(X,Y).

ifstream fin("weighted.txt");
int n,m;
fin >> n >> m;
vector<VII> adjw(n);
for (int i=0;i<m;i++) {
int a,b,w;
fin >> a >> b >> w;
adjwla] .push_back({b,w});
adjw[b] .push_back({a,w});

1.2.1 Dijkstrov algoritem

Tako kot smo v neutezenem primeru z iskanjem v Sirino racunali najkrajse poti od bliznjih proti
bolj oddaljenim vozlis¢em, bomo to storili tudi tu. Najblizje vozlisce je kar izhodiséno, d(A) =
0. Naslednje najblizje vozlisée pa bo eno od njegovih sosedov. Ker povezave niso negativne, je
nemogoce, da bi dosegli manjSo razdaljo po kaksni poti z ve¢ povezavami. Tem neizracunanim
sosedom do sedaj izracunanih vozlis¢ bomo rekli okolica. To so vozlisca, ki Se niso izracunana in so
iz ze izracunanih dosegljiva po eni povezavi. Za vsako od njih bomo hranili potencialno najkrajso
pot p(Y'): kaksna bi bila razdalja, ¢e bi se do njega premaknili z enega izmed Ze izracunanih vozlisc.
Ce iz okolice izberemo vozlisée X s trenutno najmanjso potencialno dolzino p(X), bo to zagotovo
dejanska najmanjsa dolzina poti do tega vozliséa (d(X) = p(X)). Zaradi odsotnosti negativnih
povezav, bi bila katerakoli druga pot od zZe izracunanih vozlis¢ do X sestavljena iz ve¢ povezav in
zato daljSa. Mnozico ze izra¢unanih vozlis¢ smo torej povecali z novim vozliSéem X. Poskrbeti
moramo Se za posodobitev okolice. Vse sosede Y vozliséa X dodamo v okolico, ¢e so ze v njej, pa
zgolj posodobimo njihovo potencialno oddaljenost z p(Y) = min(p(Y),d(X) + ¢(X,Y)). Postopek
ponavljamo, dokler nimamo izracunanih najkrajsih poti do vseh vozlis¢.

V postopku imamo opravka s tremi skupinami vozlis¢. V prvi skupini so tista, za katera imamo ze
izracunane najkrajse poti. V drugi skupini so vozlisca iz okolice, ki imajo samo potencialne dolzine.
Tretja skupina pa so Se povsem neobiskana vozlis¢a. Pri implementaciji bomo vse te informacije
hranili v tabeli potencialnih razdalj. Razdalja -1 bo oznacevala Se neobiskano vozlisce iz tretje
skupine, -2 pa ze izracunano iz prve.

void Dijkstra(vector<VII> &adjw, int start, vector<int> &dist, vector<int>
~&prev) {

int n=adjw.size();
dist=vector<int>(n,-1); prev=vector<int>(n,-1);
vector<int> p(n,-1); // provisional distance (-1=unvisited, -2=done)
plstart]=0;
while (1) {

int x=-1; // smallest provisional

for (int i=0;i<n;i++) if (p[il>=0) {

if (x==-1 || plil<plx]) x=i;
+
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if (x==-1) break;
dist[x]=p[x]; plx]l=-2;
for (auto [y,w] : adjwlx]) { // update neighbors
int d=dist[x]+w;
if (plyl==-1 || (plyl>=0 && d<plyl)) {
plyl=d; prevlyl=x;
}

vector<int> dist, prev;
Dijkstra(adjw,0,dist,prev);
print(dist); print(prev);

04111792278 11
-104273067

Prostorska zahtevnost algoritma je O(n). Casovna zahtevnost pa je odvisna od iskanja najmanje
potencialne razdalje (O(n?)) in posodabljanja sosedov (O(e)). Ker je e = O(n?), je ¢asovna za-
htevnost take implementacije algoritma O(n?).

Razmislimo o izboljsavi. Tezavno je iskanje vozlis¢a z najmanjSo potencialno razdaljo. Hkrati pa
moramo biti sposobni posodabljati potencialne razdalje sosedov. Vozlis¢a iz okolice s potencialnimi
razdaljami bi lahko hranili v uravnotezenem iskalnem drevesu. Tako lahko v ¢asu O(logn) pois¢emo
najmanjsega in spremenimo potencialno razdaljo vozlis¢a. Casovna zahtevnost bi bila O(nlogn +
elogn) = O(elogn).

Iskanje najmanjsega elementa je namen prioritetne vrste, zato je to v praksi pogostejsi nacin imple-
mentacije, ki je tudi preprostejsi in zato bolj ué¢inkovit. Ce za prioritetno vrsto uporabimo dvojisko
kopico, mora ta omogocati tudi spremembo prioritete. Pravzaprav gre samo za zmanjsanje prior-
itete v minimalni dvojiski kopici, kar lahko dosezemo v logaritemskem casu. Tudi ta resitev ima
¢asovno zahtevnost O(elogn).

V spodnji implementaciji pa bomo malo “goljufali” in se izognili spreminjanju prioritet. Pri posod-
abljanju bomo v prioritetno vrsto samo vstavili novo manjso vrednost, stare pa ne bomo izbrisali.
Nova vrednost bo prisla iz vrsto prej, zato lahko stare neveljavne vrednosti, ki pridejo iz vrste
neko¢ kasneje, enostavno ignoriramo. V tabeli razdalj dist bomo hranili razdalje do vseh vozlis¢
(nekatere so pravilne, druge zgolj potencialne). Vozlis¢a, katerih razdalje so zgolj potencialne,
bomo hranili v prioritetni vrsti. Ko pride vozlisce iz prioritetne vrste, vemo, da je njegova razdalja
pravilna in posodobimo sosede. V prioritetni vrsti je lahko O(e) elementov, zato je taka tudi pros-
torska zahtevnost. Casovna zahtevnost pa je O(eloge) = O(elogn?) = O(e - 2logn) = O(elogn).
Goljufija torej ni bila prav huda.

Vso to kompliciranje pa ima smisel samo, ¢e je graf dovolj redek. Ce je graf gost in vsebuje skoraj
vse mozne povezave (e ~ n?), je ¢asovna zahtevnost O(elogn) pravzaprav O(n?logn), kar je slabse
od O(n?), s ¢imer smo zaceli.

void Dijkstra_PQ(vector<VII> &adjw, int start, vector<int> &dist, vector<int>
~&prev) {
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int n=adjw.size();
dist=vector<int>(n,-1); prev=vector<int>(n,-1);
priority_queue<PII, vector<PII>, greater<PII>> pq; // (distance, node)
dist[start]=0; pq.push({0,start});
while (!pg.empty()) {
auto [d,x]=pq.top(); pq.popO;
if (dist[x]!=d) continue; // ignore old values
for (auto [y,w] : adjwlx]l]) { // update neighbors
int d=dist[x]+w;
if (distlyl==-1 || d<distlyl) {
dist[yl=d; prevlyl=x;
pq.push({d,y});

vector<int> dist, prev;
Dijkstra_PQ(adjw,0,dist,prev);
print(dist); print(prev);

041117 9227 8 11
-104273067

Algoritem lahko v nekaterih primerih Se izboljsamo. Pogosto so utezi relativno majhna cela Stevila.
Naj bo ¢ najvecja utez v grafu. Najveéja oddaljenost vozlis¢a v grafu bo tako (n — 1)c. Namesto
v prioritetni vrsti lahko vozlis¢a s potencialnimi razdaljami hranimo “popredalckana” v tabeli, ki
na mestu ¢ hrani seznam vozlis¢ na razdalji i. Temu recemo tudi vrsta z vedri (bucket queue)
Podobno kot prej ne spreminjamo vrednosti, ampak dodajamo nove in po potrebi ignoriramo stare.
Prostorska in ¢asovna zahtevnost take resitve sta O(e + nc).

void Dijkstra_BQ(vector<VII> &adjw, int start, vector<int> &dist, vector<int>
~&prev) {
int n=adjw.size();
dist=vector<int>(n,-1); prev=vector<int>(n,-1);
int c=0; // mazimum weight
for (int x=0;x<n;x++) for (auto [y,w] : adjwlx]) c=max(c, w);
int maxd=(n-1)*c;
vector<VI> bq(maxd+1); // bucket queue
dist[start]=0; bql[0].push_back(start);
for (int d=0;d<=maxd;d++) {
for (int x : bqldl) {
if (dist[x]!=d) continue; // ignore old values
for (auto [y,w] : adjwlx]) { // update neighbors
int d=dist[x]+w;
if (dist[yl==-1 || d<distly]) {
dist[yl=d; prevlyl=x;
bq[d] . push_back(y) ;
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vector<int> dist, prev;
Dijkstra_BQ(adjw,0,dist,prev);
print(dist); print(prev);

041117 9227 8 11
-104273067

1.2.2 Negativne utezi

Do sedaj smo se omejili na pozitivne oz. nenegativne utezi. Negativne utezi imajo smisel samo na
usmerjenih grafih. Sicer bi se lahko sprehajali tja in nazaj po isti negativni povezavi in imeli vedno
krajso pot.

Kje pa pride do tezave na usmerjenih grafih? Nasa predpostavka, da ima vozlis¢e v okolici z najman-
jSo potencialno razdaljo prav tako tudi dejansko razdaljo, ni vec¢ resni¢na. To lahko demonstriramo
s spodnjim primerom.

// (0,1,2), (0,2,3), (2,1,-2)

vector<VII> adjw = {{{1,2},{2,3}},{},{{1,-2}3}};
vector<int> dist, prev;
Dijkstra(adjw,0,dist,prev);

print(dist); print(prev);

023
-100

Situacija je lahko Se slabsa. V usmerjenem grafu se lahko pojavi negativen cikel (cikel z negativno
vsoto utezi). V takem primeru koncept najkrajsih poti tudi nima smisla, ker lahko krozimo po ciklu
in s tem poljubno krajSamo svojo pot.

Obstajajo algoritmi, ki uspesno resujejo probleme najkrajsih poti tudi v prisotnosti negativnih
povezav in zaznavajo prisotnost negativnih ciklov. Klasi¢en primer je Bellman-Fordov algoritem,
ki ga boste obravnavali kasneje.

1.3 Primeri

Grafi so zelo pogost na¢in modeliranja relacij, iskanje najkrajsih poti pa eden najobicajnejsih prob-
lemov na njih. V nadaljevanju si bomo ogledali nekaj primerov sorodnih problemov.

1.3.1 Najsirsa pot

Recimo, da z grafom modeliramo cestno omrezje. Povezave predstavljajo dvosmerne ceste, vozlisca

pa krizisca. Utezi povezav ustrezajo Sirini ceste. Kaksna je najvecja Sirina vozila, ki se lahko
pripelje od vozlisca A do B?
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Gre za problem iskanja najsirse poti (widest path, mazimum capacity path). Pri njem is¢emo pot
od A do B, za katero bo veljalo, da je najmanjsa utez na poti ¢im veéja. Za primerjavo nas je v
klasi¢cnem problemu najkrajsih poti zanimala tista pot, kjer je bila vsota utezi ¢im manjsa. Vsoto
smo torej zamenjali z minimumom, minimizacijo pa z maksimizacijo.

Uporabimo lahko povsem enak razmislek kot pri Dijkstrovem algoritmu. Poti do vozlis¢e bomo
racunali od $ir§ih proti ozjim. NajsirSa pot (oo Sirine) vodi do zacetnega vozlis¢a. Na vsakem
koraku bomo med izracunana vozlis¢a dodali vozlisce iz okolice, do katerega vodi trenutno najsirsa
potencialna pot. To ima zagotovo pravo vrednost, saj bi kakrsnakoli druga pot obiskala ve¢ povezav,
kar Sirine poti ne more povecati, temvec jo kveé¢jemu zmanjsa.

1.3.2 Najdaljsa pot

Kaj pa, Ce nas namesto najkrajSe poti zanima najdaljSa? Trivialno, utezi negiramo in je problem
reSen. Zal ne, ker s tem dobimo graf z negativnimi cikli. Pravzaprav je koncept najdaljse poti slabo
definiran - lahko bi se sprehajali sem in tja po isti povezavi in poljubno podaljsali pot.

V primeru najdaljSe poti nas zanimajo poti brez ponovljenih vozlisé. Pri najkrajsih poteh je bilo to
samoumevno, saj od veckratnega obiskovanja vozlis¢ ni nobene koristi ampak samo skoda. Izkaze
se, da gre za tezek problem, ki spada v razred NP-polnih (NP-complete) problemov. Ve¢ o tem pa
pri predmetu Izrac¢unljivost in racunska zahtevnost.

Izjema so usmerjeni acikli¢ni grafi (DAG), ki ne vsebujejo ciklov. Tam smo Ze resili prav ta problem,
le da smo mu rekli kriti¢na pot.

1.3.3 15 Puzzle

Verjetno poznate drsno sestavljanko prikazano na spodnji sliki. Igra se na mrezi velikosti 4x4, kjer
se na vsakem polju nahaja plosé¢ica z enim izmed Stevil od 1 do 15. Vsako stevilo se pojavi enkrat,
eno polje pa je prazno. Zanima nas, kako naj s premiki plosc¢ic na prazno sosednje polje uredimo
Stevila po velikosti (po vrsticah od zgoraj navzdol in znotraj vrstice od leve proti desni). Se bolje,
izracunajmo najmanjse potrebno stevilo potez.

V tem primeru nimamo opravka z grafom stanj. Vsako stanje sestavljanke ustreza nekemu vo-
zlis¢u. Za izracun najmanjsega Stevila potez bomo uporabili iskanje v Sirino (BFS). Seveda ne bomo
vnaprej zgradili celotnega grafa, ker bi bil ta prevelik, ampak ga bomo odkrivali sproti. Recemo,
da bo graf predstavljen implicitno s stanji sestavljanke. Za vsako stanje oz. vozlis¢e znamo namrec
izracunati njegove sosede. Pri tem upamo, da bomo dosegli resitev dovolj zgodaj, preden bomo
preiskali prevelik del grafa.

Obstajajo tudi izboljSave tega osnovnega preiskovanja, ki z uporabo hevristik usmerjajo iskanje
proti delom grafa, v katerih je bolj verjetno, da bomo nasli resitev. Primer nadgradnje iskanja
najkrajsih poti z uporabi hevristik je algoritem A *.

int puzzlel5(VVI start, vector<VVI> &seq) {
map<VVI, int> dist;
map<VVI, VVI> prev;
queue<VVI> q;
q.push(start); dist[start]=0;
VVI goal = {{1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,15,0}};
while (!q.empty()) {
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VVI state=q.front(); q.popQ);
if (state == goal) break;
// next states
for (int i=0;i<4;i++) for (int j=0;j<4;j++) if (statelil[jl==0) { //_
~find empty cell
for (auto [di,dj] : VII{{0,1},{0,-1},{1,0},{-1,0}}) { // possible,

smoves

int i2=i+di, j2=j+dj;

if (i2<0 || i2>=4 || j2<0 || j2>=4) continue;

VVI state2=state; // adjacent state

swap(state2[i] [j], state2[i2] [j2]);

if (dist.count(state2)==0) { // new?
dist[state2] = dist[state]+1;
prev[state2] = state;
q.push(state2);

}

}
}
}

// reconstruct sequence of states
VVI state=goal;
seq.push_back(state);
while (state!=start) {
state = prev[state];
seq.push_back(state) ;
}
reverse(seq.begin(),seq.end());
return dist[goall;

VVI state = {{5, 0, 2, 3},
{6, 1, 7, 4},
{9, 10,11,8},
{13,14,15,12}};
vector<VVI> seq;
cout << puzzlelb(state, seq) << endl;
for (VVI state : seq) {
cout << endl;
for (VI row : state) print(row);

5023
6174

9 10 11 8
13 14 15 12



5123

6 07 4

9 10 11 8
13 14 15 12

5123
0674

9 10 11 8
13 14 15 12

0123
5674

9 10 11 8
13 14 15 12

9 10 11 8
13 14 15 12

1203
5674

9 10 11 8
13 14 15 12

1230
5674

9 10 11 8
13 14 15 12

1234
5670

9 10 11 8
13 14 15 12

1234
5678
910 11 0
13 14 15 12

1234
56738
9 10 11 12
13 14 15 0

Za konec zgolj kot zanimivost omenimo se resevanje Rubikove kocke. Iskanje najkrajsih poti je
Se vedno predmet algoritmicnega raziskovanja. S precej rac¢unske moci so nedavno dokazali, da je
mogoce vsako stanje Rubikove kocke resiti v najve¢ 20 potezah oz. 26 potezah (¢e je ena poteza


http://www.cube20.org/
http://www.cube20.org/qtm/

rotacija ploskve samo za 90° in ne 180°).
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Napredno urejanje
December 18, 2024

1 Napredno urejanje

Kot smo videli do sedaj, so imeli vsi “naravni” algoritmi za urejanje kvadratno ¢asovno zahtevnost.
)

To pomeni, da imamo resno tezavo ze, ¢e bi zZeleli urediti dva milijona prebivalcev Slovenije. Izkaze

pa se, da lahko problem urejanja resimo veliko bolj uc¢inkovito.

#include <vector>
#include <iostream>
#include <algorithm>
#include <random>
using namespace std;

typedef vector<int> VectorlInt;
typedef array<VectorInt,3> VectorInt3;

Ker imajo zapiski tezave s kompleksnejSimi tipi, bomo uporabljali VectorInt kot drugo ime za
vector<int>. Prav nam bo prislo pa Se nekaj pomoznih funkcij.

Na tem mestu lahko demonstriramo Se enostavno uporabo predlog (template) v C++. Funkcija
print bi izgledala skoraj enako, ¢e imamo opravka s seznamom celih stevil, decimalnih Stevil ali
pa nizov, razlika bi bila samo v tipu. S spodnjo sintakso povemo prevajalniku, naj naredi kopije
funkcije in sicer po potrebi za vse tipe, ki bodo kdaj uporabljali to funkcijo.

template<typename T>

void print(const vector<T> &s) {
for (T x : s8) cout << x << " ";
cout << endl;

3

VectorInt concat(VectorInt a, VectorInt b) {
a.reserve(a.size()+b.size());
a.insert(a.end(), b.begin(), b.end());
return a;

}

VectorInt random_numbers(int n, int x=1000000) {
default_random_engine rnd(123);
VectorInt v;
for (int i=0;i<n;i++) v.push_back(rnd()%x);



return v;

1.1 Napredni urejevalni algoritmi

Se vedno se bomo ukvarjali z algoritmi, ki temeljijo na medsebojnih primerjavah elementov.
Ogledali si bomo primere algoritmov, ki dosezejo ¢asovno zahtevnost O(nlogn).

1.1.1 Urejanje z zlivanjem (mergesort)

Ta algoritem razdeli elemente seznama na prvo in drugo polovico. Rekurzivno uredi vsako polovico
na enak nacin, nato pa zdruzi dva urejena seznama (iz prve in druge polovice) v skupen urejen

seznai.

Najprej si oglejmo, kako bi zdruzili dva urejena seznama v enega samega. Na vsakem koraku
preverimo najmanjsa (prva) elementa v obeh seznamih in v zdruzen seznam dodamo manjsega od
njiju ter ga odstranimo iz seznama.

[5]: VectorInt merge(VectorInt a, VectorInt b) {
int i=0, j=0;
VectorInt c;
while (i<a.size() || j<b.size()) {
if (i<a.size() && j<b.size()) {
if (alil<=b[j]) c.push_back(al[i++]);
else c.push_back(b[j++]);
} else if (i<a.size()) c.push_back(ali++]);
else c.push_back(b[j++]);
}
return c;

}

Zlivanje seznamov je sicer pou¢no, vendar je dovolj pogosto, da je naslo svoje mesto tudi kot funkcija
merge v knjiznici algorithms.

Algoritem je od tu naprej precej enostaven. Seznam razdelimo na pol, rekurzivno uredimo vsako
polovico in zdruzimo rezultata.

[6]: VectorInt mergesort(VectorInt sez) {
int n=sez.size();
if (n<=1) return sez;
VectorInt levo(sez.begin(), sez.begin()+n/2);
VectorInt desno(sez.begin()+n/2, sez.end());
levo = mergesort(levo);
desno = mergesort(desno);
return merge(levo, desno);

}

[7]: vector<int> sez = {5,3,4,6,2,7,1};
sez = mergesort(sez);
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print(sez);
1234567

vector<int> sez = random_numbers(1000000) ;
sez = mergesort(sez);
if (is_sorted(sez.begin(), sez.end())) cout << "urejeno" << endl;

urejeno

Ker seznam vsaki¢ razdelimo na pol, bo globina rekurzije O(logn). Na najglobljem nivoju se
bodo zdruzevali pari seznamov dolzine 1, en nivo visje pari seznamov dolzine 2, nato 4, itd. Za
zdruzevanjem bomo na posameznem nivoju potrebovali O(n) ¢asa.

Casovna zahtevnost (najslabsa, povpre¢na, najboljsa): O(nlogn), O(nlogn), O(nlogn).

Prostorska zahtevnost je odvisna od implementacije. Zgornja ima prostorsko zahtevnost O(nlogn),
ker na vsakem nivoju rekurzije obstaja ena kopija vsakega elementa. To lahko enostavno izboljsamo,
¢e ne ustvarjamo novih seznamov (ampak uporabljamo indekse za dolo¢itev podseznamov), za vse
korake zlivanja pa uporabimo isto pomozno tabelo velikosti O(n). Omenimo, da je mozno tudi
urejanje z zlivanjem izvesti povsem na mestu brez dodatnega pomnilnika, vendar je to Ze bolj
zakomplicirano.

1.1.2 Hitro urejanje (quicksort)

Algoritem hitrega urejanja se loti urejanja tako, da razdeli elemente seznama na majhne in velike.
Majhni bodo na zacetku seznama, veliki pa na koncu. Seznam majhnih in velikih pa lahko vsakega
zase rekurzivno uredimo na enak nacin. S tem smo v posameznem koraku opravili samo manjsi
del urejanja: elemente smo razdelili na majhne in velike. Ce to ponovimo rekurzivno, pa bomo na
koncu uspesno uredili seznam.

Kako naj razdelimo (partition) seznam na majhne in velike elemente? Idealno bi bilo, ¢e bi jih
lahko razbili na enako veliki skupini, vendar to izgleda kot ravno tako tezek problem. Izbrali bomo
enostavnejso strategijo. Iz seznama, ki ga urejamo, si izberimo neko (nakljucno) stevilo (pivot).
Lahko je to kar prvi element. Elemente, ki so manjsi, bomo razglasili za majhne, tiste, ki so veéji,
pa za velike. Imamo pa se tretjo skupino, in to so elementi, ki so enaki pivotu.

VectorInt3 partition(VectorInt sez) {

int pivot = sez[0];

VectorInt majhni, enaki, veliki;

for (int i=0; i<sez.size(); i++) {
if (sez[i]<pivot) majhni.push_back(sez[i]);
else if (sez[il>pivot) veliki.push_back(sez[i]);
else enaki.push_back(sez[i]);

}

VectorInt3 p = {majhni, enaki, veliki};

return p;
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VectorInt quicksort(VectorInt sez) {
if (sez.size()<=1) return sez;
auto [majhni, enaki, veliki] = partition(sez);
VectorInt urejeni_majhni = quicksort(majhni);
VectorInt urejeni_veliki = quicksort(veliki);
return concat(concat(urejeni_majhni, enaki), urejeni_veliki);

vector<int> sez = {5,3,4,6,2,7,1};
sez = quicksort(sez);
print(sez);

1234567

Razmislimo, kako uc¢inkovit je ta postopek? Recimo, da imamo sreco, in izbiramo elemente tako,
da seznam vedno razpade na dve enako veliki skupini majhnih in velikih. V tem primeru bomo
imeli O(logn) nivojev rekurzije. Na vsakem nivoju pa se bomo ukvarjali z O(n) elementi. Na
prvem nivoju z eno skupino n elementov, na drugem nivoju z dve skupinama velikosti n/2 itd. S
posemezno skupino nimamo prav veliko dela, v enem prehodu jih razdelimo med manjse in vecje.
Skupaj bomo torej naredili O(nlogn) operacij.

vector<int> sez = random_numbers(1000000) ;
sez = quicksort(sez);
if (is_sorted(sez.begin(), sez.end())) cout << "urejeno" << endl;

urejeno

Izkaze se, da nasa predpostavka, da bomo imeli vedno sreco pri izbiri delilnega elementa, ni tako
slaba. Tudi pri nakljuénem izbiranju, bosta velikosti seznamov malih in velikih elementov v nekem
smiselnem razmerju. Ce bi bilo razmerje vedno npr. 1:2 (namesto 1:1), to $e vedno vodi do enake
¢asovne zahtevnosti. Tako je pri¢akovana (povprefna) ¢asovna zahtevnost enaka tisti v najboljSem
primeru.

Casovna zahtevnost (najslabsa, povpreéna, najboljsa): O(n?), O(nlogn), O(nlogn).

Prostorska zahtevnost je odvisna od implementacije. Zgornja koda zaradi preglednosti porabi
O(nlogn) prostora. Postopek pa lahko implementiramo tudi na mestu s prestavljanjem elementov
znotraj seznama, kar zmanjsa prostorsko zahtevnost na O(n). V slede¢em primeru bomo za pivot
izbrali zadnji element, nato pa preuredili preostale tako, da bodo na zacetku manjsi elementi, nji-
hovo stevilo pa bomo hranili v spremenljivki m. Funkcija quicksort?2 uredi seznam med indeksoma
i in 7, vkljuéno z ¢-tim in brez j-tega.

void quicksort2(VectorInt &sez, int i, int j) {
if (j-i<=1) return;
int m=0, pivot=sez[j-1];
for (int k=i;k<j;k++) {
if (sez[k]<pivot) {
swap(sez[i+m] ,sez[k]);
m++;
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}

swap(sez[i+m], sez[j-11);
quicksort2(sez, i, i+m);
quicksort2(sez, i+m+1l, j);

}

vector<int> sez = {5,3,4,6,2,7,1};
quicksort2(sez, 0, sez.size());
print(sez);

1234567

Pozor: zgornja implementacija ima resno tezavo v doloc¢enem primeru. Ce so vsa Stevila enaka, bo
namre¢ ¢asovna zahtevnost O(n?). Kako bi lahko odpravili?

Ce primerjamo algoritma mergesort in quicksort, prvi razdeli elemente na leve in desne in veéino
dela z zlivanjem naredi po zakljucku rekurzivnega urejanja, drugi pa jih razdeli na majhne in velike,
kar zahteva vecino dela z razdelitvijo pred rekurzivnim urejanjem manjsih delov.

1.1.3 Urejanje s kopico (heapsort)

Urejanje s kopico je pravzaprav izboljSava navadnega urejanja z izbiranjem (selection sort).
Namesto, da bi vsaki¢ znova iskali najmanjsi element med Se neurejenimi, lahko ta korak po-
hitrimo. To dosezemo tako, da hranimo neurejene elemente v posebni podatkovni strukturi, ki
nam omogoca ucinkovito iskanje in odstranjevanje najmanjsega elementa v njej. Tocéno temu je
namenjena kopica (heap). Ve¢ o tem kdaj drugic.

1.2 Praksa

Kateri algoritmi pa se uporabljajo v praksi, npr. v standardnih knjiznicah programskih jezikov, kot
so C, C++, Java, Python, itd. Obicajno gre za neke kombinacije pristopov, saj se razli¢ni algoritmi
obnesejo razlicno dobro na manjsih ali veéjih primerih.

e C ponuja funkcijo gsort, kjer je Ze iz imena ocitno, da gre za quicksort.

e C++ uporablja t.i. introsort, ki je pravzaprav quicksort v kombinaciji Se z dvema drugima
algoritmoma. Ce med urejanjem velikost seznama pade pod neko mejo, se uporabi navaden
insertion sort. Ce rekurzija preseze neko vnaprej definirano globino, pa se od tam naprej
uporabi heapsort.

e Python uporablja timsort, ki je kombinacija mergesorta in insertion sorta.

e Java uporablja razli¢cne pristope za urejanje primitivnih tipov in za urejanje drugih objektov.
Za prve uporablja razlicico quicksorta, za druge pa razli¢ico timsorta.

1.3 Urejanje brez primerjav

Do sedaj smo urejali elemente v okviru zelo splosnih omejitev, ki nam omogocajo samo primerjave
med pari elementov. Vcasih pa lahko izkoristimo tudi kaksno drugo lastnost podatkov, ki jih
urejamo.
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1.3.1 Urejanje s Stetjem (counting sort)

Recimo, da moramo uredi seznam stevil, ki predstavljajo postne stevilke. Ne glede na to, kako dolg
bo seznam, je nabor razli¢nih postnih stevilk precej majhen. Tako lahko za vsako postno stevilko
prestejemo, kolikokrat se pojavi v seznamu, in jo na koncu temu primerno veckrat vnesemo v urejen
seznam.

void counting_sort(VectorInt &sez) {
int m = *max_element(sez.begin(), sez.end());
VectorInt f(m+1);
for (int x : sez) flx]++;
int i=0;
for (int x=0; x<=m; x++) {
for (int r=0;r<f[x];r++) sez[i++]=x;

vector<int> sez = {1000,2000,2000,4000,2000,1000};
counting_sort(sez) ;
print(sez);

1000 1000 2000 2000 2000 4000

Casovna zahtevnost je linearna, torej O(n + m), kjer je m najvecja mozna vrednost. Ne pozabite
na c¢len m, saj ustvarjanje tabele in iteracija ¢ez njo ni zastonj, sploh ¢e je Stevil malo, njihov
razpon pa velik. Neugodna je prostorska zahtevnost, ki je odvisna od najvecjega elementa. Kaj
pa, ¢e vrednosti niso prikladno majhna cela stevila? To tezavo bomo resili, ko se bomo pogovarjali
o slovarjih.

1.3.2 Urejanje s kosi (bucket/bin sort)

Urejanje s kosi (ali vedri) je zelo splosna tehnika, iz katere izhaja veliko razli¢nih algoritmov. Os-
novna ideja algoritma je, da razdeli elemente seznama v kose glede na njihovo vrednost. Med
kosi obstaja urejenost od kosev z manjSimi elementi proti tistim z veéjimi. Pri tem se zanasa na
enakomerno razporejenost elementov po kosih. Vsak kos lahko nato uredimo s poljubnim ureje-
valnim algoritmom, ali pa rekurzivno uporabimo enak postopek razdeljevanja elementov znotraj
kosa.

Na primer, ¢e uporabljamo dva kosa, kjer prvi vsebuje elemente z vrednostmi z obmocja [min, med],
drugi pa [med + 1, max] in uporabimo rekurzivno strategijo, dobimo nekaj podobnega algoritmu
quicksort, kjer je kot pivot (namesto nekega elementa iz seznama) izbrana srednja vrednost med =
(min 4+ max)/2 med najmanjSo (min) in najve¢jo (max) vrednostjo iz seznama.

Korensko urejanje (radix sort) Kot primer urejanja s kosi si oglejmo Se korensko urejanje.
V tem algoritmu razporejamo elemente v kose glede na stevke v primeru stevil ali ¢rke v primeru
nizov. Obstaja vec razli¢ic, mi si bomo ogledali urejanje od bolj pomembnih proti manj pomembnim
znakom (MSD - Most Significant Digit) in sicer na primeru urejanja nizov po abecedi.

Nize lahko razdelimo v kose glede na njihovo prvo ¢rko, nato pa posamezen kos uredimo po enakem
postopku, le da nize sedaj delimo v kose glede na drugo ¢érko itd. Ko so kosi urejeni, rezultate enos-
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tavno zlozimo skupaj. Vse kar potrebujemo je tabela kosev buckets, ki bo na mestu buckets[c]
hranila seznam nizov, ki imajo na trenutno relevantnem mestu ¢érko c. Relevantno mesto bomo
hranili v argumentu r in ga povecevali v rekurzivnih klicih. Dodatno pa hranimo sSe kos prekratkih
besed (done), ki sploh nimajo r-te ¢rke.

void radix_sort(vector<string> &sez, int r=0) {
if (sez.size()<=1) return;
vector<string> buckets['z'-'a'+1], done;
for (string x : sez) {
if (r>=x.size()) {
done.push_back(x) ;
} else {
int b = x[r]-'a’';
buckets[b] .push_back(x);

}
int i=0;
for (string s : done) sez[i++] = s;
for (int b=0; b<='z'-'a'; b++) {
radix_sort (buckets[b], r+1);
for (string s : buckets[b]) sez[i++] = s;

}

VeCtOr<String> sez = {llbabll , Ilall s ||all , Ilaababll , ||aa|| , llball s ||le , Ilazll};
radix_sort(sez);
print(sez);

a a aa aabab az ba bab z

Casovna zahtevnost zgornjega algoritma je O(nd), ¢e je d najvedja dolzina niza. Enako velja za
prostorsko zahtevnost, saj na vsakem izmed d nivojev hranimo v kosih vseh n elementov. Upostevati
pa moramo tudi prazne kose, ki zasedajo prostor. Teh je lahko precej. Zato je boljsa ocena
prostorske zahtevnosti O(nda), kjer je a velikost abecede (Ce je konstantna, to lahko zanemarimo).
V vsakem izmed O(nd) klicev funkcije namre¢ alociramo a kosev.

1.4 Dvojisko iskanje (binary search)

Zakaj bi sploh zeleli urejati sezname? Zato, da lahko v njih ucinkovito is¢emo stvari. To pa
po¢nemo z dvojiskim iskanje (bisekcijo). Ko iS¢emo neko vrednost v urejenem seznamu, jo lahko
primerjamo z nekim elementom in ¢e je iskana vrednost manjsa od izbranega elementa, moramo
nadaljevati na levi strani, sicer pa na desni. Ce vedno izberemo srednji element, bomo velikost
seznama na vsakem koraku prepolovili in tako potrebovali O(logn) korakov, da najdemo element
oz. ugotovimo, da ga ni v urejenem seznamu.

Ideja je zavajujoce enostavna in pogosto vodi do nepravilnih resitev. Oglejmo si eno tako.

bool bisekcija_narobe(VectorInt sez, int x) {
// nastavimo levo in desno mejo
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int levo=0, desno=sez.size()-1;
while (1) {
// primerjamo s srednjim elementom
int i = (levo+desno)/2;
// popravimo meje
if (x < sezl[i]) levo = i-1;
else desno = i+1;
// ce smo nasli element, ali so se meje prekrizale, ustavimo tiskanje
if (sez[i] == x || desno < levo) break;
b
// ce so meje smiselne, smo ga masli, sicer ga n%
return levo <= desno;

¥

S to resitvijo je narobe cel kup stvari:

« Popravljanje mej bi moralo biti ravno obratno. Ce je iskani element manjsi od srednjega,
moramo premakniti desno mejo in obratno.

o Iskanje v praznem seznamu se sesuje, ker se vedno izvede vsaj ena iteracija iskanja.

o Najvecjega elementa ne bomo nikoli nasli, ker se takrat, ko ga najdemo, tudi prekrizajo meje.
To pa je nase merilo, ali smo nasli element ali ne.

« Casovna zahtevnost ni O(logn), ampak O(n) zaradi kopiranja seznama, ko pokli¢emo
funkcijo.

bool bisekcija(VectorInt &sez, int x) {
int levo=0, desno=(int)sez.size()-1;
while (levo<=desno) {
int i = (levo+desno)/2;
if (sezl[i] == x) return true;
else if (x < sez[i]) desno = i-1;
else levo = i+1;
}
return false;

}

Oglejmo si malo tezjo razli¢ice naloge. V urejenem seznamu bomo iskali mesto, kamor bi morali
vanj vstaviti nek nov element, da se bo ohranjala urejenost. Ce obstaja ve¢ takih mest, ker imamo
ve¢ enakih stevil, ga Zelimo vstaviti na najmanjse mesto. Npr. v seznam {2,3,7,7,8,10,10,10%}
bi stevilo 7 Zeleli vstaviti na indeks 2.

Pri implementaciji bisekcije in tudi drugih algoritmov moramo biti bolj sistematicni, da se izognemo
napakam. To storimo tako, da v iteracijah vzdrzujemo neke lastnosti, ki jim reCemo ¢nvariante.
V nasem primeru imamo v urejenem seznamu nekaj Stevil, ki so manjsSa, nato pa Stevila, ki so
vecja ali enaka {<, <, >=, >=, >=, >=, >=, >=}  ISCemo mejo med tema dvema obmocjema.
Uporabljali bomo indeksa loin hi, kjer bo prvi ves ¢as kazal na neko manjse, drugi pa na vecje ali
enako stevilo. Za inicializacijo teh dveh kazalcev, si lahko predstavljamo, da imamo pred seznamom
na indeksu -1 vrednost —oo, za njim pa co. Nato ju bomo v ve¢ korakih bisekcije blizali in ko bosta
sosednja, smo nasli iskano mejo, ki je takrat shranjena v hi.



[6]: int lokacija(VectorInt &sez, int x) {
int lo=-1, hi=sez.size();
while (hi-lo>1) {
int 1 = (lo+hi)/2;
if (sez[i] < x) lo = i;
else hi = i;
}

return hi;

¥

[7]: vector<int> sez = {2,3,7,7,8,10,10,10};
cout << lokacija(sez, 7) << endl;

2

Sedaj, ko to znamo, povejmo Se, da C++ to funkcionalnost Ze ponuja v knjiznici algorithm s
funkcijo lower_bound, ki vrne iterator na iskano meso. Funkcija upper_bound pa bi med enakovred-
nimi mesti za vstavljanje vrnila najvecje.

[8]: vector<int> sez = {2,3,7,7,8,10,10,10};
cout << lower_bound(sez.begin(), sez.end(), 7) - sez.begin() << endl;

2

K dvojiskemu iskanju se bomo ponovno vrnili, ko se bomo pogovarjali o tehniki deli in viladaj.
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Osnovno urejanje
December 18, 2024

1 Urejanje

V tem poglavju si bomo ogledali razli¢ne algoritme urejanja (sortiranja), od povsem neuporabnih,
do enostavnih in vse do najbolj naprednih.

Pri urejanju imamo podano neko zaporedje elementov, ki ga zelimo preurediti v vrstni red, ki bo
ustrezal neki meri urejenosti. Ce imamo opravka s stevili, nam je Ze na pogled takoj o¢itno, kako
jih je treba urediti, racunalniku pa zal ne. Zato si oglejmo primer s seznamom imen Tine, Ana,
Miha, Mojca. Imena lahko uredimo po abecedi (Ana, Miha, Mojca, Tine), lahko pa jih uredimo
po dolzini od krajsih proti daljSim (Ana, Miha, Tine, Mojca). V tem drugem primeru vrstni red
niti ni enoli¢no dolo¢en. Enako dober bi bil vrstni red, kjer bi zamenjali Miho in Tineta. Lahko pa
imena oseb uredimo glede na njihovo starost in dobimo ¢isto drugacen vrstni red.

Najprej se bomo posvetili algoritmom, ki temeljijo na medsebojnih primerjavah elementov. Tak
urejevalni algoritem si lahko za dolocanje vrstnega reda elementov v urejenem seznamu pomaga
samo s primerjavami dveh elementov (npr. A in B), kjer dobi odgovor, ali se mora element A
nahajati pred elementom B v iskanem urejenem vrstem redu.

1.1 Neuporabni urejevalni algoritmi

Pri urejanju pravzaprav is¢emo neko preureditev elementov seznama, ki bo zadosScala pogojem
urejenosti. Zanima nas torej neka permutacija, ki nam da urejen seznam. En zelo neuc¢inkovit nacin
je, da enostavno preverimo vse permutacije. Temu postopku bomo rekli urejanje s permutacijami,
znan pa je tudi kot bogosort, permutation sort, snail sort.

Za preverjanje vseh permutacij nam bo prisla prav funkcija za generiranje naslednje permutacije
next_permutation iz knjiznice algorithm. Kasneje pa nam bo za generiranje naklju¢nih per-
mutacij prav prisla funkcija shuffle iz iste knjiznice in generator nakljucnih Stevil iz knjiznice
random.

#include <iostream>
#include <string>
#include <algorithm>
#include <random>
using namespace std;

int uredi_perm(vector<string> &sez) {
vector<int> p; // permutacija
for (int i=0;i<sez.size();i++) p.push_back(i);
int st=0;
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// preizkusimo vse permuacije
do {
st++;
// iz permutacije sestavimo pripadajoc "urejen' seznam
vector<string> urejen(sez.size());
for (int i=0;i<sez.size();i++) {
urejen[i] = sez[pl[ill;
}
// preverimo urejenost seznama
bool je_urejen = true;
for (int i=0;i+l1<sez.size();i++) {
if (urejen[i] > urejen[i+1]) je_urejen = false;
}
// ustavimo iskanje, ce smo nasli resitev
if (je_urejen) {
sez = urejen;

break;
}
} while (next_permutation(p.begin(),p.end()));
return st;

}

vector<string> sez={"Tine", "Ana", "Miha", "Mojca"};
uredi_perm(sez);
for (string ime : sez) cout << ime << endl;

Ana
Miha
Mojca
Tine

Funkcijo uredi_perm smo dopolnili tako, da vraca Se stevilo obravnavanih permutacij st, ki nam bo
prislo prav kasneje. Kako pa deluje next_permutation? Permutacije bi lahko generirali rekurzivno,
obstaja pa tudi lep iterativen postopek, ki sestavi naslednjo permutacijo. Kogar zanima, si lahko
ogleda blog in stran na wikipediji, mi pa nadaljujemo z urejanjem.

Namesto sistemati¢nega preverjanja vseh moznih permutacij, bi lahko generirali naklju¢ne per-
mutacije. Ce je na$ naklju¢éni generator posten, bomo zagotovo nekoé¢ nasli pravo permutacijo
(povsem slucajno). Tokrat bomo preurejali kar vhodni seznam brez uporabe pomozne permutacije.

int uredi_rand(vector<string> &sez) {
default_random_engine rnd; // generator nakljucnih stevil
int st=0;
while (1) {
st++;
// makljucno premesamo seznam
shuffle(sez.begin(),sez.end(),rnd) ;
// preverimo urejenost seznama
bool je_urejen = true;


https://wordaligned.org/articles/next-permutation
https://en.wikipedia.org/wiki/Permutation#Generation_in_lexicographic_order
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for (int i=0;i+1<sez.size();i++) {
if (sez[i] > sez[i+1]) je_urejen = false;

}

if (je_urejen) break;
}
return st;

}

vector<string> sez={"Tine", "Ana", "Miha", "Mojca"};
uredi_rand(sez);
for (string ime : sez) cout << ime << endl;

Ana
Miha
Mojca
Tine

Razmislite, kako bi napisali svojo funkcijo shuffle, ki bo naklju¢no premesala seznam. Idealno bi
bilo, ¢e so vse permutacije enako verjetne.

Kateri izmed zgornjih algoritmov je boljsi - deterministi¢ni ali naklju¢ni? V najslabsem primeru
se nam lahko zgodi, da bo imel nakljuc¢ni algoritem res nesreco in zelo dolgo ne bo odkril pravega
vrstnega reda. Ali pa bo ravno obratno in ga bo uganil zelo hitro. Kaj pa v povprecju? Tega se
lahko lotimo eksperimentalno in prestejemo Stevilo permutacij, ki jih oba algoritma obravnavata.
Ce imamo n imen, je vseh moznih permutacij n! (n fakulteta). Poskusimo z n = 7 in naredimo 100
poskusov urejanja naklju¢no premesanega seznama z obema algoritmoma.

vector<string> sez={"Tine", "Ana", "Miha", "Mojca", "Joze", "Katja", "Vid"};
default_random_engine rnd(123);
int st_p=0, st_r=0;
int k=100;
for (int it=0; it<k; it++) {
shuffle(sez.begin(), sez.end(), rnd);
vector<string> sezl = sez, sez2 = sez; // kopiji seznama za urejanje
st_p += uredi_perm(sezl);
st_r += uredi_rand(sez2);
assert(sezl==sez2);

b
cout << "deterministicni: " << (double)st_p/k << endl;
cout << "nakljucni: " << (double)st_r/k << endl;

deterministicni: 2671.32
nakljucni: 4929.98

Zanimivo, deterministi¢ni se v povprecju izkaze za boljSega. Vseh permutacij je 7! = 5040. De-
terministiéni po v povpreéju nasel pravo permutacijo nekje na polovici, kakSne prej, kaksne pa
kasneje. Nakljucni pa jih obravnava dvakrat vec¢, priblizno toliko, kolikor je vseh permutacij. Zakaj
je temu tako? Razmislite, koliko metov kocke potrebujete v povpredju, da boste vrgli 6 pik. Ce je
x pricakovano stevilo metov, velja x = 1+ % -0+ % -, torej x = 6. Tu imamo opravka z n!-strano
kocko. Do rezultata bi se lahko torej dokopali tudi analitiéno namesto eksperimentalno.
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1.2 Osnovni urejevalni algoritmi

Oglejmo si nekatere osnovne urejevalne algoritme, ki bodo sluzili tudi kot primeri za vajo prej
obravnavanih konceptov racunske zahtevnosti. Pri urejevalnih algoritmih se vcasih posebej obrav-
nava ra¢unsko zahtevnost glede na stevilo narejenih primerjav med elementi. To je Se posebej
smiselno, ¢e je primerjava netrivialna. Mi se bomo omejili na primerjanje enostavnih tipov, in
bomo ocenjevali ¢asovno zahtevnost glede na stevilo osnovnih operacij.

Veliko bomo izpisovali vsebino seznamov, zato si pripravimo pomozno funkcijo.

void print(const vector<int> &s) {
for (int x : s8) cout << x << " ";
cout << endl;

1.2.1 Urejanje z izbiranjem (selection sort)

Gre za najbolj enostavno strategijo, ki jo obicajno izberejo ljudje. Iz seznama, ki ga zelimo urediti,
bomo izbrali najmanjsi element, ga odstranili in ga postavili na prvo mesto urejenega seznama, ki
ga tako gradimo. To ponavljamo, dokler nam ne zmanjka vhodnega seznama, pri tem pa smo po
vrsti od najmanjSega do najvecjega elementa zgradili urejen seznam.

Urejanje na mestu Hitro lahko ugotovimo, da nam ni treba vzdrzevati dveh seznamov, ampak
lahko na podoben nacin prerazporedimo elemente kar v vhodnem seznamu. Temu rec¢emo urejanje
na mestu. Najmanjsi element zamenjamo s prvim in ga tako premaknemo na prvo mesto. Ponovimo
postopek samo s seznamom od drugega mesta naprej itd.

Vzdrzujemo invarianto, da je v i-tem koraku na zacetku seznama postavljenih prvih ¢ elementov
urejenega zaporedja, preostali elementi pa so Se neurejeni. V vsakem koraku urejeni del poveéamo
za en element, ki ga postavimo na indeks 3.

void selection_sort(vector<int> &s) {

int n=s.size();

print(s);

for (int i=0; i<n; i++) { // iscemo i-ti najmanjsi element
int m=i; // indeks najmanjsega elementa med neurejenimsi
for (int j=i+1; j<mn; j++) {

if (s[jl<s[m]) m=j;

}
swap(s[i], s[m]);
print(s);

vector<int> sez = {7,2,5,1,2,9,3};
selection_sort(sez);

7251293
12657293
12567293
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1227593
1223597
1223597
1223579
1223579

Pri prostorski zahtevnosti lahko opazujemo celotno porabo prostora, ki je O(n), ali pa samo koli¢ino
dodatnega prostora (poleg vhodnih podatkov), ki je O(1). V nadaljevanju se bomo drzali prve
interpretacije.

Casovna zahtevnost (najslabsa, povpre¢na, najboljsa): O(n?), O(n?), O(n?)

Stabilnost Zanimivo vprasanje je, ali algoritem ohranja vrstni red enakih elementov, kar imenu-
jemo stabilnost. To postane smiselno v primeru urejanja npr. imen oseb po njihovi starosti. Kaksen
bo vrsti red Ane in Jana, ¢e sta enako stara? Bo tak, kot je bil v vhodnem seznamu, ali se lahko
zgodi, da ju algoritem premesa?

Urejanje z izbiranje je v zgornji obliki nestabilen algoritem, ker lahko pri zamenjavi najmanjsega
elementa (na indeksu m) z elementom, ki mu je v napoto (na mestu i), pokvarimo ta vrstni red.

Stabilnost lahko vedno dosezemo s tem, da vhodni seznam elementov z; zamenjamo s seznamom
parov (x;,1), ki vkljucujejo Se indeks, in uredimo tega. Pri primerjavi parov pride najprej do
primerjave prvega dela para, v primeru enakosti pa se primerja drugi del.

1.2.2 Urejanje z vstavljanjem (insertion sort)

Tudi tu postopoma gradimo vedno vecje urejeno zaporedje. Namesto, da bi iskali element, ki pase
na naslednje mesto (kot smo to poceli pri urejanju z izbiranjem), bomo naslednji element postavili
na pravo mesto. Po vrsti bomo jemali elemente iz vhodnega zaporedja in vsakega posebej vstavili
v novo nastajajoce urejeno zaporedje.

Tako kot prej, lahko tudi to izvedemo na mestu. Na vsakem koraku imamo urejeno zaporedje na
prvih ¢ — 1 mestih, v preostanku pa je Se neurejeno vhodno zaporedje. V tem stanju bomo ¢-ti
element vstavili na pravo mesto tako, da bomo konec urejenega zaporedja, ki je vecji od i-tega
elementa, zamaknili in naredili prostor zanj.

Vzdrzujemo invarianto, da je v i-tem koraku urejenih prvih ¢ elementov (kar ni nujno tudi prvih
i elementov kon¢nega urejenega seznama). V vsakem koraku povecamo dolzino urejenega dela z
vstavljanjem naslednjega elementa v seznamu.

void insertion_sort(vector<int> &s) {
int n=s.size();
print(s);
for (int i=1; i<m; i++) {
int x=s[i];
int j=i-1;
while (j>=0 && s[jl>x) {
s[j+1]1=s[j];
j=—s
+
s[j+1]=x;
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print(s);

}

vector<int> sez = {7,2,5,1,2,9,3};
insertion_sort(sez);
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Prostorska zahtevnost: O(n)

Casovna zahtevnost (najslabsa, povpre¢na, najboljsa): O(n?), O(n?), O(n)

1.2.3 Mehurc¢no urejanje (bubble sort)

V tem algoritmu bomo zaporedje uredili samo z zamenjavami sosednjih elementov, zato je vcasih
imenovano tudi urejanje z zamenjavami. Pravzaprav je ideja zelo preprosta: dokler obstaja kaksen
par, ki je narobe urejen, ga najdemo in zamenjamo. Kljub temu bomo malo bolj sistemati¢ni. Pare
sosednjih elementov bomo pregledovali po vrsti. Ko pridemo do konca seznama, pa se bomo vrnili
nazaj na zacetek. Ce kdaj naredimo celoten prehod, ne da bi naredili kakino zamenjavo, lahko
zakljuc¢imo.

void bubble_sort(vector<int> &s) {
int n=s.size();
print(s);
bool change = true;
while (change) {
change = false;
for (int i=0;i+1<n;i++) {
if (s[il>s[i+11) {
swap(s[i],s[i+1]);
change = true;

}
print(s);

3

vector<int> sez = {7,2,5,1,2,9,3};
bubble_sort(sez);

7251293
2512739
2125379
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1223579

1223579

Pravilnost tega postopka Ze ni ve¢ tako ocitna, kot v prejsnjih primerih. Bomo res vedno prisli
do urejenega seznama, ali se lahko algoritem zatakne v kaksnem neurejenem stanju? In koliko

prehodov potrebuje v najslabsem primeru?

Opazimo lahko, da algoritem v prvem prehodu z zamenjavami premakne na konec najvecji element,
nato drugega najvecjega na predzadnje mesto itd. Med tem premikanjem pa poskrbi za Se malo
sprotnega urejanja preostalih elementov. Sedaj je jasno, da je algoritem pravilen in da potrebuje
najve¢ n — 1 prehodov. Ce jih naredimo n, pa tudi ne bo $kode. Sedaj ga lahko Se nekoliko
skrajSamo, da je res enostaven, ¢eprav malo manj uéinkovit.

void bubble_sort_n(vector<int> &s) {
int n=s.size();
for (int it=0;it<n;it++) {
for (int i=0;i+1<n;i++) {
if (s[il>s[i+1]) swap(s[i],s[i+1]);
}
}
print(s);
+

vector<int> sez = {7,2,5,1,2,9,3};
bubble_sort n(sez);

1223579
Oglejmo si Se racunske zahtevnosti prve razli¢ice algoritma, ki zakljuci, ¢im je rezultat urejen.

Prostorska zahtevnost: O(n)

Casovna zahtevnost (najslabsa, povpre¢na, najboljsa): O(n?), O(n?), O(n)
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Pozresni algoritmi
December 18, 2024

1 PozZresni algoritmi

Pogosto lahko sestavimo resitev nekega problema z zaporedjem korakov, pri ¢emer se na vsakem
koraku odlo¢imo za eno izmed ve¢ moznih izbir. Pri pozresnem (greedy) pristopu reSevanje se na
vsakem koraku odlo¢imo za izbiro, ki v tistem trenutku izgleda najbolj obetavno. S takim nacinom
bomo najbrz nasli kar spodobno resitev, pa bo ta tudi optimalna? Odvisno od problema, zato
moramo znati razlikovati, kje in zakaj take strategije delujejo in kdaj ne.

Recimo, da zZelimo na spodnjem zemljevidu priti iz levega zgornjega vogala v desni spodnji vogal
s ¢im manj premiki. Na zemljevidu znaki . predstavljajo prosta polja, znaki # pa zasedena.
Ocitno bomo gradili resitev postopno po premikih. Na vsakem koraku se bomo odlocili za eno
izmed najve¢ 3 moznih smeri (ne bomo se premikali nazaj, od koder smo prisli). Smiselna mera
obetavnosti premika je razdalja sosednjega polja od cilja. Prvo dilemo imamo na polju (3,3), kjer
bolje izgleda premik navzdol, kar nas premakne blizje k cilju, kot premik navzgor. Vendar nas to
vodi do slabse resitve zaradi kasnejsih komplikacij na poti, ki jih v trenutku pozresne izbire ne
upostevamo. Ni si tezko zamisliti tudi primera, kjer taka izbira sploh ne bi vodila do resitve.
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V nadaljevanju si bomo ogledali ve¢ primerov problemov ter dokazov (ne)pravilnosti pozresnih
strategij za njihovo resevanje, s ¢imer boste razvili nekaj intuicije in zdrave skepticnosti glede
uporabe pozresnih strategij. S pozresnimi strategijami se bomo ponovno srecali tudi kasneje pri
algoritmih na grafih (Dijkstra, Prim, Kruskal). Pozresne strategije se obicajno dobro obnesejo
na enostavnih problemih, medtem ko na kompleksnejsih z njimi dobimo neko suboptimalno oz.
nepravilno resitev. Posebej zanimivi pa so primeri, kjer nas v navidez kompleksnih problemih
pripeljejo pozresne resitve do optimalnega rezultata.

#include <cstdio>
#include <iostream>
#include <vector>
#include <algorithm>
#include <queue>
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using namespace std;

typedef pair<int,int> PII;
typedef vector<pair<int,int>> VII;
typedef vector<vector<pair<int,int>>> VVP;

1.1 Bencinske ¢rpalke

Za¢nimo s potovalnim problemom polnjenja avta na bencinskih ¢rpalkah (car fueling). Z avtom
zelimo potovati do K kilometrov oddaljenega cilja. Pri tem vemo, da se vzdolz poti nahaja N
¢rpalk, ki so od nasega izhodisc¢a oddaljene 0 < z; < z, < -+ < z,, < K kilometrov. Velikost
posode za gorivo oz. doseg naSega avta s polnim tankom je 7' kilometrov (z delno polnim pa
sorazmerno manj). Pot bomo zaceli s polnim tankom goriva. Je cilj sploh dosegljiv? Kaksno je
najmanjse stevilo postankov na ¢rpalkah, da prisemo na cilj?

Primer: K = 950, T = 400, z = [200, 375, 550, 750, 950].
Ugotovitve:

o Na ¢rpalki je vedno smiselno povsem napolniti tank z gorivom. Ce ga ne bi napolnili do vrha,
bi lahko z bolj polnim tankom opravili enako pot do naslednje ¢rpalke. Morebiten ostanek
goriva pa “zlili stran” oz. tam dotocili temu primerno manj.

e Dosegljivost lahko preverimo tako, da tankamo na vsaki ¢rpalki.

. Cejernogoée(kmeéinaﬂednjoérpaﬂ«)Gﬂicﬂﬂ,lahkolneskoéhnotankankanalmenutniérpaﬂd.
Na naslednji ¢rpalki lahko namre¢ doto¢imo gorivo do nivoja, ki bi ga imeli, ¢e bi natocili
gorivo na trenutni.

int crpalke(int K, int T, vector<int> x) {

x.insert(x.begin(), 0);

x.insert(x.end(), K);

int doseg=T, postanki=0;

for (int i=0;i+1<x.size();i++) {
int razdalja=x[i+1]-x[i];
if (doseg<razdalja) { postanki++; doseg=T; } // po potrebi napolnt
if (doseg<razdalja) return -1; // tudi s polnim tankom ne gre
doseg-=razdalja;

}

return postanki;

3

Da si poenostavimo implementacijo bomo dodali zacetek in konec poti kot dve dodatni ¢rpalki. Nato
se premikamo med sosednjimi ¢rpalkami v skladu s prejsSnjimi ugotovitvami. Preverimo resitev na
zac¢etnem primeru in par drugih posebnih situacijah, kjer ne rabimo dolivati goriva, ga dolivamo
povsod ali je nemogoce doseci cilj.

cout << crpalke(950, 400, {200,375,550,750}) << endl;
cout << crpalke(950, 950, {200,375,550,750}) << endl;
cout << crpalke(950, 200, {200,375,550,750}) << endl;
cout << crpalke(950, 199, {200,375,550,750}) << endl;
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1.2 Izbira aktivnosti

Izbira med seboj neodvisnih aktivnosti iz nabora ponujenih (activity selection) je klasi¢en problem.
Podanih imamo N aktivnosti, kjer se i-ta aktivnost a; izvaja v obdobju (s;,e;). Izbrati moramo
¢im vecéjo podmnozico aktivnosti, za katero velja, da je presek poljubnih dveh aktivnosti prazen
(aktivnost se sicer lahko za¢ne v trenutku, ko se prejsnja konéa). Ker lahko aktivnosti predstavimo

z daljicami, je problem znan tudi kot interval scheduling.
Primer: [(1,3),(2,4),(2,5),(4,5),(4,7),(6,7),(6,8),(7,12),(8,12), (9,10), (9,11), (11, 12), (12, 13)]
Hitro pridemo na vec idej, kako bi se lahko lotili problema brez preverjanja vseh podmnozic. Katere
od njih pa so res pravilne?

o najzgodnejsi zacetek (earliest start)

Ne izgubljajmo ¢asa s ¢akanjem! Razpored aktivnosti lahko sestavljamo po korakih tako, da vsakic¢
dodamo aktivnost, ki se za¢ne prva po zakljuéku trenutnega razporeda.

Protiprimer: [(1,6),(2,3), (4,5)]

o najkrajsi (shortest)
Dolge aktivnosti zasedejo veliko casa, zato zaénimvo z majhnimi! Razpored sestavljamo tako, da
vanj dodajamo aktivnosti od krajsih proti vec¢jim. Ce za neko aktivnost ni prostora, jo preskocimo.
Protiprimer: [(4,7),(1,5), (6,10)]

« najmanj konflikten (fewest conflicts)

Tezave so s konflikti med aktivnostmi, zato zacnimo z najmanj konfliktnimi! Izra¢unajmo konflikt-
nost vsake aktivnosti in jih po vrsti poskusimo dodajati v razpored. Lahko konfliktnosti izracunamo
vnaprej ali jih moramo posodabljati, ko nekatere aktivnosti Ze dodamo v razpored?

Protiprimer: [(6,9), (1,3),(4,7),(8,11),(12,14),(2,5),(2,5), (2,5), (10, 13), (10, 13), (10,13)]. Prvi
interval ima samo dva konflikta, vendar njegova izbira vodi v reSitev s tremi intervali, primer pa
lahko resimo s Stirimi.

o najzgodnejsi konec (earliest finish)

Cim prej zaklju¢imo s prvo aktivnostjo, da bomo imeli ¢im ve¢ ¢asa za ostale! Med vsemi aktivnos-
tmi, ki se za¢nejo ob ali po koncu trenutno zadnje izberemo tisto z najzgodnejsim koncem.

Protiprimer: 7

To izgleda obetavno. Dokazimo, da je pravilno. Recimo, da obstaja boljsa optimalna resitev, ki se
na zacetku strinja s pozresno, pri i-ti aktivnosti v izbranem razporedu pa pride prvi¢ do razlike.
Optimalna izbere aktivnost o, pozresna pa p. Ker pozresna vedno izbere aktivnost z najzgodnejsim
koncem, velja e, <= e,. Zato se aktivnost p ne more pojaviti kje kasneje v predpostavljeni
optimalni razporeditvi. Obe aktivnosti nista konfliktni s predhodnimi. Ce v optimalnem razporedu

zamenjamo aktivnost o z p, bo preostanek razporeda ostal veljaven, resitev pa ne bo ni¢ slabsa.
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Tako smo podaljsali del optimalne resitve, ki se se strinja s pozresno, ne da bi jo kako poslabsali. Ce
ta razmislek ponovimo veckrat, bomo predpostavljeno optimalno resitev lahko predelali v pozresno
brez poslabsanja rezultata. Tudi pozresna resitev nas torej pripelje do optimalnega rezultata.

VII aktivnosti(VII a) {

VII razpored;
int konec=0;
while (1) {

int j=-1;

for (int i=0;i<a.size();i++) {

if (konec<=al[i].first) { // relevanten?
if (j==-1 || ali].second<alj].second) j=i; // boljsi?

}
if (j==-1) break;
razpored.push_back(al[jl);
konec=al[j] .second;
a.erase(a.begin()+j);

}

return razpored;

VII a = {{1,3}, {2,4}, {2,5}, {4,5}, {4,7}, {6,7}, {6,8}, {7,12}, {8,12},,
-{9,10}, {9,11}, {11,12}, {12,13}};

VII r = aktivnosti(a);

printf ("%d:", (int)r.size());

for (auto [s,e]l : r) printf(" (%d,%d)",s,e);

printf("\n");

6: (1,3) (4,5) (6,7) (9,10) (11,12) (12,13)

Lahko to naredimo bolj uc¢inkovito? Aktivnosti uredimo po njihovih koncih in jih izbiramo po
vrsti, ¢e se zacetek ne seka s koncem trenutno zadnje aktivnosti. Casovna zahtevnost je tako
samo O(nlogn). Gre e hitreje? Ce so vrednosti majhna cela $tevila, bi lahko uporabili urejanje s
Stetjem.

bool cmpSecond(pair<int,int> a, pair<int,int> b) {
return a.second < b.second;

}

VII aktivnosti(VII a) {
sort(a.begin(), a.end(), cmpSecond);
VII razpored;
int konec=0;
for (auto [s,e] : a) {
if (konec<=s) {
razpored.push_back({s,e});
konec = e;
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return razpored;

VII a = {{1,3}, {2,4}, {2,5}, {4,5}, {4,7}, {6,7}, {6,8}, {7,12}, {8,12},,
-+{9,10}, {9,11}, {11,12}, {12,13}};

VII r = aktivnosti(a);

printf("%d:", (int)r.size());

for (auto [s,e] : r) printf(" (%d,%d)",s,e);

printf("\n");

6: (1,3) (4,5) (6,7) (9,10) (11,12) (12,13)

Kaj pa utezena razli¢ica problema, kjer ima vsaka aktivnost poleg zaCetka in konca tudi svojo
pomembnost in Zelimo namesto Stevila aktivnosti v razporedu maksimizirati vsoto pomembnosti?
To se izkaze za malo tezji problem, h kateremu se bomo vrnili kasneje pri tehniki dinamicnega
programiranja.

1.3 Rezervacije ucilnic

Pri problemu rezervacije uéilnic (classroom scheduling, interval partitioning) moramo na fakulteti
izvesti N predavanj, kjer posamezno predavanje poteka v Casovnem intervalu (s;,e;). Kaksno je
najmanjse stevilo predavalnic, ki jih potrebujemo, da bomo lahko izvedli vsa predavanja?

V primerjavi s prej obravnavanim problemom izbire aktivnosti, smo morali tam izbrati ¢im vec
aktivnosti, ki jih lahko izvedemo z eno predavalnico. V tem primeru pa moramo izvesti vse, pri
¢emer nas zanima, najmanj koliko predavalnic potrebujemo.

Spodnji primer prikazuje razpored predavanj s stirimi predavalnicami, mogoce pa jih je izvesti tudi
samo s tremi.

P1: (4,10), (12,15)

pP2: (0,3), (4,7), (8,11)
P3: (0,7), (10,15)

P4: (0,3), (8,11), (12,15)

Ce v kaksnem trenutku soc¢asno poteka ve¢ predavanj, bomo zagotovo potrebovali vsaj toliko pre-
davalnic. Najvec¢jemu stevilu soc¢asnih predavanj bomo rekli globina (depth), ki predstavlja spodnjo
mejo resitve. Je to spodnjo mejo vedno mogoce dosedi, ali kdaj potrebujemo ve¢ predavalnic? Ce se
razporejanja lotimo slabo, jih bomo seveda potrebovali vec; kaj pa ce jih razporedimo optimalno?

S pozresnim algoritmom bomo predavanja po vrsti glede na njihov zacetek razporejali v pre-
davalnice. Na vsakem koraku preverimo, ali je kaksna od predavalnic Ze prosta in lahko vanjo
dodelimo trenutno predavanje. Ce je takih veé, izberemo katerokoli. Ce take predavalnice ni,
odpremo/dodamo novo predavalnico (zacnemo z 0 predavalnicami) in v njo dodelimo novo preda-
vanje.

Dokazimo, da prej opisani postopek doseze ravno globino mnozice predavanj, ki je spodnja meja

resitve. Recimo, da postopek potrebuje d predavalnic. Do tega pride, ko Zelimo nekam razporediti
predavanje ¢ z zacetkom ob casu t = s,, vendar so vse ostale predavalnice Se zasedene. To pomeni,
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da imamo d — 1 predavanj, ki se zakljucijo po ¢asu t. Vsa predavanja, ki potekajo v njih, so se
zacela prej ali takrat kot i¢-to, ker jih dodajamo po vrsti. Torej so vsi njihovi zacetki manjsi ali
enaki t. V trenutku t + € torej poteka socasno d predavanj. Ce je pozresen postopek uporabil d
predavalnic, je to zato, ker nekje socasno poteka d predavanj in torej doseze spodnjo mejo.

VVP predavalnice(VII predavanja) {
sort(predavanja.begin(), predavanja.end());
VVP urnik;
for (auto p : predavanja) {
auto [s,e]l = p;
int x=-1;
for (int i=0;i<urnik.size();i++) {
if (urnik[i].back() .second<=s) { x=i; break; }
}
if (x==-1) urnik.push_back({p}); // odpremo novo
else urnik[x].push_back(p);
}

return urnik;

VII predavanja = {{4,10}, {12,15}, {0,3}, {4,7}, {8,11}, {0,7}, {10,15}, {0,3},,
-+{8,11}, {12,15}};
VVP urnik = predavalnice(predavanja);
for (auto ucilnica : urnik) {
for (auto [s,e] : ucilnica) printf(" (%d,%d)",s,e);
printf("\n");
}

(0,3) (4,7) (8,11) (12,15)
(0,3) (4,10) (10,15)
(0,7) (8,11) (12,15)

Dokazali smo, da je resitev pravilna. Razmislimo Se o njeni uc¢inkovitosti. Razporediti moramo N
predavanj enega za drugim. Pri tem pa vsaki¢ preverimo vse odprte predavalnice. Lahko se nam
zgodi, da bo vsako predavanje v svoji predavalnici, zato jih je na vsakem koraku treba preveriti
O(N). Casovna zahtevnost zgornje implementacije je torej O(N?).

Kako bi lahko to izboljsali? Najbolj problematicen del je iskanje proste predavalnice. Predavalnice
bi lahko hranili urejene v prioritetni vrsti glede na cas zakljucka zadnjega predavanja. Namesto v
poljubno prosto predavalnico, bomo razporedili predavanje v tisto, ki je Ze najdlje prosta oz. se
je ¢im bolj zgodaj sprostila. Ce ta ni primerna, ne bo tudi nobena druga. Ce uporabimo dvojisko
kopico, je ¢asovna zahtevnost O(N log N).

VVP predavalnice(VII predavanja) {
sort (predavanja.begin(), predavanja.end());
VVP urnik;
priority_queue<PII, VII, greater<PII>> pq; // min-heap
pq.push({predavanja.back() .second, -1}); // dummy
for (auto p : predavanja) {
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auto [s,e]l = p;

auto [konec, x] = pq.top();

if (konec<=s) {
pq.pop(); pq.push({e,x});
urnik[x] .push_back(p);

} else {
pq.push({e, urnik.size()});
urnik.push_back({p});

}

return urnik;

VII predavanja = {{4,10}, {12,15}, {0,3}, {4,7}, {8,11}, {0,7}, {10,153}, {0,3%},,
-{8,11}, {12,15}};
VVP urnik = predavalnice(predavanja);
for (auto ucilnica : urnik) {
for (auto [s,e] : ucilnica) printf(" (%d,%d)",s,e);
printf("\n");
+

(0,3) (4,7) (8,11) (12,15)
(0,3) (4,10) (10,15)
(0,7) (8,11) (12,15)

1.4 Datoteke na traku

Pred c¢asom trdih diskov so se podatki hranili na trakovih. Slaba stran trakov je, da je treba za
dostop do podatka na mestu x prevrteti celoten trak od zacetka do tega mesta. Oglejmo si problem
optimalnega shranjevanja datotek na traku (storing files on tape). Podanih imamo N datotek, ki
so opisane s pari Stevil d; = (s,, f;), kjer s; velikost datoteke, f;, pa pogostost dostopa do nje.
Ceno zapisa datotek na trak bomo ocenili z Zl x,; f;, kjer je x; zacetno mesto zapisa datoteke. Pri
tem se zapisi datotek seveda ne smejo prekrivati. Kaksen je optimalen razpored datotek in z njim
povezana minimalna cena?

Primer: d = [(60,5), (27, 3), (1, 20), (32,4)]
Ugotovitve:

e Datoteke je smiselno zapisovati v strnjenem zaporedju, saj morebiten prazen prostor med
njimi samo skodi.
o Ni enostavno.
Preizkusimo najprej obnasanje problema na manjsih razlicicah. S tem dobimo tudi obcutek za

glavne ovire pri resevanju. Pripravimo si funkcijo za ocenjevanje razporeda in preizkusimo razlicne
permutacije.

int score(vector<pair<int,int>> d) {
int x=0, sc=0;
for (auto [s,f] : d) { sc+=xx*f; x+=s; }
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return sc;

}

VII d = {{60,5}, {27,3}, {1,20}, {32,4}};
cout << score(d) << endl;
sort(d.begin(),d.end());
do {
cout << score(d) << ' ';
} while (next_permutation(d.begin(),d.end()));

2272
415 495 403 448 540 528 952 1032 1588 2783 2227 2863 1039 1084 1576 2771 2279
2816 1735 1723 2272 2908 2359 2896

Problem deluje zapleteno, zato najprej resimo poenostavljene razlicice.

Recimo, da so vse datoteke enako dolge, npr. s; = 1. Intuitivno bi rekli, da morajo biti bolj pogosto
dostopane datoteke na zacetku, da bo dostop do njih hiter. Naj bosta sosednji datoteki ¢ in j, pred
njima pa se nahaja x datotek. K ceni prispevata xf; +(z+1) f;. Ce ju med seboj zamenjamo, bosta
prispevali zf; + (z + 1) f;, kar je sprememba za f; — f;. Ce je negativna (kar zmanjsa ceno), ko je
Ji < [, ju je smiselno zamenjati, da bo bolj pogosto dostopana datoteka pred manj dostopano. S
tem lahko utemeljimo, da je optimalen narasc¢ajo¢ vrstni red po pogostosti dostopa.

Recimo, da imajo vse datoteke tocno en dostop, torej f; = 1. Intuitivno bi Zeleli imeti kratke
datoteke na zacetku, saj naredijo manj “Skode” kot daljse. S podobnim argumentom o zamenjavi
lahko dokazemo, da morajo biti datoteke na traku urejene naraséajoce po velikosti. Ce primerjamo
oba mozna vrstna reda dveh sosednjih datotek 7 in j sta njuna doprinosa k ceni x + (z + s;) in
x+ (z+ sj). Na ceno ostalih njuna medsebojna zamenjava nima vpliva. Vrstni red, kjer je ¢ pred
J, je torej boljsi, ce je s; < s;.

Obravnavajmo sedaj sploSen primer, kjer opazujemo mozna vrstna reda dveh sosednjih datotek na
traku. Ceni dostopa sta xf; + (z + s;)f; in zf; + (¥ + s;)f;, ¢e bi bila datoteka j pred . Hitro
lahko izra¢unamo, kdaj je cena ureditve ¢ pred j manjSa od obratne. Tako pridemo do zakljucka,
da morajo biti v optimalnem vrstnem redu datoteke urejene narascajoce glede na razmerje med
velikostjo in pogostostjo dostopa s,/ f;- Torej jih lahko v resitev pozresno zlozimo po vrsti od tistih
z nizjim proti tistim z visjim razmerjem.

af; +(x+s)f; <af;+ (v +s5)f;
sif; < 8;f;
Si/figsj/fj

bool cmpRatio(pair<int,int> a, pair<int,int> b) {
return a.first*b.second < b.first*a.second; // a.first/a.second < b.first/
<b.second ... racunska napaka?

}

int trak(vector<pair<int,int>> d) {
sort(d.begin(), d.end(), cmpRatio);
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return score(d);

}
cout << trak(d) << endl;

403

1.5 Minimizacija zamude

Pri razvrs¢anju z minimizacijo najvecje zamude (minimum lateness scheduling) imamo opravka z N
opravili, ki jih moramo izvesti na enem rac¢unalniku. Vsako opravilo je opisano s parom o, = (¢;,d,),
ki predstavlja ¢as izvajanja in rok, do katerega mora biti opravilo zaklju¢eno. Ce je s, ¢as zacetka
izvajanja, se konca ob Casu f; = s; +t;. Zamuda opravila je z; = max(0, f;, — d;). Cilj razvrscanja
opravil je minimizirati najvecjo zamudo opravila v razporedu. Minimiziramo torej Z = max z,.

Primer: o = [(2,5),(1,2),(3,6),(2,7)]

Ocitno ni koristi od tega, da bi imel urnik kaksne proste luknje. 7 odstranitvijo lukenj zago-
tovo ne moremo poslabsati urnika oz. maksimalne zamude, morda pa ga izboljsamo. Odlociti se
moramo samo za vrstni red opravil. Namesto preverjanja vseh permutacij, se ponovno ponuja nekaj
pozresnih strategij.

int late(VII o) {
int Z=0,now=0;
for (auto [t,d] : o) {
now+=t;
int z=max(0, now-d);
if (z>Z2) Z=z;
}

return Z;

VII o = {{2,5}, {1,2}, {3,6}, {2,7}};
sort(o.begin(),o0.end());
do {
cout << late(o) << ' ';
} while (next_permutation(o.begin(),o0.end()));

21231321364623364623464©6
o najkrajsi ¢as izvajanja (shortest processing time)

Kratka opravila izvedemo prej, da ne bodo zamujala zaradi dolgih opravil! Kaj pa, ¢e imajo dolga
opravila kratke roke in obratno?

Protiprimer: [(1,100), (10, 10)]
» najkrajsi prosti ¢as (smallest slack)

Poleg casa izvajanja t; moramo upostevati tudi rok opravila d;. Opravila izvajamo glede na narasca-
jo¢ prosti ¢as oz. “manevrski prostor” d; —t,!

Protiprimer: [(1,2), (10, 10)]
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o najzgodnejsi rok (earliest deadline)
Opravila izvajamo samo glede na rok za zakljucek opravila d,!
Protiprimer: ?

Izgleda ok, pa je res optimalno? Naj bodo opravila urejena narascajoce po rokih, torej d; < dy <
... < dp. Recimo, da obstaja neka optimalna resitev, ki je boljsa od pozresne. V njej se zagotovo
pojavljata dve sosednji opravili j in i, kjer ima prvo kasnejsi rok od drugega (d; > d;); sicer bi
bila ta resitev enaka pozresni. Ob njuni zamenjavi se nova zamuda (z”) vseh drugih opravil razen
1 in j ne spremeni. Zamuda opravila ¢ se kveé¢jemu zmanjsa, ker se opravilo po zamenjavi zakljuci
prej. Ce opravilo j po zamenjavi ne zamuja, ni problema. Recimo torej, da zamuja in sicer za
zi=f;—d; = f;—d; < f; —d; = 2; (koncata se ob enakem ¢asu; j ima manjsi rok).

Vemo torej, 2, =z, Vk & {i,j}, 2z <z, 2;<z. lztegasledi, daje Z' = maxzj, < maxz, =
Z. Ce ti dve opravili zamenjamo med seboj, ne bomo povecali najve¢je zamude. Ce to ponavljamo,
bomo prisli do lepo urejene pozresne resitve, ne da bi povecali zamudo, kar pa je v protislovju s
predpostavko, da pozresna resitev ni optimalna. Skonstruiramo lahko namre¢ pozresno resitev, ki
je tako dobra ali celo boljsa od predpostavljene optimalne.

int zamuda(VII o) {
sort (o.begin() ,o0.end() ,cmpSecond) ;
return late(o);

}
cout << zamuda(o) << endl;

1

1.6 Dokazovanje pravilnosti

Za dokazovanje pravilnosti pozresnih strategij smo uporabiljali naslednje pogosto uporabljene vrst
argumentov, ki pa seveda niso edini.

Prednost (stay ahead) Dokazemo, da je po vsakem koraku resitev pozresne strategije vsaj tako
dobra kot katerakoli druga. Kot primer smo obravnavali bencinske ¢rpalke.

Zamenjava (exchange argument) Dokazemo, da lahko z dolo¢enimi spremembami pretvorimo
predpostavljeno boljso resitev v tako, ki bi jo nasla tudi pozresna metoda, pri tem pa ne poslabsamo
njene kvalitete. Pravilnost pozresnega algoritma smo dokazali s protisloviem po naslednjem prin-
cipu:

1. Predpostavimo, da obstaja optimalna resitev, ki je boljsa od pozresne resitve. Med njimi
izberemo tisto, ki se ¢im bolj strinja s pozresno. Torej ima mesto i, kjer se prvic¢ razlikuje
od pozresne, ¢im vecje. Lahko bi ji rekli najbolj ekstremen protiprimer (najveéji, najmanjsi,
najkasnejsi, ..) Cilj je pokazati, da obstaja Se ekstremnejsi, ki pa je vsaj tako dober, ¢e ne
boljsi.

2. Argumentiramo, da bi lahko na tem mestu izbrali tudi pozresno potezo in zato resitev ne bi
bila nic¢ slabsa, morda pa celo boljsa.
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3. Nasli smo protislovje, ker smo lahko skonstruirali resitev, ki se ujema s pozresno na prvih ¢
mestih in je enako dobra ali celo boljsa od predpostavljene “optimalne”, hkrati pa se od nje
razlikuje kasneje. Predpostavljena optimalna resitev torej ni bila najbolj ekstremna.

4. Predpostavka, da obstaja drugacna resitev, ki je boljSa od pozresne, torej ne drzi in je pozresna
reSitev zato optimalna.

Kot primer smo obravnavali izbiro aktivnosti, datoteke na traku in minimizacijo zamude.

Struktura (structural argument) Dokazemo neko strukturno lastnost (vrednost) optimalne
resitve, ki predstavlja mejo in dokazemo, da jo pozresna resitev res doseze. Kot primer smo obrav-
navali rezervacijo ucilnic.

1.7 Menjava kovancev

V blagajni imamo kovance (in bankovce) razli¢nih vrednosti v evrih: 1, 2, 5, 10, 20, 50, 100, 200 in
500 €. Predpostavimo, da je blagajna dobro zaloZena z vsemi vrednostmi. Blagajniki se obicajno
posluzujejo pozresne strategije za vrnitev dolocene vrednosti X s ¢im manjsim stevilom kovancev.
Uporabijo najveéji kovanec, ki ne presega vrednosti X in nato ponovijo postopek na zmanjsani
vrednosti.

Ali s tem za vsako mozno vrednost X res uporabijo najmanjse Stevilo kovancev? Izkaze se, da v
primeru evrskih kovancev to drzi.

Ali to velja za poljuben nabor vrednosti kovancev? Hitro najdemo protiprimer, npr. placilo 6 s
kovanci [1, 3,4]. Pozresna metoda bi uporabila tri kovance (6 =4 + 14 1), optimalna pa zgolj dva
(6 =3+ 3).

Kako bi lahko dokazali, da za podan nabor kovancev pozresna strategija deluje za poljubno vred-
nost, ki jo moramo sestaviti? Tega se bomo lotili tako, da bomo preverili pravilnost pozresne
strategije do neke meje in dokazali, da Ce deluje do tja, bo delovala tudi za vse vecje. Za velike
vrednosti bo optimalna resitev izbirala najvecje kovance, kar pa je enako kot pri pozresni resitvi,
torej mora priti do razlike med njima pri neki manjsi vrednosti.

Najprej moramo znati izracunati optimalno Stevilo kovancev za menjavo neke vrednotsi X, da lahko
primerjamo, ali to Stevilo pozresna strategija doseze. To lahko naredimo s preverjanjem vseh moznih
kombinacij, ali pa malo u¢inkoviteje, kot se bomo naucili v poglavju o dinami¢nem programiranju.
Predpostavimo torej, da imamo postopek, ki zna izracunati optimalno stevilo kovancev za menjavo
dane vrednosti.

Naj bodo kovanci urejeni po velikosti a; < ay < ... < a,. Naj bo S najmanjsi protiprimer, kjer
pozresna strategija ne najde optimalne resitve. Razmislimo, kaj lahko povemo o optimalni strategiji
pri menjavi vrednosti S.

« Optimalna resitev ne uporabi a,,. Ce bi ga uporabila optimalna, bi ga tudi pozresna, zato bi
se na prvem koraku resitvi strinjali in bi moral obstajati manjsi protiprimer S — a,,.

« Optimalna regitev uporabi kovanec a; manj kot a,,-krat. Ce bi optimalna resitev vzela kovanec
a; kar a,-krat (ali Se veckrat), bi bilo bolje vzeti kovanec a,, zgolj a,;-krat, s ¢imer dosezemo
enako vrednosti.

Iz tega sledi, da je najvecja vrednost, ki jo optimalna strategija lahko zamenja (in se pri tem
razlikuje od pozresne) enaka U = (a; + ... + a,,_;)(a,, —1). Vemo torej, da mora biti najmanjsi
protiprimer S < U. Ce preverimo resitve do U in ne najdemo razlike, bo to veljalo tudi za vsa

11



vecja Stevila. Meja U je za nabor vrednosti v evrih dovolj nizka. Obstajajo pa tudi boljse (in bolj
zapletene) zgornje meje U' < U.

12
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Racunska geometrija
December 18, 2024

1 Racunska geometrija

Racunska geometrije je podrocje algoritmov in podatkovnih struktur, ki se ukvarja z uc¢inkovitim
resevanjem geometrijskih problemov. Ti vkljucujejo delo s tockami, daljicami, veckotniki in drugimi
geometrijskimi objekti ter relacijami med njimi, kot sta npr. razdalja ali vsebovanost. Rac¢unska
geometrija je oCiten del racunalniske grafike, vida, robotike. Manj ocitno pa je prisotna tudi v
stevilnih drugih problemih, ki dopuscajo geometrijsko formulacijo.

Omejili se bomo na resevanje problemov v ravnini, saj se problemi v visjih dimenzijah obic¢ajno
dodatno zakomplicirajo. Poleg tega je resevanje ravninskih problemov enostavno za vizualizacijo.
Kljub temu pa moramo biti pri reSevanju pozorni na stevilne posebne primere, kot so kolinearne
tocke, sovpadanje tock, vzporedne daljice, .. Pomembna ovira je tudi racunska natancnost. Ce
imamo opravka s celostevilskimi objekti, zelimo resiti problem z uporabo celih stevil, da ne vpeljemo
racunske napake, ki bi lahko povzrocila povsem napacen rezultat.

#include <iostream>
#include <cmath>
#include <vector>
#include <algorithm>
using namespace std;

typedef pair<int,int> PII;
typedef vector<PII> VII;

template<class A, class B>

ostream& operator<<(ostream& os, pair<A,B> &p) {
os << "(" << p.first << ", " << p.second << ")";
return os;

template<typename T>

void print(const vector<T> &sez) {
for (T x : sez) cout << x << " ",
cout << endl;



1.1 Razdalje in presecisca

Razdalje in presecisca so najbolj osnovni koncepti, ki jih moramo obvladati. Ne vkljucujejo kaksnih
novih algoritmic¢nih prijemov, vendar sluzijo kot ponovitev geometrije in linearne algebre. Za
nastete probleme seveda obstaja ve¢ formul. Ogledali si bomo najbolj enostavne, ki jih lahko
izpeljemo brez prepisovanja iz kaksnega ucbenika. Glede na predstavitev premic imamo razli¢ne
pristope. Predpostavili bomo, da imamo premico P predstavljeno s tocko P, in smernim vektorjem
Vp.

Razdalje:

o Tocki S in T: Pitagorov izrek poznamo Se iz osnovne Sole.

o Tocka S in premica P: Izra¢unamo projekcijo S’ tocke S na premico P in izra¢unamo razdaljo
med S in projekcijo S’. Projekcijo tocke na premico izracunamo s pomocjo skalarnega
produkta: proj, a = ﬁb. Ce delamo projekcijo na enotski smerni vektor premice, je
dolzina projekcije kar enaka skalarnemu produktu.

o Tocka S in daljica AB: Izra¢unamo projekcijo tocke na nosilko (premico) daljice. Ce je
projekcija izven daljice, bo najkrajsa razdalja do krajiséa A ali B, sicer pa do projekcije S’.

e Daljici AB in CD: Predpostavimo, da se daljici ne sekata, sicer je odgovor 0. Najkrajsa
najmanjso izmed stirih moznosti.

Presecisca:

o Tocka S in premica P: Ce je vektorski produkt vektorja P,S in smernega vektorja premice
P enak 0, lezi tocka na premici.

o Tocka S in daljica AB: Preverimo, ali tocka lezi na nosilki daljice in znotraj ocrtanega
pravokotnika (bounding bozx).

e« Premici P in R: Ce sta premici vzporedni, imamo neskonéno ali nobenega preseciséa. Sicer
reSimo sistem enacb Py + aVp = R, + bVy za obe koordinati.

e Premica in daljica: Izracunamo presecis¢e premice in nosilke daljice ter preverimo, ali lezi
presecisce na daljici.

e Daljici AB in CD: Ugotoviti moramo, ali se daljici sploh sekata, nato pa uporabimo resitev
daljice A in B na nasprotnih straneh nosilke daljice C'D in obratno. Stran/smer ugotovimo
s pomocjo vektorskega produkta. Tocka A je na levi strani vektorja C'D (v pozitivni smeri
oz. nasprotni smeri urinega kazalca), e je vektorski produkt C'D x C'A pozitiven (na drugi
strani bi bil negativen). Posebej pozorni moramo biti na primere, ko se daljici dotikata, kjer
je vektorski produkt lahko 0.

1.2 Povrsina veckotnika

Zaénimo s trikotnikom ABC. Ce imamo podane koordinate oglis¢, si lahko izberemo oglisce A za
izhodisce in izracunamo polovico absolutne vrednost vektorskega produkta p = %|AB x AC|.

Konveksen veckotnik lahko enostavno razbijemo na trikotnike in uporabimo prejsnji rezultat.

Na tezave naletimo pri veckotnikih, ki niso nujno konveksni. Uporabimo formulo s predznacenimi
vsotami trapezov p = |Z?:1 5(Y; + Yip1)(@; — x541)|. Predpostavimo lahko, da se veckotnik v
celoti nahaja nad x-osjo (formula deluje tudi brez te predpostavke). Postavimo se nekam na x-
os in opazujmo ozek vertikalen stolpec. Vsaki¢, ko bomo pri obhodu veckotnika preckali stolpec
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v desno stran, bomo obmocje pod njim odsteli, pri prehodu v levo pa pristeli. Marsikaj se bo
iznicilo in ostala bodo samo obmo¢ja, ki imajo nad seboj liho Stevilo preckanj (ta se izmenjujejo v
levo in desno), kar je ravno notranjost veckotnika. Ce naredimo obhod v drugo smer, bo rezultat
negativen, po absolutni vrednosti pa enak.

Omenimo Se, da deluje enak argument, ¢e si izberemo poljubno izhodis¢e (npr. (0,0)) in seSte-
vamo predznacene povrsine trikotnikov, ki jih z izbranim izhodis¢em formirajo stranice na robu
veckotnika.

1.3 Vsebovanost tocke

Zacnimo z najenostavnejSim primerom tocke 7', ki se nahaja v trikotniku ABC' ali pa¢ ne. Tocka
se nahaja v trikotniku, ¢e se pri obhodu trikotnika ves cas nahaja na isti strani, kar preverimo z
vektorskim produktom. Ali je to pozitivna ali negativna stran, je odvisno od smeri obhoda. Sledeci
vektorski produkti morajo imeti enak predznak: ABx AT, BC x BT in CA x CT. Pozorni moramo
biti, kaj problem zahteva v primeru, da se tocka nahaja tocno na robu trikotnika.

Naslednji primer je vsebovanost tocke v konveksnem veckotniku. Enostavno ga lahko razbijemo
na trikotnike (ki imajo skupno izbrano oglis¢e) in prevedemo problem na vsebovanost tocke v
trikotniku. Deluje pa tudi prej omenjeni pristop z lokacijo tocke na isti strani obhoda veckotnika.

Kako pa resimo problem za poljuben veckotnik (point in polygon), ki ni nujno konveksen? V
tem primeru uporabimo tehniko metanja zarka (ray casting). Ce sledimo poltraku iz tocke T v
poljubno smer, se ob vsakem krizanju z robom veckotnika spremeni lokacija znotraj/zunaj. Ce je
stevilo krizanj liho, je tocka znotraj veckotnika, sicer je izven. Pomembna podrobnost je, kaj se
zgodi, Ce zarek seka veckotnik v enem od oglis¢. Sprememba je namre¢ odvisna od sosednjih oglisc.
Ce ve¢ sosednjih oglis¢ lezi na zarku, nas zanima prvo oglisce, ki ne. Ce sta obe na isti strani zarka,
ni spremembe, sicer pa je. Prikladna izbira smeri je npr. z = (—1,0). Lahko pa se tej komplikaciji
izognemo s tako izbiro smeri (nakljuc¢no), da do tega ne pride.

V spodnji implementaciji bomo predpostavili, da se tocka ne nahaja na robu veckotnika. Ce to ni
res, bi lahko to posebej preverili. Pretvarjali se bomo, da ima tocka za € ve¢jo y koordinato. To
ne spremeni resitve, vendar poenostavi razmislek, ker so vsa ogliséa nad ali pod njo, ne pa na isti
visini (oglisc¢a z enako visino bodo obravnavana kot nizja). Problem bi z malo ve¢ truda lahko resili
tudi v celih S$tevilih, vendar zaradi preglednosti ne bomo dodatno komplicirali.

#define OPERATOR_SUBTRACT operator- // workaround for a bug of cling

PII OPERATOR_SUBTRACT(PII a, PII b) {
return {a.first-b.first, a.second-b.second};

}

int point_in_polygon(vector<PII> poly, PII t) {
int n=poly.size(), cnt=0;
auto [x,y] = t;
for (int i=0;i<n;i++) {
int j=(i+1)%n;
if ((polyl[i].second<=y) != (polyl[j].second<=y)) { // stranica seka,
wvodoravno premico
PII s = polyl[jl-polylil; // wektor stranice: i -> i+1
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PII v = t-polylil; // vektor do tocke: © -> t
double k = (double)v.second/s.second;
double xp = poly[il.first + k*s.first; // presecisce z vodoravno,
<PTemico
if (xp < x) cnt++;
}
}
return cnt%2;

}

vector<PII> poly = {{0,0}, {1,1}, {3,1}, {4,2}, {5,1}, {6,2}, {7,0}, {8,1},,
-{9,0}, {10,1}, {10,3}, {0,3}};

cout << point_in_polygon(poly, {9,1}) << endl;

cout << point_in_polygon(poly, {9,2}) << endl;

cout << point_in_polygon(poly, {6,1}) << endl;

cout << point_in_polygon(poly, {5,0}) << endl;

O O - =

1.4 Konveksna ovojnica

Konveksna ovojnica/ogrinjaca/lupina (convez hull) mnozice tock v ravnini je najmanjsa konveksna
mnozica, ki vsebuje vse podane tocke. Obicajno nas zanima rob konveksne ovojnice, ki je najkrajsa
sklenjena ¢rta, ki vsebuje vse tocke. Vcéasih tudi lomljeni ¢rti, ki predstavlja rob konveksne ovojnice,
re¢emo kar konveksna ovojnica. Predstavljamo si jo lahko kot elastiko, ki se skréi okoli mnozice
tock.

Is¢emo ekstremne (robne) tocke na robu ovojnice, ki jo definirajo. V primeru ve¢ kolinearnih tock
na robu, je stvar definicije problema, ali Zelimo porocati samo oglisca ali tudi tocke vzdolz stranic
konveksne ovojnice. V nadaljevanju se bomo omejili na primere, kjer ni treh kolinearnih tock.

Ogledali si bomo par najbolj klasi¢nih algoritmov, obstaja pa jih Se veliko ve¢. Problem seveda
postane tezji, ¢e ga reSujemo v treh ali Se ve¢ dimenzijah.

vector<PII> points = {{4,0}, {2,3}, {5,2}, {6,1}, {8,4}, {6,6}, {5,4}, {4,5},,
-{2,6}, {1,1}, {1,5}, {3,2}};

1.4.1 Identifikacija stranic

Rob konveksne ovojnice je sestavljen iz daljic med pari to¢k. Ce lahko za posamezen par tock oz.
daljico med njima ugotovimo, ali je del konveksne ovojnice, lahko zgradimo konveksno ovojnico.
Daljica je del roba konveksne ovojnice, ¢e se vse ostale tocke nahajajo na isti strani (recimo na
levi/pozitivni). Casovna zahtevnost takega postopka je O(n?), kjer je n stevilo tock.

int cross(PII u, PII v) {
return u.first*v.second - u.second*v.first;
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}

int n=points.size();
for (int i=0;i<n;i++) {
for (int j=0;j<n;j++) if (i!'=j) { // vektor daljice i-j
PII d=points[j]l-points[il;
int ok=1;
for (int k=0;k<n;k++) if (k!=i && k!=j) {
PIT v=points[k]-points[i];
if (cross(d,v)<0) ok=0;
}

if (ok) cout << char('A'+i) << " " << char('A'+j) << endl;

N G H T | O
G o= X H T mo

Stranice seveda niso izpisane v vrstnem redu, kot si sledijo na konveksni ovojnici, vendar bi jih
lahko uredili, ¢e bi bilo treba.

1.4.2 Zavijanje darila

Pri iskanju konveksne ovojnice smo lahko bolj uéinkoviti. Naraven pristop zavijanja darila (gift
wrapping, Jarvis march) zaéne z izbiro tocke, ki je gotovo del konveksne ovojnice. V ta namen
lahko izberemo npr. najbolj levo to¢ko A (najnizjo med najbolj levimi) in raztegnemo ovojni papir
navzgor. Papir ovijamo v smeri urinega kazalca dokler se ne dotakne naslednje tocke. Postopek
ovijanja ponavljamo, dokler ne pridemo do zacetne tocke.

Naslednjo tocko, ki se jo dotakne papir pri ovijanju, lahko pois¢emo na vec¢ nacinov. Ker so med
gradnjo konveksne ovojnice vedno vse tocke na isti strani zadnje tocke A (del neke polravnine skozi
A), lahko med njimi pois¢emo najbolj levo z uporabo vektorskega produkta AC' x AB za primerjavo,
ali je tocka C bolj levo (oz. v nasprotni smeri urinega kazalca) od tocke B.

VII gift_wrapping(VII points) {
int n=points.size();
PII start=+min_element(points.begin(), points.end());
vector<PII> hull;
PII a=start;
while (a!=start || hull.empty()) {
hull.push_back(a);
PII b = (a!=points[0])7?points[0] :points[1]; // katerakolsi tocka, ki ni

for (PII c : points) if (c!=a) {



PII ac=c-a, ab=b-a; // wvektorja AC, AB
if (cross(ab,ac)>0) b=c;

return hull;

}

[12]: auto hull = gift_wrapping(points);
print (hull);

1, 1) (1, 5 (2, 6) (6, 6) (8, 4) (6, 1) (4, 0)

Casovno zahtevnost algoritma lahko analiziramo v odvisnosti od velikosti rezultata (output-
sensitive) - Stevilo tock h na konveksni ovojnici. V tem primeru je ¢asovna zahtevnost O(hn).
Ce pa velikosti rezultata ne upostevamo, so lahko v najslabsem primeru vse tocke na robu ovojnice,
zato je asovna zahtevnost O(n?).

1.4.3 Grahamov pregled

Konveksno ovojnico tock v ravnini lahko pois¢emo bolj uc¢inkovito kot v kvadratnem casu in sicer z
uporabo Grahamovega pregleda (Graham scan). Ponovno si izberimo neko ekstremno tocko T', ki
je zagotovo del konveksne ovojnice (npr. najnizjo med najbolj levimi tockami). Uredimo preostale
tocke glede na kote vektorjev iz tocke T' (od tistih, ki kazejo navzdol, proti vodoravnim in tistim,
ki kazejo navzgor). Naj bo ta urejen seznam tock P, P,, ... Ce jih povezemo, dobimo ovojnico, ki
vsebuje vse tocke (kar v oglis¢ih), vendar ni konveksna. Vemo tudi, da bo konveksna ovojnica neka
podmnozica tega seznama tock. Vrstni red tock je ze pravilen, samo izbrati moramo prave.

Algoritem gradi konveksno ovojnico postopno z dodajanjem novih tock v izbranem vrstnem redu
po kotih. Po vsaki dodani tocki popravi konveksnost zgrajene ovojnice, ¢e je nova tocka podrla
konveksnost z obratom v napac¢no smer. To naredi z odstranjevanjem tock s konca zgrajene ovojnice,
dokler zakljucek ovojnice z novo tocko ni konveksen.

Grahamov pregled pravzaprav gradi vedno vec¢jo konveksno ovojnico z dodajanjem posameznih tock
po kotih. V i-tem koraku doda tocko P; in iz konveksne ovojnice to¢k T', P, P,, ..., P,_; izra¢una

konveksno ovojnico tock T', P}, Py, ..., P,.

Casovna zahtevnost algoritma je zaradi urejanja O(nlogn). Preostanek algoritma vkljucuje doda-
janje in odstranjevanje tock z ovojnice, vendar je vsaka tocka lahko dodana in odstranjena kvecjemu
enkrat. Zato je ta del algoritma linearen v odvisnosti od Stevila tock.

[13]: VII graham_scan(VII points) {
int n=points.size();
PII t=*min_element(points.begin(), points.end());

vector<pair<double,PII>> angles;
for (PII p : points) if (p!=t) {
PITI v = p-t;
angles.push_back({atan2(v.second, v.first), p});



sort(angles.begin(), angles.end());

vector<PII> hull = {t}; // stack
for (auto [_,c] : angles) {
while (hull.size()>=2) { // restore convexity
PII a=hullf[hull.size()-2], b=hull[hull.size()-1];
PIT ab=b-a, ac=c-a;
if (cross(ab,ac)>0) break;
hull.pop_back();
}
hull.push_back(c);
}
return hull;

}

[14]: auto hull2 = graham_scan(points);
print (hull2);

(1, 1) (4, 0) (6, 1) (8, 4 (6, 6) (2, 6) (1, 5)



Racunska zahtevnost

December 18, 2024

1 Racunska zahtevnost

Poskusimo odgovorit na par vprasanj, ki si jih lahko zastavimo v zvezi s prejsnjimi urejevalnimi
algoritmi.

o Kateri algoritmi so dobri in kateri slabi?
o Kateri algoritem je najboljsi oz. kateri izmed dveh je boljsi?
e Kako merimo uc¢inkovitost oz. rac¢unsko zahtevnost algoritma?

Za algoritma s permuacijami lahko brez skode reéemo, da sta slaba. Poznamo precej hitrejse
postopke urejanja, ki niso bistveno kompleksnejsi (morda celo enostavnejsi). Za ostale osnovne
algoritme urejanja pa zZe ni povsem jasnega odgovora. Poznamo namreé¢ uéinkovitejSe vendar tudi
kompleksnejse algoritme. Tudi osnovni pristopi so lahko povsem primerni.

Pri iskanju najboljsega algoritma naletimo na podobno dilemo. Poleg tega ni jasno, na kaksnih
podatkih zelimo, da je algoritem najboljsi - povsem nakljucnih, kaksnih posebnih, kako velikih?

To nas pripelje do tretjega vprasanja, kako sploh merimo uc¢inkovitost algoritma?

e Lahko merimo Cas izvajanja, vendar je te ¢ase problemati¢no primerjati na razli¢nih racu-
nalnikih.

e Lahko merimo $tevilo operacij, ki jih potrebuje algoritem. Dogovoriti pa se moramo, katere
operacije bomo Steli (primerjave, aritmetic¢ne, logi¢ne, pomnilniske, ...)

o Dogovoriti se moramo, kaksen primer podatkov bomo obravnavali (najboljSem, najslabsem,
povpreénem).

e Dogovoriti se moramo o velikosti primerov, s katerimi imamo opravka. En algoritem je
lahko boljsi za manjse primere, drugi pa se izkaze pri vecjih.

Kot bomo videli v nadaljevanju, obi¢ajno ocenjujemo asimptoti¢no zgornjo mejo stevila operacij v
najslabsem primeru.

Racunska zahtevnost (kompleksnost) je koli¢ina virov, ki jih potrebuje algoritem za reSitev
problema dane velikosti. Pri virih se obicajno osredotoc¢amo na c¢as in prostor, zato govorimo o
casovni in prostorski zahtevnosti.

Ker imamo lahko razlicne podatke enake velikosti, moramo definirati, ali gre za najboljsSo, najs-
labso ali povpreéno racunsko zahtevnost. Obic¢ajno se osredoto¢amo na najslabso (worst-case),
¢e ni doloc¢eno drugace.

Natancéno kolié¢ino virov je pogosto tezko izracunati, poleg tega pa ni pretirano prakti¢no uporabna.
Na rac¢unalniku z malenkost drugac¢no arhitekturo je ze lahko druga¢na. Poleg tega pa nas za majhne
probleme obi¢ajno ne zanima, ker je takrat preglednost bolj pomembna od uc¢inkovitosti. Zato se



obicajno ukvarjamo z asimptotiéno zahtevnostjo, ki opisuje porabo virov algoritma pri zelo
velikih problemih. Pri tem pogosto ocenjujemo neko mejo asimptoti¢ne zahtevnosti. Najpogosteje
ocenjujemo zgornjo mejo, za kar se uporablja notacija z velikim O-jem (Big O notation).
Recemo, da ima funkcija f(n) kompleksnost reda g(n), kar zapisemo kot O(g(n)) ali f(n) € O(g(n))
ali celo kar f(n) = O(g(n)) (¢eprav ne gre za enakost). Formalno to pomeni:

Jk > 03n, Yn >ny: f(n) <kg(n)

ali enakovredno z limitami
f(n)

lim,, o) < 0
Poleg zgornje meje asimptoti¢ne zahtevnosti (veliki O) poznamo Se notacije za druge meje (velika
omega - (2, velika theta - O, ..). Ve¢ o njih pa pri drugih algoritmi¢nih predmetih. Omenjene
definicije lahko posplosimo tudi na funkcije z ve¢ spremenljivkami, ¢e opazujemo ¢asovno zahtevnost

algoritma v odvisnosti od ve¢ parametrov velikosti problema.

Najpogostejsi primer je analiza zgornje meje asimptoti¢ne racunske zahtevnosti v na-
jslabsem primeru. S tem postavimo pesimisticno oceno za najbolj neugoden primer
velikih podatkov. Kadar govorimo o casovni zahtevnosti, obi¢ajno mislimo kar zgornjo
mejo asimptoticne ¢asovne zahtevnosti v najslabsem primeru, ¢e seveda ni pojasnjeno
drugace.

Recimo, da smo izra¢unali ¢as izvajanja oz. Stevilo operacij za resitev problema velikost n s funkcijo
f(n) = 3(n—1)(n+2) log n++/n. Ce izraz razsirimo, dobimo f(n) = $n?logn+inlogn—logn+/n.
Casovno zahtevnost takega algoritma bi lahko ocenili kot O(2n?), kar je sicer pravilno, vendar precej
nenatan¢na meja. BoljSa ocena ¢asovne zahtevnosti bi bila O(n?logn). Vsi ostali ¢leni so namre¢
zanemarljivi v primerjavi z n?logn, ko gre n proti neskonénosti (za potrebe zgornje meje bi jih
lahko nadomestili z n? logn), konstantni ¢len pred njim pa po definiciji ni relevanten. Primeren (ne
pa edini) izbor konstant v zgornji definiciji bi bil npr. ny = 2 in k = 3, ker so vsi trije pozitivni
¢leni mangi ali enaki n?logn pri n >= 2. V praksi to pomeni, da:

e pri vsoti obdrzimo samo najhitreje rastoci ¢len,
e pri produktu pa lahko zanemarimo konstantne faktorje.

Tipiéne ¢asovne zahtevnosti so:

), konstantna (neodvisna od velikosti problema n)
logn), logaritemska

v/n), korenska

n), linearna

nlogn) loglinearna, linearitmicna

nlog®n) za konstanto ¢ > 0, npr. O(nlog®n) kvazilinearna
n?), kvadratna
n
n

OQOQQQQ

3), kubi¢na
¢) za konstanto ¢ > 0, npr. O(n®), polinomska
o O(c") za konstanto ¢ > 1, npr. O(2"), eksponentna

o(1
(
(
(
(
(
(
(
O(

Kako velike probleme lahko resujemo z algoritmi dolofene ¢asovne zahtevnosti, npr. O(n?)? Ker
ta sintaksa skriva konstantni faktor, tega ne moremo rec¢i natan¢no. Dobra prakticna ocena pa je,
da lahko na tipi¢nem osebnem racunalniku trenutno izvedemo priblizno 10® osnovnih operacij na
sekundo.



1.0.1 Primeri

Oglejmo si nekaj primerov funkeij, ki predstavljajo racunske zahtevnosti, in jih ocenimo z notacijo
z velikim O-jem.

o fi(n) =100+ 2n+3n? =0(n3) (ali O(n*logn), kar je sicer pravilna, vendar slaba meja)
* fa(n) =3ncos(2mn) + 2 + 2n = O(n)
o f3(n) = 1+ nlogn+n'5 = O(n'®) (da logaritem raste pocasneje kot koren, se lahko

prepricate z uporabo I’Hopitalovega pravila za izracun lim,,_, 1(\)%” =0)

Funkcija lahko vsebuje vsote kaksnih vrst.

e f(n)= 22:1 n/k = nzzzl 1/k =0O(nlogn) (Harmoni¢na vrsta)
Pogoste so tudi rekurzivne funkcije.

o f(n)=n+f(n/2)=n+n/2+n/4+..<2n=0(n)
Lahko imamo funkcije ve¢ spremenljivk.

o f(n,m)=an®+nym+blogm = O(n?+ny/m) (ain b sta konstanti)

Parametriziran algoritem Nacrtujemo algoritem, v katerem bomo problem velikosti n
enakomerno razbili na skupine velikosti k, ki jih bo torej n/k. Izracunali smo, da lahko prob-
lem za posamezno skupino resimo z algoritmom s korensko ¢asovno zahtevnostjo (v odvisnosti od
velikosti skupine), ¢asovna zahtevnost postopka zdruzevanja rezultatov ve¢ skupin pa je kubic¢na (v
odvisnosti od stevila skupin). Kako naj izberemo parameter k, da bo ¢asovna zahtevnost algoritma
¢im boljsa?

f(n;k) = n/k - O(VE) + O((n/k)?). Oglejmo si ekstremne primere. Pri k& = 1 dobimo f(n) =
n+n3=0(n3), pri k=nrpa f(n) =n+1=0(/n) =0(n">). V prvem primeru je veji drugi
¢len, v drugem primeru pa prvi élen. Zelimo, da noben od njiju ne dominira, torej naj bosta enaka.
Iz enacbe nvk/k = (n/k)3 lahko dolo¢imo k = n*® in f(n) = O(n?®) = O(n°*).

Analiza programa Ocenimo casovno zahtevnost spodnjega programa.

for (int x = 1; x <= n; x *= 2) {
for (dint 1 = 0; i < x; i++) {
for (int j = 0; j < m; j += 2) {
// konstantno Stevilo operacij
}
for (int j = 1; j < mn; j *= 2) {
// konstantno Stevilo operacij
b
}
+

Na for zanke se bomo sklicevali kar s prva, druga, tretja in cetrta, kot se pojavijo v programu.
Dolo¢imo, najve¢ kolikokrat se izvede katera od njih: prva logn-krat, druga: n-krat, tretja: n/2-
krat in ¢etrta: log n-krat. Tretja in Getrta se izvedeta zaporedno, pri éemer dominira tretja. Casovno
zahtevnost lahko zato ocenimo z O(logn - n - (n/2 + logn)) = O(n?logn).



Pri ocenjevanju ¢asovne zahtevnosti pa smo lahko bolj natanéni. Stevilo ponovitev druge zanke
je namre¢ odvisno od trenutne iteracije prve zanke (v prejSnjem odstavku smo vzeli kar najbolj
pesimisti¢no oceno). Stevilo izvedb druge zanke bo 1 +2+4+ 8 + ... +n = O(n), za vsako od teh
ponovitev pa tretja zanka prispeva Se O(n) operacij. Bolj natanéna ocena ¢asovne zahtevnosti je
torej O(n?).
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1 Algoritmi in podatkovne strukture 1

Namen predmeta APS1 je nauciti udelezence algoritmicnega razmisljanja. Ukvarjali se bomo
s pravilnostjo in ucinkovitostjo algoritmov. Spoznali bomo ve¢ osnovnih algoritmov in z njimi
povezanih podatkovnih struktur, ki bodo predstavljali naso osnovno orodjarno. Poleg tega bodo
sluzili kot primeri, na katerih se bomo ucili nac¢rtovanja ter analiziranja algoritmov in podatkovnih
struktur. S konkretnimi implementacijami zasnovanih idej pa bomo utrjevali in poglabljali znanje
programiranja.

Algoritem - Postopek za resevanje dolo¢enega problema, ki ga resi v kon¢nem stevilu korakov in
je nedvoumno opisan s kon¢nim Stevilom ukazov, izvedljivih mehanic¢no brez rabe uma in obic¢ajno
podanih v obliki psevdokode, diagrama poteka ali v nekem programskem jeziku.

Primeri: iskanje najvecjega elementa v seznamu, Evklidov algoritem, Kruskalov algoritem, ...

Véasih med algoritme stejemo tudi nekoliko bolj dvoumne postopke opisane v naravnem jeziku, kot
so npr. recepti, razni birokratski postopi (npr. postopek za prijavo zacasnega prebivalisca) itd.

Podatkovna struktura - Nacin organizacije podatkov, ki omogoca ucinkovito izvajanje operacij
na njih.

Primeri: seznam, mnozica, uravnotezeno iskalno drevo, ...

Algoritmi in podatkovne strukture se mocno prepletajo. Algoritmi (postopki) v svojih ko-
rakih potrebujejo uéinkovito organizirane podatke (podatkovne strukture). In obratno. Po-
datkovne strukture potrebujejo doloc¢ene postopke (algoritme), da vzdrzujejo podatke organizirane
in omogocajo ucinkovite operacije. Glede na delez enega ali drugega, govorimo o algoritmu ali
podatkovni strukturi.

1.1 Izvajanje predmeta

Predmet se izvaja v tedenskih sklopih s predavanji, ki jim sledijo vaje. Na predavanjih so bomo
ogledali teorijo in kaksen prakticen primer resili tudi skupaj. Na vajah boste vsak teden samostojno
(ob pomoci asistentov) resevali programersko nalogo v programskem jeziku C++, ki bo vkljucevala
nek algoritmicen problem povezan z vsebino predavanj. Za domaco naloga vas bo c¢akal podoben
problem. Ob koncu sklopa se bodo vase resitve avtomatsko testirale. Za opravljeno nalogo mora
vasa reSitev uspesno prestati vse primere. Prejeli boste povratno informacijo o Stevilu uspesno
prestalih testov, ne pa o njihovi vsebini. Kdor bo Zelel svojo resitev popraviti, bo imel za to ¢as do
konca naslednjega sklopa.



1.2 Delovno okolje

Vase programe bomo ocenjevali na Ubuntu 22.04 s prevajalnikom GCC 11 in s standardom C++-20.
Ce je vas oddani program resitev.cpp, ga bomo prevedli in pognali z

g++ -std=c++20 -o program resitev.cpp
./program < test.in > test.res

Ce si boste pripravljali virtualko z Ubuntu 22.04, morate dodatno namestiti build-essential paket,
s katerim dobite C++ prevajalnik.

sudo apt install build-essential

1.3 Ocenjevanje

Za pristop k izpitu morate imeti uspesno opravljeno sprotno delo, kar pomeni povsem pravilno
reSenih vsaj 50% tedenskih nalog. Skoraj pravilna resitev je Se vedno nepravilna in je zato ne
upostevamo. Oceno predmeta prejmete na izpitu, ki ga resujete na papir.

Ce odkrijemo dve ali ve¢ prepisanih resitev, vsem udeleZenim ne priznamo sprotnega dela in tako
v tekocem studijskem letu ne morete opravljati izpita. Zato ne objavljajte svojih resitev. Posebej
drzne krsitve bomo prijavili disciplinski komisiji.

1.4 Literatura
Algoritmi in podatkovne strukture:

o Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to algorithms.
MIT press.

o Sedgewick R. & Wayne K. (2011). Algorithms fourth edition. Addison-Wesley.

o Aho A. V. Hopcroft J. E. & Ullman J. D. (1983). Data structures and algorithms. Addison-
Wesley.

« Kononenko, I., Robnik Sikonja, M., & Bosni¢, Z. (2008). Programiranje in algoritmi. Fakul-
teta za racunalnistvo in informatiko.

Programiranje v C++:

e cplusplus, cppreference
e Modern C++ for C Programmers
o Stroustrup, B. (2013). The C++ Programming Language.-4th. Addison-Wesley.

1.5 Dodatne vaje

Na spletu je kup strani, ki omogocajo resevanje programerskih in algoritmiénih nalog (po tematikah)
s preverjanjem pravilnost: Codeforces, SPOJ, LeetCode, HackerEarth, HackerRank, ...


https://cplusplus.com/reference/
https://en.cppreference.com/w/
https://berthub.eu/articles/posts/cpp-intro/
https://codeforces.com/problemset
https://www.spoj.com/problems
https://leetcode.com/problemset/all
https://www.hackerearth.com/practice/
https://www.hackerrank.com/dashboard
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1 Disjunktne mnozice

Ceprav poglavije obljublja delo z vpetimi drevesi, se bomo najprej posvetili neki drugi podatkovni
strukturi, ki nam bo kasneje prisla prav. Prav pa nam pride v Stevilnih aplikacijah, kjer imamo
opravka z zdruzevanjem mnozic ali kaksnih drugih ekvivalenénih razredov objektov.

Podatkovna struktura disjunktnih mnozic (disjoint-set) hrani mnozico disjunktnih mnozic (ali
razbitje mnozice na podmnozice) in omogoca naslednje operacije:

e add(x): Doda novo mnozico {z} z enim samim elementom.
e find(x): Najde mnozico, ki ji pripada element x.
e union(x,y): Zdruzi mnozici elementov x in y.

Poleg disjunktnih mnozic se za to podatkovno strukturo uporablja tudi izraz union-find. Pogosto
se problemi za¢nejo s mnozicami posameznih elementov, ki jih nato zdrzujemo z uporabo funkcij
union in find, zato se bomo omejili na ta primer. Dopolnitev razvitih resitev s funkcijo add za
dodajanje novega elementa je enostavna.

Posamezne mnozice bomo predstavili z drevesi. Koren drevesa pa bo predstavnik posamezne
mnozice. Funkcija £ind (x) bo torej morala poiskati in vrniti koren drevesa, funkcija union(x,y) pa
zdruziti dve drevesi v eno. Koren drevesa z elementom x lahko pripnemo kot otroka korenu drevesa
z elementom y. Zdruzevanje je torej uc¢inkovito, vendar lahko s takimi zdruzevanji nastanejo zelo
izrojena drevesa, zato je ¢asovna zahtevnost operacije find linearna.

Ker imamo opravka z dvema funkcijama, pri analizi u¢inkovitosti obi¢ajno opazujemo zaporedje
n — 1 zdruzevanj (kar postopoma zdruzi vseh n posameznih elementov v eno samo mnozico), med
tem pa izvedemo Se m > n klicev funkcije find.

#include <iostream>
#include <fstream>
#include <vector>
#include <queue>
#include <algorithm>
using namespace std;

typedef pair<int,int> PII;

typedef vector<int> VI;

typedef vector<pair<int,int>> VII;
typedef vector<vector<int>> VVI;
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template<typename T>

void print(const vector<T> &sez) {
for (T x : sez) cout << x << " ",
cout << endl;

1.0.1 Zdruzevanje po velikosti

Prva izboljsava temelji na pametnejSem zdruzevanju. Pri zdruzitvi dveh dreves je smiselno manjsega
pripeti k vec¢jemu. Velikost drevesa lahko merimo po Stevilo vozlis¢ (union by size) ali po oceni
visine (union by rank). Osredotocili se bomo na prvo moznost, ker dobimo z drugo enake rezultate.

Ob vsaki zdruzitvi se viSina drevesa lahko poveca za najvec 1 (¢e zdruzujemo enako globoki drevesi).
Pri zdruzevanju postane vozlis¢e manjsega drevesa del vsaj dvakrat vecjega zdruzenega drevesa.
Zato lahko vsako vozlisée nastopa v najve¢ O(logn) zdruZzevanjih (sicer bi moralo imeti zdruzeno
drevo ve¢ kot n vozlis¢, kar ni mogoce). Casovna zahtevnost operacije join je O(1), find pa O(logn).

1.0.2 Stiskanje poti

Druga mozna izboljava temelji na iskanju korena drevesa (find). Ce smo Ze prehodili dolgo pot,
da smo nasli koren, bi lahko vsa vozlis¢a na poti tudi povezali direktno nanj, da nam kasneje ne
bo treba tega poceti ponovno.

Ce imamo opravka samo z operacijami find (brez zdruZzevanj), je amortizirana ¢asovna zahtevnost
operacije find O(1) (v zaporedju m > n find-ov). V zaporedju operacij find bomo vsako vozlis¢e
pri iskanju korena prehodili enkrat (morda jih bomo prehodili cel kup Ze v prvi operaciji in kasneje
nobenega, ali pa v vsaki operaciji nekaj, skupaj pa ravno vse).

Ce upostevamo se zdruzevanja, je amortizirana analiza nekoliko kompleksnejsa. Povejmo samo, da
je ¢asovna zahtevnost postopnega zdruzevanja vseh elementov v eno mnozico (n — 1 operacij join)
z m > n vmesnimi operacijami find enaka O(mlogn). Amortizirana zahtevnost operacije find je
torej O(logn). S strategijo zdruzevanja po velikosti smo dosegli enako zahtevnost, ki pa ni bila
amortizirana.

1.0.3 Skupna resitev

Obe izboljsavi lahko tudi zdruzimo, saj ne vplivata ena na drugo. Zdruzevanje po velikosti skrajsa
poti, ki jih stiskanje poti kasneje Se dodatno skrajSa. Stiskanje poti ne spremeni velikosti drevesa,
temvec ga zgolj preuredi, zato ne vpliva na zdruzevanje po velikosti.

Rezultat je podatkovna struktura s skoraj konstantnimi amortiziranimi ¢asovnimi zahtevnostmi
posameznih operacij. Casovna zahtevnost je O(mlog”n), $e tesnejsa meja pa je O(ma(n)). Obe
funkciji (iterirani logaritem in inverzna Ackermannova funkcija) rasteta izjemno pocasi in sta prak-
ticno konstantni za vse razumne vrednost, npr. n = 205536 ~ 102090 Jog (n) = 5,a(n) = 4.
Amortizirana casovna zahtevnost posamezne operacije v procesu zdruzevanja posameznih elemen-
tov v eno konéno mnozico je torej prakticno konstantna!

class DisjointSet { // Union-Find
public:
vector<int> parent, size;
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DisjointSet(int n) {
parent = vector<int>(n);
size = vector<int>(n);
for (int i=0;i<n;i++) { // individual sets
parent[i] = i;
sizel[i] = 1;

int root(int x) { // find
if (parent[x]==x) return x; // reached the root
int r = root(parent[x]);
parent[x] = r; // path compression
return r;

void join(int x, int y) { // union by size
x=root(x); y=root(y); // replace by roots
if (x==y) return;
if (sizel[x]>sizely]) swap(x,y); // make x smaller
parent[x] = y; // attach to larger root
sizel[y] += sizel[x];

};

DisjointSet ds(10);

ds.join(3,4); ds.join(5,7); ds.join(0,3); ds.join(8,9); ds.join(7,9);
cout << (ds.root(3) == ds.root(7)) << endl;

cout << (ds.root(5) == ds.root(8)) << endl;

2 Minimalno vpeto drevo

Vpeto drevo (spanning tree) grafa G je drevo T, ki vkljucuje vsa vozlis¢a grafa G in podmnozico
njegovih povezav. Minimalno vpeto drevo (minimum spanning tree, MST) je tisto vpeto drevo,
ki ima najmanjso vsoto utezi povezav. Ce imamo opravka z ve¢ komponentami, govorimo o mini-
malnem povezanem gozdu. Tam za vsako povezano komponento loc¢eno pois¢emo minimalno vpeto
drevo.

Vpeto drevo lahko enostavno pois¢emo s preiskovanjem v Sirino ali globino iz poljubnega vozlisca.
Kako pa poiséemo minimalno vpeto drevo?

ifstream fin("mst.txt");
int n,m;

fin >> n >> m;
vector<VI> edges;
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vector<VII> adj(n);

for (int i=0;i<m;i++) {
int a,b,w;
fin >> a >> b >> w;
edges.push_back({a,b,w});
adj[a] .push_back({b,w});
adj[b] .push_back({a,w});

2.0.1 Prerezna lastnost

.....

v razlicnih delih razbitja pa prerezne povezave (cut-edge, cut-set).

Prerezna lastnost (cut property) pravi, da je najmanjsa prerezna povezava vedno del nekega min-
imalnega vpetega drevesa (ne glede na izbrani prerez). Naj bo e najmanjsa prerezna povezava v
razbitju vozlis¢ na mnozici A in B =V — A. Recimo, da ta povezava ni del nobenega minimalnega
vpetega drevesa. Potem mora v minimalnem vpetem drevesu obstajati neka druga povezava ¢’
med A in B. Vemo, da je w(e) < w(e’). Povezavo e’ lahko zamenjamo z e in pri tem ohranimo ali
zmanjsamo vsoto povezav v vpetem drevesu.

2.1 Prim

Primov algoritem je pozresen algoritem, ki gradi minimalno vpeto drevo s Sirjenjem od
izhodiscenega vozlis¢a navzven proti sosedom. Za izhodis¢e lahko uporabimo poljubno vozlisce,
saj morajo biti vsa del minimalnega vpetega drevesa. Oglejmo si prerez grafa na mnozico A, ki
vkljucuje vsa vozliséa do sedaj zgrajenega drevesa in mnozico B, ki vsebuje preostala. Iz prerezne
lastnosti sledi, da je najmanjSa povezava med A in B del nekega minimalnega vpetega drevesa.
Zato jo lahko dodamo v drevo in ponovimo enak razmislek.

Analizirajmo ¢asovno zahtevnost takega postopka. V drevo moramo dodati n vozlisé, vsaki¢ pa

svve

Casovna zahtevnost bi bila O(nm).

Lahko pa jo izboljsSamo. Za vsako Se nedodano vozlis¢e bomo vzdrzevali njegovo razdaljo do ze
zgrajenega drevesa. Na zacetku so vse te razdalje enake oo, razen za zacetno vozlisce, ki ima razdaljo
0. Na vsakem koraku pois¢emo vozlisce z najmanjso razdaljo, ga dodamo v drevo in posodobimo
razdalje do drevesa vseh njegovih sosedov. Vse skupaj bomo obravnavali O(m) povezav. Na vsakem
koraku dodajanja novega vozlisca v drevo pa bomo iskali vozlis¢e z najmanjso razdaljo do drevesa.
Casovna zahtevnost je O(n? +m) = O(n?).

Namesto veckratnega iskanja vozlis¢a z najmanjso razdaljo lahko hranimo vozlisc¢a v prioritetni vrsti
podobno kot v Dijkstrovem algoritmu. Posodobljene razdalje dodajamo v vrsto, ¢e dobimo iz vrste
kaksno staro vrednost, pa jo ignoriramo. Casovna zahtevnost take implementacije je O(mlogn).

int Prim(int n, vector<VII> &adj, vector<PII> &mst) {
vector<int> dist(n,-1); // distance from the tree
vector<int> done(n), parent(n);
int cost=0;
priority_queue<PII, vector<PII>, greater<PII>> pq;
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dist[0]=0; pq.push({0,0});
while (!pqg.empty()) {
auto [d,x]=pq.top(); pq.popQ);
if (done[x]) continue; // ignore old items in queue
cost+=d;
done [x]=1;
for (auto [y,w] : adj[x]) if (!donely]) { // update unfinished,,
~neighbors
if (distlyl==-1 || w<dist[yl) { // new or smaller distance
dist[yl=w; pq.push({w,y});
parent [y]=x;

}

for (int x=1;x<n;x++) { // skip root
mst.push_back({x,parent[x]});

}

return cost;

vector<PII> mst;
cout << Prim(n, adj, mst) << endl;

for (PII edge : mst) cout << edge.first << " " << edge.second << endl;
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2.2 Kruskal

Kruskalov algoritem je prav tako pozresne narave. ZacCne z mnozico vozlis¢ in dodaja povezave
od manjsih proti ve¢jim povezavam glede na utezi. Pravzaprav postopoma pretvarja gozd z vec
manjsimi drevesi v eno veliko drevo. Vsako povezavo (z,y) doda, ¢e njena vkljucitev ne ustvari cikla.
Povedano drugace, vozlis¢i x in y ne smeta pripadati istemu drevesu oz. povezani komponenti.

Vodi ta postopek res do optimalne resitve? Tudi tu si lahko pomagamo s prerezno lastnostjo.
Recimo, da smo ze sestavili nek gozd in zZelimo dodati povezavo (z,y). Naj bo drevo z vozlis¢em
x mnozica A, vsa ostala vozlis¢a pa mnozica B. Povezava (x,y) je globalno najcenejSa nedodana
povezava in zato tudi najcenejSa povezava med mnozicama A in B. Torej jo lahko gotovo dodamo
v vpeto drevo in pri tem ne bomo zgresili optimalne resitve.

Za zaCetek moramo povezave urediti po velikosti, kar zahteva O(mlogm) casa. Nato pa obrav-

.....
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ponente. Povezano komponento lahko vsaki¢ znova dolo¢imo z uporabo preiskovanja v Sirino
ali globino, ki ima ¢asovno zahtevnost O(m). Casovna zahtevnost celega postopka bi bila
O(mlogm + mm) = O(m?).

Lahko pa uporabimo podatkovno strukturo disjunktnih mnozic, ki predstavljajo povezane kompo-
nente. Posamezna vozlis¢a zdruzujemo v povezane komponente, da dobimo na koncu eno samo
komponento, ki je minimalno vpeto drevo. Operacije v strukturi disjunktnih mnozic so prakti¢no
konstantne in zanemerljive v primerjavi z zacetnim urejanjem povezav. Casovna zahtevnost je
O(mlogm + ma(n)) = O(mlogm) = O(mlogn).

bool cmpW(VI el, VI e2) { return el[2] < e2[2]; }

int Kruskal(int n, vector<VI> &edges, vector<PII> &mst) {
sort (edges.begin(), edges.end(), cmpW); // sort by weights
DisjointSet ds(n);
int cost=0;
for (VI e : edges) {
int a=e[0], b=el[1], w=e[2];
if (ds.root(a)==ds.root(b)) continue; // same component?
ds.join(a,b);
cost+=w;
mst.push_back({a,b});
}

return cost;

vector<PII> mst;
cout << Kruskal(n, edges, mst) << endl;
for (PII edge : mst) cout << edge.first << " " << edge.second << endl;
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2.3 Steinerjevo drevo v grafu

V problemu minimalnega vpetega drevesa smo morali poiskati podmnozico povezav z najmanjso
vsoto, ki med seboj povezujejo vsa vozliséa grafa v obliki drevesa. Problem lahko posplosimo tako,
da zahtevamo, da je med seboj povezana samo neka izbrana podmnozica vozlis¢ (ki jim re¢emo
terminali, njihovo stevilo pa bomo oznacili s t), vkljucuje pa lahko tudi druga vozlisca

e t = n: Ce so vsa vozlista terminali, imamo opravka s problemom minimalnega vpetega
drevesa.
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e V splosnem se temu problemu rece Steinerjevo drevo v grafu. Vozlis¢em, ki so del resitve
(drevesa), ¢eprav niso terminali, pa Steinerjeve tocke.

Problem Steinerjevega drevesa spada med tezke probleme, za katere ne poznamo algoritmov s
polinomsko zahtevnostjo v odvisnosti od Stevila terminalov ¢. Soroden geometrijski problem Stein-
erjevega drevesa v ravnini, kjer zelimo povezati ¢ tock z ravnimi ¢rtami, pri ¢emer lahko dodajamo
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