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PREFACE

Ten years ago the authors undertook to produce a book covering the known material on
formal languages, automata theory, and computational complexity. In retrospect, only a
few significant results were overlooked in the 237 pages. In writing a new book on the
subject, we find the field has expanded in so many new directions that a uniform com-
prehensive coverage is impossible. Rather than attempt to be encyclopedic, we have been
brutal in our editing of the material, selecting only topics central to the theoretical
development of the field or with importance to engineering applications.

Over the past ten years two directions of research have been of paramount im-
portance. First has been the use of language-theory concepts, such as nondeterminism and
the complexity hierarchies, to prove lower bounds on the inherent complexity of certain
practical problems. Second has been the application of language-theory ideas, such as
regular expressions and context-free grammars, in the design of software, such as compilers
and text processors. Both of these developments have helped shape the organization of
this book.

USE OF THE BOOK

Both authors have used Chapters 1 through 8 for a senior-level course, omitting only the
material on inherent ambiguity in Chapter 4 and portions of Chapter 8. Chapters 7, 8,
12, and 13 form the nucleus of a course on computational complexity. An advanced
course on language theory could be built around Chapters 2 through 7, 9 through 11,
and 14.

EXERCISES

We use the convention that the most difficult problems are doubly starred, and problems
of intermediate difficulty are identified by a single star. Exercises marked with an S have
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solutions at the end of the chapter. We have not attempted to provide a solution manual,
but have selected a few exercises whose solutions are particularly instructive.
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CHAPTER

PRELIMINARIES

In this chapter we survey the principal mathematical ideas necessary for under-
standing the material in this book. These concepts include graphs, trees, sets,
relations, strings, abstract languages, and mathematical induction. We also pro-
vide a brief introduction to, and motivation for, the entire work. The reader with a
background in the mathematical subjects mentioned can skip to Section 1.6 for
motivational remarks.

1.1 STRINGS, ALPHABETS, AND LANGUAGES

A “symbol” is an abstract entity that we shall not define formally, just as “point”
and “line” are not defined in geometry. Letters and digits are examples of
frequently used symbols. A string (or word) is a finite sequence of symbols jux-
taposed. For example, a, b, and ¢ are symbols and abcb is a string. The length of a
string w, denoted |w|, is the number of symbols composing the string. For exam-
ple, abcb has length 4. The empty string, denoted by ¢, is the string consisting of
zero symbols. Thus |e]| = 0.

A prefix of a string is any number of leading symbols of that string, and a
suffix is any number of trailing symbols. For example, string abc has prefixes ¢, a, ab,
and abc; its suffixes are ¢, ¢, b, and abc. A prefix or suffix of a string, other than the
string itself, is called a proper prefix or suffix.

The concatenation of two strings is the string formed by writing the first,
followed by the second, with no intervening space. For example, the concatena-
tion of dog and house is doghouse. Juxtaposition is used as the concatenation
operator. That is, if w and x are strings, then wx is the concatenation of these two



2  PRELIMINARIES

strings. The empty string is the identity for the concatenation operator. That is,
ew = we = w for each string w.

An alphabet is a finite set of symbols. A (formal) language is a set of strings of
symbols from some one alphabet. The empty set, J, and the set consisting of the
empty string {¢} are languages. Note that they are distinct; the latter has a member
while the former does not. The set of palindromes (strings that read the same
forward and backward) over the alphabet {0, 1} is an infinite language. Some
members of this language are ¢, 0, 1, 00, 11, 010, and 1101011. Note that the set of
all palindromes over an infinite collection of symbols is technically not a language
because its strings are not collectively built from an alphabet.

Another language is the set of all strings over a fixed alphabet . We denote
this language by X*. For example, if £ = {a}, then =* = {¢, q, aa, aaa, ...}. I
¥ =1{0, 1}, then £* = {¢, 0, 1, 00, 01, 10, 11, 000, ...}.

1.2 GRAPHS AND TREES

A graph, denoted G = (V, E), consists of a finite set of vertices (or nodes) V and a
set of pairs of vertices E called edges. An example graph is shown in Fig. 1.1. Here
V={1,2,3,4,5and E={(n,m)[n+m=4orn+m="}.

o Y
©
® o

Fig. 1.1 Example of a graph.

A path in a graph is a sequence of vertices vy, v,, ..., U, k > 1, such that there
is an edge (uv;, v;4,) for each i, 1 <i < k. The length of the path is k — 1. For
example, 1, 3, 4 is a path in the graph of Fig. 1.1; so is 5 by itself. If v, = v,, the
path is a cycle.

Directed graphs

A directed graph (or digraph), also denoted G = (V, E), consists of a finite set of
vertices V and a set of ordered pairs of vertices E called arcs. We denote an arc
from v to w by v = w. An example of a digraph appears in Fig. 1.2.

A path in a digraph is a sequence of vertices vy, v,, ..., U, k > 1, such that
v; > v;4, Is an arc for each i, 1 <i < k. We say the path is from v, to v,. Thus
1-2-3-4isapathfrom 1 to 4 in the digraph of Fig. 1.2.If v — wis an arc we
say v is a predecessor of w and w is a successor of v.
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Fig. 1.2 The digraph ({1, 2, 3, 4}, {i »j|i <j}).

Trees

A tree (strictly speaking, an ordered, directed tree) is a digraph with the following
properties.

1) There is one vertex, called the root, that has no predecessors and from which
there is a path to every vertex.

2) Each vertex other than the root has exactly one predecessor.
3) The successors of each vertex are ordered “from the left.”

We shall draw trees with the root at the top and all arcs pointing downward.
The arrows on the arcs are therefore not needed to indicate direction, and they
will not be shown. The successors of each vertex will be drawn in left-to-right
order. Figure 1.3 shows an example of a tree which is the “diagram” of the English
sentence “The quick brown fox jumped over the lazy dog.” The vertices are not
named in this example, but are given “labels,” which are either words or parts of
speech.

<sentence>
<subject> <predicate>
<noun phrase> <verb phrase>
<adjective>  <noun phrase> <verb> <adverbial phrase>
I |
the / \ jumped
<deect1ve> <noun phrase> <preposition> <noun phrase>
|
quuk / \ over
<adjective> <noun phrase> <adjective> <noun phrase>
I |
brown the
<noun> <adjective> <noun phrase>
|
fox lazy
<noun>
|
dog

Fig. 1.3 A tree.
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There is a special terminology for trees that differs from the general terminol-
ogy for arbitrary graphs. A successor of a vertex is called a son, and the predeces-
sor is called the father. If there is a path from vertex v, to vertex v,, then v, is said
to be an ancestor of v,, and v, is said to be a descendant of v,. Note that the case
v, = v, is not ruled out; any vertex is an ancestor and a descendant of itself. A
vertex with no sons is called a leaf, and the other vertices are called interior
vertices. For example, in Fig. 1.3, the vertex labeled {verb) is a son of the vertex
labeled {verb phrase), and the latter is the father of the former. The vertex labeled
“dog” is a descendant of itself, the vertex labeled {verb phrase ), the vertex labeled
(sentence), and six other vertices. The vertices labeled by English words are the
leaves, and those labeled by parts of speech enclosed in angle brackets are the
interior vertices.

1.3 INDUCTIVE PROOFS

Many theorems in this book are proved by mathematical induction. Suppose we
have a statement P(n) about a nonnegative integer n. A commonly chosen
example is to take P(n) to be

z n(n+ 1)2n + 1
5ot e w
i=0

The principle of mathematical induction is that P(n) follows from

a) P(0), and
b) P(n — 1) implies P(n) for n > 1.
Condition (a) in an inductive proof is called the basis, and condition (b) is called

the inductive step. The left-hand side of (b), that is P(n — 1), is called the inductive
hypothesis.

Example 1.1 Let us prove (1.1) by mathematical induction. We establish (a) by
substituting 0 for n in (1.1) and observing that both sides are 0. To prove (b), we
substitute n — 1 for n in (1.1) and try to prove (1.1) from the result. That is, we
must show for n > 1 that

n(n + 1)2n + 1)

i2=""1000 0 implies Z 2= 6

and since we are given

;: 2= l)n6(2n -1
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we need only show that
2 nn+1)2n+1)

(n—1n2n—1)
e +n° = e -

The latter equality follows from simple algebraic manipulation, proving (1.1).

1.4 SET NOTATION

We assume that the reader is familiar with the notion of a set, a collection of
objects (members of the set) without repetition. Finite sets may be specified by
listing’ their members between brackets. For example we used {0, 1} to denote the
alphabet of symbols 0 and 1. We also specify sets by a set former:

x| P (12)

{x in A|P(x)}. (1.3)

Statement (1.2) is read “the set of objects x such that P(x) is true,” where P(x) is
some statement about objects x. Statement (1.3) is “the set of x in set A4 such that
P(x) is true,” and is equivalent to {x|P(x) and x is in A}. For example,

or

{i|i is an integer and there exists integer j such that i = 2j}

is a way of specifying the even integers.

If every member of 4 is a member of B, then we write 4 = B and say A4 is
contained in B. A2 B is synonymous with B< A4. If A < B but 4 # B, that is,
every member of A is in B and there is some member of B that is not in A4, then we
write A & B. Sets 4 and B are equal if they have the same members. That is, A = B
if and only if A< Band B< A.

Operations on sets
The usual operations defined on sets are:
1) A U B, the union of A and B, is
{x|xisin A4 or x is in B}.
2) A N B, the intersection of A and B, is
{x|xis in A and x is in B}.
3) A — B, the difference of A and B, is
{x|x is in 4 and x is not in B}.

4) A x B, the Cartesian product of A and B, is the set of ordered pairs (a, b) such
that ais in 4 and b is in B.

5) 24, the power set of A, is the set of all subsets of A.
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Example 1.2 Let A = {1, 2} and B = {2, 3}. Then
AUB={1,23, AnB={, A-B={l},
Ax B={(1, 2), (1, 3), (2, 2), (2, 3)},
and
2 ={2, {1}, {2}, {1, 2}}.

Note that if A and B have n and m members, respectively, then A x B has nm
members and 24 has 2" members.

Infinite sets

Our intuition when extended to infinite sets can be misleading. Two sets S, and S,
have the same cardinality (number of members) if there is a one-to-one mapping of
the elements of S, onto S,. For finite sets, if S, is a proper subset of S,, then S,
and S, have different cardinality. However, if S; and S, are infinite, the latter
statement may be false. Let S, be the set of even integers and let S, be the set of all
integers. Clearly S, is a proper subset of S,. However, S, and S, have the same
cardinality, since the function f defined by f(2i) = i is a one-to-one mapping of the
even integers onto the integers.

Not all infinite sets have the same cardinality. Consider the set of all integers
and the set of all reals. Assume that the set of reals can be put in one-to-one-onto
correspondence with the integers. Then consider the real number whose ith digit
after the decimal is the ith digit of the ith real plus 5 mod 10. This real number
cannot be in correspondence with any integer, since it differs from every real that
has been mapped to an integer. From this we conclude that the reals cannot be
placed in one-to-one correspondence with the integers. Intuitively there are too
many real numbers to do so. The above construction is called diagonalization and
is an important tool in computer science.

Sets that can be placed in one-to-one correspondence with the integers are
said to be countably infinite or countable. The rationals and the set £* of the
finite-length strings from an alphabet ¥ are countably infinite. The set of all
subsets of Z* and the set of all functions mapping the integers to {0, 1} are of the
same cardinality as the reals, and are not countable.

1.5 RELATIONS

A (binary) relation is a set of pairs. The first component of each pair is chosen from
a set called the domain, and the second component of each pair is chosen from a
(possibly different) set called the range. We shall use primarily relations in which
the domain and range are the same set S. In that case we say the relation is on S. If
R is a relation and (a, b) is a pair in R, then we often write aRb.
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Properties of relations

We say a relation R on set S is

1) reflexive if aRa for all a in S;

2) irreflexive if aRa is false for all a in S;

3) transitive if aRb and bRc imply aRc;

4) symmetric if aRb implies bRa;

5) asymmetric if aRb implies that bRa is false.

Note that any asymmetric relation must be irreflexive.

Example 1.3 The relation < on the set of integers is transitive because a < b and
b < ¢ implies a < c. It is asymmetric and hence irreflexive because a < b implies
b < a is false.

Equivalence relations

A relation R that is reflexive, symmetric, and transitive is said to be an equivalence
relation. An important property of an equivalence relation R on a set S is that R
partitions S into disjoint nonempty equivalence classes (see Exercise 1.8 and its
solution). That is, S = S, U S, U --, where for each i and j, with i # j:

1) S;n §;=3;
2) for each a and b :n S;, aRb is true;
3) for each a in S; and b in S, aRb is false.

The S;’s are called eguivalence classes. Note that the number of classes may be
infinite.

Example 1.4 A common example of an equivalence relation is congruence
modulo an integer m. We write i =, j or i =j mod m if i and j are integers such
that i — j is divisible by m. The reader may easily prove that =, is reflexive,
transitive, and symmetric. The equivalence classes of =,, are m in number:

{.s —m, 0, m, 2m, ..},

{oe, —(m—=1LL,m+ 1,2m+1,..},

{e, =Lm—=1,2m—1,3m—1,...}.
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Closures of relations

Suppose 2 is a set of properties of relations. The 2-closure of a relation R is the
smallest relation R’ that includes all the pairs of R and possesses the properties in
2. For example, the transitive closure of R, denoted R™, is defined by:

1) If (a, b) is in R, then (a, b) is in R*.
2) If (a, b) isin R* and (b, ¢) is in R, then (a4, ¢) is in R*.
3) Nothing is in R* unless it so follows from (1) and (2).

It should be evident that any pair placed in R* by rules (1) and (2) belongs
there, else R* would either not include R or not be transitive. Also an easy
inductive proof shows that R* is in fact transitive. Thus R* includes R, is transi-
tive, and contains as few pairs as any relation that includes R and is transitive.

The reflexive and transitive closure of R, denoted R*, is easily seen to be
R* U {(a, a)|ais in S}.

Example 1.5 Let R = {(1, 2), (2, 2), (2, 3)} be a relation on the set {1, 2, 3}. Then

R™={(1,2),(2,2), (2, 3), (1, 3)},
and

R* = {(1, 1), (1, 2), (1, 3). (2.2). 2. 3). (3, 3)}

1.6 SYNOPSIS OF THE BOOK

Computer science is the systematized body of knowledge concerning computa-
tion. Its beginnings can be traced back to the design of algorithms by Euclid and
the use of asymptotic complexity and reducibility by the Babylonians (Hogben
[1955]). Modern interest, however, is shaped by two important events: the advent
of modern digital computers capable of many millions of operations per second
and the formalization of the concept of an effective procedure, with the con-
sequence that there are provably noncomputable functions.

Computer science has two major components: first, the fundamental ideas
and models underlying computing, and second, engineering techniques for the
design of computing systems, both hardware and software, especially the applica-
tion of theory to design. This book is intended as an introduction to the first area,
the fundamental ideas underlying computing, although we shall remark briefly on
the most important applications.

Theoretical computer science had its beginnings in a number of diverse fields:
biologists studying models for neuron nets, electrical engineers developing switch-
ing theory as a tool to hardware design, mathematicians working on the foun-
dations of logic, and linguists investigating grammars for natural languages. Out
of these studies came models that are central to theoretical computer science.
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The notions of finite automata and regular expressions (Chapters 2 and 3)
were originally developed with neuron nets and switching circuits in mind. More
recently, they have served as useful tools in the design of lexical analyzers, the part
of a compiler that groups characters into tokens—indivisible units such as var-
iable names and keywords. A number of compiler-writing systems automatically
transform regular expressions into finite automata for use as lexical analyzers. A
number of other uses for regular expressions and finite automata have been found
in text editors, pattern matching, various text-processing and file-searching pro-
grams, and as mathematical concepts with application to other areas, such as
logic. At the end of Chapter 2 we shall outline some of the applications of this
theory.

The notion of a context-free grammar and the corresponding pushdown au-
tomaton (Chapters 4 through 6) has aided immensely the specification of program-
ming languages and in the design of parsers—another key portion of a compiler.
Formal specifications of programming languages have replaced extensive and
often incomplete or ambiguous descriptions of languages. Understanding the cap-
abilities of the pushdown automaton has greatly simplified parsing. It is inter-
esting to observe that parser design was, for the earliest compilers, a difficult
problem, and many of the early parsers were quite inefficient and unnecessarily
restrictive. Now, thanks to widespread knowledge of a variety of context-free-
grammar-based techniques, parser design is no longer a problem, and parsing
occupies only a few percent of the time spent in typical compilation. In Chapter 10
we sketch the principal ways in which efficient parsers that behave as pushdown
automata can be built from certain kinds of context-free grammars.

In Chapter 7 we meet Turing machines and confront one of the fundamental
problems of computer science; namely, that there are more functions than there
are names for functions or than there are algorithms for computing functions.
Thus we are faced with the existence of functions that are simply not computable;
that is, there is no computer program that can ever be written, which given an
argument for the function produces the value of the function for that argument
and works for all possible arguments.

Assume that for each computable function there is a computer program or
algorithm that computes it, and assume that any computer program or algorithm
can be finitely specified. Thus computer programs are no more than finite-length
strings of symbols over some finite alphabet. Hence the set of all computer pro-
grams is countably infinite. Consider now functions mapping the integers to 0 and
1. Assume that the set of all such functions are countably infinite and that these
functions have been placed in correspondence with the integers. Let f; be the
function corresponding to the ith integer. Then the function

o iff(n)=1
Sln) = 1 otherwise
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cannot correspond to any integer, which is a contradiction. [Iff (n) = f(n), then we
have the contradiction f (j) = f;(j) and f (j) # f;(j).] This argument is formalized in
Chapters 7 and 8, where we shall see that certain easily stated problems cannot be
solved on the computer, even though they appear at first glance to be amenable to
computation.

However, we can do more than tell whether a problem can be solved by a
computer. Just because a problem can be solved doesn’t mean there is a practical
algorithm to solve it. In Chapter 12 we see that there are abstract problems that
are solvable by computer but require inordinate amounts of time and/or space for
their solution. Then in Chapter 13 we discover that there are many realistic and
important problems that also fall in this category. The nascent theory of “intract-
able problems” is destined to influence profoundly how we think about problems.

EXERCISES

1.1 In the tree of Fig. 1.4,

a) Which vertices are leaves and which are interior vertices?
b) Which vertices are the sons of 5?

c) Which vertex is the father of 57

d) What is the length of the path from 1 to 9?

¢€) Which vertex is the root?

Fig. 1.4 A tree.

1.2 Prove by induction on n that

0% ,,(n+l) b) 3 isz(,.g:o i)z

i=0 i=0
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*S 1.3 A palindrome can be defined as a string that reads the same forward and backward,
or by the following definition.

1) ¢ is a palindrome.

2) If a is any symbol, then the string a is a palindrome.

3) If a is any symbol and x is a palindrome, then axa is a palindrome.
4) Nothing is a palindrome unless it follows from (1) through (3).

Prove by induction that the two definitions are equivalent.
* 1.4  The strings of balanced parentheses can be defined in at least two ways.

1) A string w over alphabet {(,)} is balanced if and only if:
a) w has an equal number of (’s and )’s, and
b) any prefix of w has at least as many (’s as )’s.
2) a) e is balanced.
b) If w is a balanced string, then (w) is balanced.
c) If w and x are balanced strings, then so is wx.
d) Nothing else is a balanced string.

Prove by induction on the length of a string that definitions (1) and (2) define the same class
of strings.

*1.5 What is wrong with the following inductive “proof” that all elements in any set must
be identical? For sets with one element the statement is trivially true. Assume the statement
is true for sets with n — 1 elements, and consider a set S with n elements. Let a be an element
of S. Write S = §, U §,, where S, and S, each have n — 1 elements, and each contains a.
By the inductive hypothesis all elements in S, are identical to a and similarly all elements in
S, are identical to a. Thus all elements in S are identical to a.

1.6  Show that the following are equivalence relations and give their equivalence classes.

a) The relation R, on integers defined by iR, j if and only if i = .

b) The relation R, on people defined by pR, q if and only if p and g were born at the same
hour of the same day of some year.

c) The same as (b) but “of the same year” instead of “of some year.”

1.7 Find the transitive closure, the reflexive and transitive closure, and the symmetric
closure of the relation

{(1,2), (2, 3), (3, 4). (5, 4)}.
*S 1.8 Prove that any equivalence relation R on a set S partitions S into disjoint equiv-

alence classes.

*1.9  Give an example of a relation that is symmetric and transitive but not reflexive.
[Hint: Note where reflexivity is needed to show that an equivalence relation defines equiv-
alence classes; see the solution to Exercise 1.8.]

*1.10  Prove that any subset of a countably infinite set is either finite or countably infinite.
*111 Prove that the set of all ordered pairs of integers is countably infinite.

1.12 Is the union of a countably infinite collection of countably infinite sets countably
infinite? is the Cartesian product?



12 PRELIMINARIES

Solutions to Selected Exercises

1.3 Clearly every string satisfying the second definition reads the same forward and
backward. Suppose x reads the same forward and backward. We prove by induction on the
length of x that x’s being a palindrome follows from rules (1) through (3). If |x| < 1, then x
is either ¢ or a single symbol a and rule (1) or (2) applies. If | x| > 1, then x begins and ends
with some symbol a. Thus x = awa, where w reads the same forward and backward and is
shorter than x. By the induction hypothesis, rules (1) through (3) imply that w is a palin-
drome. Thus by rule (3), x = awa is a palindrome.

1.8 Let R be an equivalence relation on S, and suppose a and b are elements of S. Let C,
and C, be the equivalence classes containing a and b respectively; that is, C, = {c|aRc} and
Cy = {c|bRc}. We shall show that either C, = C, or C, n C, = &. Suppose C, n C, #+ &;
letd be in C, n C,. Now let e be an arbitrary member of C,. Thus aRe. Asd isinC, n C,
we have aRd and bRd. By symmetry, dRa. By transitivity (twice), bRa and bRe. Thus e is in
C, and hence C, < C,. A similar proof shows that C, < C,, so C,= C,. Thus distinct
equivalence classes are disjoint. To show that the classes form a partition, we have only to
observe that by reflexivity, each a is in the equivalence class C,, so the union of the
equivalence classes is S.



CHAPTER

FINITE AUTOMATA AND
REGULAR EXPRESSIONS

2.1 FINITE STATE SYSTEMS

The finite automaton is a mathematical model of a system, with discrete inputs
and outputs. The system can be in any one of a finite number of internal
configurations or “states.” The state of the system summarizes the information
concerning past inputs that is needed to determine the behavior of the system on
subsequent inputs. The control mechanism of an elevator is a good example of a
finite state system. That mechanism does not remember all previous requests for
service but only the current floor, the direction of motion (up or down), and the
collection of not yet satisfied requests for service.

In computer science we find many examples of finite state systems, and the
theory of finite automata is a useful design tool for these systems. A primary
example is a switching circuit, such as the control unit of a computer. A switching
circuit is composed of a finite number of gates, each of which can be in one of two
conditions, usually denoted 0 and 1. These conditions might, in electronic terms,
be two different voltage levels at the gate output. The state of a switching network
with n gates is thus any one of the 2" assignments of O or 1 to the various gates.
Although the voltage on each gate can assume any of an infinite set of values, the
electronic circuitry is so designed that only the two voltages corresponding to 0
and 1 are stable, and other voltages will almost instantaneously adjust themselves
to one of these voltages. Switching circuits are intentionally designed in this way,
80 that they can be viewed as finite state systems, thereby separating the logical
design of a computer from the electronic implementation.

Certain commonly used programs such as text editors and the lexical analy-
zers found in most compilers are often designed as finite state systems. For exam-

13
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ple, a lexical analyzer scans the symbols of a computer program to locate the
strings of characters corresponding to identifiers, numerical constants, reserved
words, and so on. In this process the lexical analyzer needs to remember only a
finite amount of information, such as how long a prefix of a reserved word it has
seen since startup. The theory of finite automata is used heavily in the design of
efficient string processors of these and other sorts. We mention some of these
applications in Section 2.8.

The computer itself can be viewed as a finite state system, although doing so
turns out not to be as useful as one would like. Theoretically the state of the
central processor, main memory, and auxiliary storage at any time is one of a very
large but finite number of states. We are assuming of course that there is some
fixed number of disks, drums, tapes, and so on available for use, and that one
cannot extend the memory indefinitely. Viewing a computer as a finite state
system, however, is not satisfying mathematically or realistically. It places an
artificial limit on the memory capacity, thereby failing to capture the real essence
of computation. To properly capture the notion of computation we need a poten-
tially infinite memory, even though each computer installation is finite. Infinite
models of computers will be discussed in Chapters 7 and 8.

It is also tempting to view the human brain as a finite state system. The
number of brain cells or neurons is limited, probably 233 at most. It is conceivable,
although there is evidence to the contrary, that the state of each neuron can be
described by a small number of bits. If so, then finite state theory applies to the
brain. However, the number of states is so large that this approach is unlikely to
result in useful observations about the human brain, any more than finite state
assumptions help us understand large but finite computer systems.

Perhaps the most important reason for the study of finite state systems is the
naturalness of the concept as indicated by the fact that it arises in many diverse
places. This is an indication that we have captured the notion of a fundamental
class of systems, a class that is rich in structure and potential application.

An example

Before formally defining finite state systems let us consider an example. A man
with a wolf, goat, and cabbage is on the left bank of a river. There is a boat large
enough to carry the man and only one of the other three. The man and his
entourage wish to cross to the right bank, and the man can ferry each across, one
at a time. However, if the man leaves the wolf and goat unattended on either
shore, the wolf will surely eat the goat. Similarly, if the goat and cabbage are left
unattended, the goat will eat the cabbage. Is it possible to cross the river without
the goat or cabbage being eaten?

The problem is modeled by observing that the pertinent information is the
occupants of each bank after a crossing. There are 16 subsets of the man (M), wolf
(W), goat (G), and cabbage (C). A state corresponds to the subset that is on the left
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bank. States are labeled by hyphenated pairs such as MG-WC, where the symbols
to the left of the hyphen denote the subset on the left bank ; symbols to the right of
the hyphen denote the subset on the right bank. Some of the 16 states, such as
GC-MW, are fatal and may never be entered by the system.

The “inputs” to the system are the actions the man takes. He may cross alone
(input m), with the wolf (input w), the goat (input g), or cabbage (input c). The
initial state is MWGC-J and the final state is J-M WGC. The transition diagram
is shown in Fig. 2.1.

Fig. 2.1 Transition diagram for man, wolf, goat, and cabbage problem.

There are two equally short solutions to the problem, as can be seen by
searching for paths from the initial state to the final state (which is doubly circled).
There are infinitely many different solutions to the problem, all but two involving
useless cycles. The finite state system can be viewed as defining an infinite fan-
guage, the set of all strings that are labels of paths from the start state to the final
state.

Before proceeding, we should note that there are at least two important ways
in which the above example is atypical of finite state systems. First, there is only
one final state; in general there may be many. Second, it happens that for each
transition there is a reverse transition on the same symbol, which need not be the
case in general. Also, note that the term “final state,” although traditional, does
not mean that the computation need halt when it is reached. We may continue
making transitions, e.g., to state MG-WC in the above example.
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2.2 BASIC DEFINITIONS

A finite automaton (F A) consists of a finite set of states and a set of transitions from
state to state that occur on input symbols chosen from an alphabet X. For each
input symbol there is exactly one transition out of each state (possibly back to the
state itself). One state, usually denoted g, is the initial state, in which the automa-
ton starts. Some states are designated as final or accepting states.

A directed graph, called a transition diagram, is associated with an FA as
follows. The vertices of the graph correspond to the states of the FA. If there is a
transition from state g to state p on input g, then there is an arc labeled a from
state q to state p in the transition diagram. The FA accepts a string x if the
sequence of transitions corresponding to the symbols of x leads from the start
state to an accepting state.

Example 2.1 The transition diagram of an FA is illustrated in Fig. 2.2. The initial
state, g, is indicated by the arrow labeled “start.” There is one final state, also g
in this case, indicated by the double circle. The FA accepts all strings of 0’s and 1’s
in which both the number of 0’s and the number of 1’s are even. To see this,
visualize “control” as traveling from state to state in the diagram. Control starts at
go and must finish at g, if the input sequence is to be accepted. Each O-input
causes control to cross the horizontal line a-b, while a 1-input does not. Thus
control is at a state above the line a-b if and only if the input seen so far contains
an even number of 0’s. Similarly, control is at a state to the left of the vertical line
c-d if and only if the input contains an even number of 1’s. Thus control is at g if
and only if there are both an even number of 0’s and an even number of 1’s in the
input. Note that the FA uses its state to record only the parity of the number of 0s
and the number of 1’s, not the actual numbers, which would require an infinite
number of states.

Fig. 2.2 The transition diagram of a finite automaton.
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We formally denote a finite automaton by a 5-tuple (Q, Z, 8, qo, F), where Q is
a finite set of states, X is a finite input alphabet, q, in Q is the initial state, F < Q is
the set of final states, and § is the transition function mapping Q x X to Q. That is,
8(q, a) is a state for each state q and input symbol a.

We picture an FA as a finite control, which is in some state from Q, reading a
sequence of symbols from X written on a tape as shown in Fig. 2.3. In one move
the FA in state q and scanning symbol a enters state 6(g, a) and moves its head
one symbol to the right. If 6(g, a) is an accepting state, then the FA is deemed to
have accepted the string written on its input tape up to, but not including, the
position to which the head has just moved. If the head has moved off the right end
of the tape, then it accepts the entire tape. Note that as an FA scans a string it may
accept many different prefixes.

Finite
R control

Fig. 2.3 A finite automaton.

To formally describe the behavior of an FA on a string, we must extend the
transition function é to apply to a state and a string rather than a state and a
symbol. We define a function & from Q x £* to Q. The intention is that §(g, w) is
the state the FA will be in after reading w starting in state q. Put another way,
(g, w) is the unique state p such that there is a path in the transition diagram from
q to p, labeled w. Formally we define

1) (q, ¢) = ¢, and
2) for all strings w and input symbols a,

8(q, wa) = 8(3(g, w), a).

Thus (1) states that without reading an input symbol the FA cannot change state,
and (2) tells us how to find the state after reading a nonempty input string wa.
That is, find the state, p = 8(qg, w), after reading w. Then compute the state 6(p, a).

Since 8(q, a) = 5(5(g, €), a) = 5(g, a) [letting w = ¢ in rule (2) above], there
can be no disagreement between & and § on arguments for which both are defined.
Thus we shall for convenience use & instead of § from here on.

Convention We shall strive to use the same symbols to mean the same thing
throughout the material on finite automata. In particular, unless it is stated other-
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wise, the reader may assume:

1) Q is a set of states. Symbols ¢ and p, with or without subscripts, are states. g,
is the initial state.

2) X is an input alphabet. Symbols a and b, with or without subscripts, and the
digits are input symbols.

3) ¢ is a transition function.

4) F is a set of final states.

5) w, x, y, and z, with or without subscripts, are strings of input symbols.

A string x is said to be accepted by a finite automaton M = (Q, Z, 6, qo, F) if
(g0, x) = p for some p in F. The language accepted by M, designated L(M), is the
set {x|8(go, x) is in F}. A language is a regular set (or just regular) if it is the set
accepted by some finite automaton.t The reader should note that when we talk
about a language accepted by a finite automaton M we are referring to the specific
set L(M), not just any set of strings all of which happen to be accepted by M.

Example 2.2 Consider the transition diagram of Fig. 2.2 again. In our formal
notation this FA is denoted M = (Q, Z, 6, qo, F), where Q = {qo, ¢1, 92, 43},
T ={0, 1}, F = {qo}, and ¢ is shown in Fig. 2.4.

States

9o
q1
q2
q3

Fig. 2.4 (q, a) for the FA of Fig. 2.2

Suppose 110101 is input to M. We note that 6(qo, 1) = ¢, and 6(q,, 1) = go.
Thus

0(go, 11) = 0(0(qo, 1), 1) = d(g,, 1) = go-

We might remark that thus 11 is in L(M), but we are interested in 110101. We
continue by noting 6(qo, 0) = ¢,. Thus

6(go, 110) = 6(5(go, 11), 0) = 6(qo, 0) = g2-

t The term “regular” comes from “regular expressions,” a formalism we shall introduce in Section 2.5,
and which defines the same class of languages as the FA's.
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Continuing in this fashion, we find that
(g0, 1101) = g3, 3(go, 11010) = g,
and finally
5(qo, 110101) = gq,.

The entire sequence of states is

‘13‘1} ‘19‘1; q(z.)q{ 9o-

Thus 110101 is in L(M). As we mentioned, L(M) is the set of strings with an even
number of 0’s and an even number of 1’s.

2.3 NONDETERMINISTIC FINITE AUTOMATA

We now introduce the notion of a nondeterministic finite automaton. It will turn

out that any set accepted by a nondeterministic finite automaton can also be

accepted by a deterministic finite automaton. However, the nondeterministic finite

. automaton is a useful concept in proving theorems. Also, the concept of non-
determinism plays a central role in both the theory of languages and the theory of
computation, and it is useful to understand this notion fully in a very simple
context 'initially. Later we shall meet automata whose deterministic and non-
deterministic versions are known not to be equivalent, and others for which
equivalence is a deep and important open question.

Consider modifying the finite automaton model to allow zero, one, or more
transitions from ‘a state on the same input symbol. This new model is called a
nondeterministic finite automaton (NFA). A transition diagram for a nondeter-
ministic finite automaton is shown in Fig. 2.5. Observe that there are two edges
labeled O out of state g,, one going back to state q, and one going to state g;.

An input sequence a,a, - - a, is accepted by a nondeterministic finite autom-

“aton if there exists a sequence of transitions, corresponding to the input
sequence, that leads from the initial state to some final state. For example, 01001 is
accepted by the NFA of Fig. 2.5 because there is a sequence of transitions through
the states qo, go> 9o» 93> 94> 94 labeled 0, 1,0, 0, 1. This particular NFA accepts all
strings with either two consecutive 0’s or two consecutive 1’s. Note that the FA of
the previous section (deterministic FA, or DFA for emphasis) is a special case of
the NFA in which for each state there is a unique transition on each symbol. Thus
in a DFA, for a given input string w and state g, there will be exactly one path
labeled w starting at q. To determine if a string is accepted by a DFA it suffices to
check this one path. For an NFA there may be many paths labeled w, and all must
be checked to see whether one or more terminate at a final state.

In terms of the picture in Fig. 2.3 with a finite control reading an input tape,
we may view the NFA as also reading an input tape. However, the finite control
at any time can be in any number of states. When a choice of next state can be



20 FINITE AUTOMATA AND REGULAR EXPRESSIONS

Fig. 2.5 The transition diagram for a nondeterministic finite automaton.

made, as in state g, on input 0 in Fig. 2.5, we may imagine that duplicate copies of
the automaton are made. For each possible next state there is one copy of the
automaton whose finite control is in that state. This proliferation is exhibited in
Fig. 2.6 for the NFA of Fig. 2.5 with input 01001.

do—L 5 4y —1 —v 5 ‘o -0, [y

OO

A

Fig. 2.6 Proliferation of states of an NFA.

Formally we denote a nondeterministic finite automaton by a 5-tuple (Q, Z, 9,
qo, F), where Q, X, qo, and F (states, inputs, start state, and final states) have the
same meaning as for a DFA, but § is a map from Q x X to 22. (Recall 22 is the
power set of Q, the set of all subsets of Q.) The intention is that 6(q, a) is the set of
all states p such that there is a transition labeled a from q to p.
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Example 2.3 The function ¢ for the NFA of Fig. 2.5 is given in Fig. 2.7.

) Inputs
States 0 1

9o {90, 43} {90, a1}
0@ %) {g2}
q2 {42} {q2}
qs. (g4} %]
qa {(14} {‘h}

Fig. 2.7 The mapping J for the NFA of Fig. 2.5.

The function d can be extended to a function § mapping Q x £* to 22 and
reflecting sequences of inputs as follows:

1) 8(¢, &) = {a},
2) (g, wa) = {p|for some state r in (g, w), p is in 8(r, a)}.

Condition (1) disallows a change in state without an input. Condition (2) indicates
that starting in state q and reading the string w followed by input symbol a we can
be in state p if and only if one possible state we can be in after reading w is r, and
from r we may go to p upon reading a.

Note that §(q, a) = 8(g, a) for a an input symbol. Thus we may again use § in
place of 4. It is also useful to extend & to arguments in 2¢ x * by

3) 6P W) quPa(q’ W)

for each set of states P = Q. L(M), where M is the NFA (Q, Z, 8, qo, F), is
{w|3(go, w) contains a state in F). :

Example 2.4 Consider again the NFA of Fig. 2.5, whose transition function ¢
was exhibited in Fig. 2.7. Let the input be 01001.

6(90. 0) = {40, 45}
(4o, 01) = 5(3(go, 0), 1) = 0({90. g3 1) = 6(qo, 1) v 3(g3, 1) = {go, 9}
Similarly, we compute

(g0, 010) = {4o» 113}" (g, 0100) = {90, g3, 44}
and

(o, 01001) = {go, 415 ga}-
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The equivalence of DFA’s and NFA’s

Since every DFA is an NFA, it is clear that the class of languages accepted by
NFA’s includes the regular sets (the languages accepted by DFA’s). However, it
turns out that these are the only sets accepted by NFA’s. The proof hinges on
showing that DFA’s can simulate NFA’s; that is, for every NFA we can construct
an equivalent DFA (one which accepts the same language). The way a DFA
simulates an NFA is to allow the states of the DFA to correspond to sets of states
of the NFA. The constructed DFA keeps track in its finite control of all states that
the NFA could be in after reading the same input as the DFA has read. The formal
construction is embodied in our first theorem.

Theorem 2.1 Let L be a set accepted by a nondeterministic finite automaton.
Then there exists a deterministic finite automaton that accepts L.

Proof LetM = (Q, Z, 6, o, F) be an NFA accepting L. Define a DFA, M’ = (Q’,
X, &', qo, F'), as follows. The states of M’ are all the subsets of the set of states of M.
That is, @’ = 22. M’ will keep track in its state of all the states M could be in at any
given time. F’ is the set of all states in Q' containing a final state of M. An element
of Q' will be denoted by [q, q,, - .., g}, where g4, g5, ..., g; are in Q. Observe that
[41> 425 ---» g;] 1s a single state of the DFA corresponding to a set of states of the
NFA. Note that g, = [go]-
We define

6'([(11’ q2s ---» qi]’ a) = [pl’ p2’ cey pj]
if and only if
5({‘11» gz, - qi}’ a) = {pl’ P2y --es P,}

That is, &’ applied to an element [q, g5, ..., g;] of Q" is computed by applying é to
each state of Q represented by [qy, g5, --., ¢;]- On applying é toeach of q;, g5, ...,
g; and taking the union, we get some new set of states, py, p,, ..., p;- This new set
of states has a representative, [p,, p,, ..., p;] in @', and that element is the value of

5,([‘117 ‘Iz» cet qi]’ a)‘
It is easy to show by induction on the length of the input string x that

(g0, x) =41 92, ---» qi]
if and only if
5((]0, x) = {qh q2; ---» q'}
Basis  The result is trivial for |x| = 0, since g = [g,] and x must be c.

Induction Suppose that the hypothesis is true for inputs of length m or less. Let
xa be a string of length m + 1 with a in X. Then

&'(qo, xa) = &'(6'(qo, x), a).
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By the inductive hypothesis,
61(‘1:)’ x) = [ph P25 .-+ pj]
if and only if
5(‘107 x) = {pl’ D25 .- p;}
But by definition of &',
6'([1’1, D25 --+s Pj], a) = ["1, L TIRTN "k]
if and only if
5({pla D25 --2» pj}9 a) = {rla T2y oeey rk}'
Thus,
5'(4:)’ xa) = [7‘1, r29 ceny rk]
if and only if
0(qo, xa) ={ry, ra, ..., 1)y

which establishes the inductive hypothesis.
To complete the proof, we have only to add that §'(gp, x) is in F’ exactly when
8(go, x) contains a state of Q that is in F. Thus L(M) = L(M"). 0

Since deterministic and nondeterministic finite automata accept the same sets,
we shall not distinguish between them unless it becomes necessary, but shall
simply refer to both as finite automata.

Example 2.5 Let M = ({q0, ¢:}, {0, 1}, J, g0, {q:}) be an NFA where

6(‘]0’ 0) = {QO’ ql}? 5(‘10’ 1) = {ql}’ 5(ql? 0) = Q’ 5(‘]1’ 1) = {QO’ ql}'

We can construct a DFA M’ = (Q, {0, 1}, &, [g,], F), accepting L(M) as follows. Q
consists of all subsets of {go, q,;}. We denote the elements of Q by [qo], [9:],
[90, 9,], and . Since 5(qo, 0) = {0, 91}, we have

([0, 0) = [90, 91]-
Likewise,

(g0} V=1[q1} ([@:).0)=S, and (g} 1) =40, 9:]-
Naturally, §'(&J, 0) = §'(J, 1) = &. Lastly,
9([go> 4], 0) = (40> 91,
since

3({90» 41}, 0) = 8(40, 0) ¥ (g, 0) = {go, 91} V D = {40, 91},
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and
5,([q0a ‘11], 1) = [qO’ ‘11],

since
0({q0> 01} 1) = 8(q0, 1) v 8(q1, 1) = {41} Y {40, 41} = {40, 91}-
The set F of final states is {[q,], [0, ¢1]}-

In practice, it often turns out that many states of the NFA are not accessible
from the initial state [g,]. It is therefore a good idea to start with state [g,] and add
states to the DFA only if they are the result of a transition from a previously
added state.

24 FINITE AUTOMATA WITH €-MOVES

We may extend our model of the nondeterministic finite automaton to include
transitions on the empty input €. The transition diagram of such an NFA accept-
ing the language consisting of any number (including zero) of 0’s followed by any
number of 1’s followed by any number of 2’s is given in Fig. 2.8. As always, we say
an NFA accepts a string w if there is some path labeled w from the initial state to a
final state. Of course, edges labeled € may be included in the path, although the €’s
do not appear explicitly in w. For example, the word 002 is accepted by the NFA
of Fig. 2.8 by the path go, 90, o> 41> 92, g2 With arcs labeled 0, 0, ¢, ¢, 2.

Fig. 2.8 Finite automaton with ¢-moves.

Formally, define a nondeterministic finite automaton with e-moves to be a
quintuple (Q, Z, 6, g9, F) with all components as before, but J, the transition
function, maps Q x (£ U {e}) to 22. The intention is that §(g, a) will consist of all
states p such that there is a transition labeled a from q to p, where a is either ¢ or a
symbol in Z.

Example 2.6 The transition function for the NFA of Fig. 2.8 is shown in Fig.
209.

We shall now extend the transition function é to a function § that maps
Q x Z* to 22 Our expectation is that §(g, w) will be all states p such that one can
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Inputs
States 0 1 2 €

9o {‘10} 1%} 1] {a.}
91 1] {q 1} 1] {‘IZ}
q2 %] 1] {q2} %]

Fig. 2.9 4(q, a) for the NFA of Fig. 2.8.

go from g to p along a path labeled w, perhaps including edges labeled ¢. In
constructing it will be important to compute the set of states reachable from a
given state g using e transitions only. This question is equivalent to the question of
what vertices can be reached from a given (source) vertex in.a directed graph. The
source vertex is the vertex for state g in the transition diagram, and the directed
graph in question consists of all and only the arcs labeled ¢. We use ¢-
CLOSURE(g) to denote the set of all vertices p such that there is a path from g to p
labeled e.

Example 2.7 In Fig. 2.8, CLOSURE(qgo) = {qo, g1, 92}- That is, the path con-
sisting of g alone (there are no arcs on the path), is a path from g to g, with all
arcs labeled ¢.t Path g, g, shows that q, is in CLOSURE(q,) and path qq, g, g,
shows that g, is in ¢:CLOSURE(gy).

We may naturally let ¢:CLOSURE(P), where P is a set of states, be
Uqin p 6CLOSURE(g). Now we define 6 as follows.
1) 8(g, €) = «CLOSURE(qg).
2) ForwinX*andainZ, 5(g, wa) = ¢CLOSURE(P), where P = {p|for some r
in 6(g, w), p is in 8(r, a)}.
It is convenient to extend & and § to sets of states by

3) 8(R, a) = Uginx 9(g, a), and

4) 8(R, w) = Udginr 5(g, w)
for sets of states R. Note that in this case, 5(g, a) is not necessarily equal to 5(q, a),
since o(q, a) includes all states reachable from g by paths labeled a (including
paths with arcs labeled ¢), while 5(g, a) includes only those states reachable from g
by arcs labeled a. Similarly, 6(q, €) is not necessarily equal to 6(q, €). Therefore it is
necessary to distinguish é from é when we talk about an NFA with e-transitions.

‘We define L(M), the language accepted by M = (Q, Z, 6, go, F) to be

{w|6(go, w) contains a state in F}.

t Remember that a path of length zero has no arcs, and therefore trivially all its arcs are labeled «.
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Example 2.8 Consider again the NFA of Fig. 2.8,
5(go, €) = e-CLOSURE(qo) = {40, 41, 92}-

Thus
3(go, 0) = -CLOSURE(3(3(4o, ), 0))
= e-CLOSURE(5({go, 41> 92}, 0))
= ¢-CLOSURE(6(go, 0) L (g4, 0) U 5(q2, 0))
= ¢<CLOSURE({go} v @ U @)
= ¢:CLOSURE({g0}) = {90, 41> 92}-
Then

e-CLOSURE(6(5(go, 0), 1))
¢-CLOSURE(6({qo0» 91> 92} 1))
C-CLOSURE({‘Il}) = {‘Ib ‘12}-

S(qo, 01)

Equivalence of NFA’s with and without e-moves

Like nondeterminism, the ability to make transitions on ¢ does not allow the NFA
to accept nonregular sets. We show this by simulating an NFA with e-transitions
by an NFA without such transitions.

Theorem 2.2 If L is accepted by an NFA with e-transitions, then L is accepted by
an NFA without e-transitions.

Proof Let M = (Q, Z, 8, qo, F) be an NFA with e-transitions. Construct M" =
(0, %, 0, qo, F') where

P F U {qo} if e«CLOSURE(go) contains a state of F,
T\F otherwise,

and &'(g, a) is 8(g, a) for g in Q and ain X. Note that M" has no e-transitions. Thus
we may use & for &', but we must continue to distinguish between § and 4.

We wish to show by induction on |x| that §'(go, x) = 8(go, X)- However, this
statement may not be true for x = ¢, since §(go, €) = {go}, While (go, €) =
¢-CLOSURE(q,). We therefore begin our induction at 1.

Basis  |x| = 1. Then x is a symbol a4, and (o, a) = 8(qo, a) by definition of &".

Induction |x|> 1. Let x = wa for symbol a in X. Then

0'(go, wa) = 5'(5'(g0, W), a).
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By the inductive hypothesis, &'(go, w) = 5(go, w). Let 5(go, w) = P. We must show
that ¢'(P, a) = 6(qo, wa). But
JP,a)= ) &g a)= | g a)
qin P qinP
Then as P = §(qo, w) we have
U 8. )= 3(g0, wa)
qin

by rule (2) in the definition of §. Thus
5,(‘]0’ wa) = 5(‘]0a wa)'

To complete the proof we shall show that §'(g,, x) contains a state of F” if and
only if §(qo, X) contains a state of F. If x = ¢, this statement is immediate from the
definition of F'. That is, §'(qo, €) = {qo}, and qq is placed in F’ whenever §(qq, €),
which is e-CLOSURE(g ), contains a state (possibly go) in F.If x # ¢, then x = wa
for some symbol a. If §(go, x) contains a state of F, then surely §'(qo, x) contains
the same state in F'. Conversely, if §'(go, x) contains a state in F’ other than g,
then §(qo, x) contains a state in F. If (g, x) contains g, and g, is not in F, then
as 8(go, x) = e<CLOSURE(5(8(go, w), a)), the state in e-:CLOSURE(qo) and in F
must be in §(qo, x). O

Example 2.9 Let us apply the construction of Theorem 2.2 to the NFA of Fig.
2.8. In Fig. 2.10 we summarize (g, a). We may also regard Fig. 2.10 as the
transition function ¢’ of the NFA without e-transitions constructed by Theorem
2.2. The set of final states F’ includes g, because that is in F and also includes g,
because e-CLOSURE(go) and F have a state g, in common. The transition dia-
gram for M’ is shown in Fig. 2.11.

Inputs
States 0 1 2

9o {90, q1. q2} {91, 92} {42}
q1 1] {l]h ¢h} {Qz}
q2 %] %] {q2}

Fig. 2.10 (g, a) for Fig. 2.8.

0.1.2
Fig. 2.11 NFA without ¢-transitions.
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2.5 REGULAR EXPRESSIONS

The languages accepted by finite automata are easily described by simple expres-
sions called regular expressions. In this section we introduce the operations of
concatenation and closure on sets of strings, define regular expressions, and prove
that the class of languages accepted by finite automata is precisely the class of
languages describable by regular expressions.

Let X be a finite set of symbols and let L, L,, and L, be sets of strings from Z*.
The concatenation of L, and L,, denoted LL,, is the set {xy|xisin L, and y is in
L,}. That is, the strings in L, L, are formed by choosing a string L, and following
it by a string in L,, in all possible combinations. Define I? = {¢} and ! = LI for
i > 1. The Kleene closure (or just closure) of L, denoted I*, is the set

=L

i=0

and the positive closure of L, denoted L', is the set
© .
L'={J L
i=1
That is, [* denotes words constructed by concatenating any number of words
from L. L' is the same, but the case of zero words, whose “concatenation” is
defined to be ¢, is excluded. Note that L" contains ¢ if and only if L does.

Example 2.10 Let L, = {10, 1} and L, = {011, 11}. Then L,L, = {10011, 1011,
111}. Also,

{10, 11}* = {¢, 10, 11, 1010, 1011, 1110, 1111, ...}.

If ¥ is an alphabet, then X* denotes all strings of symbols in X, as we have
previously stated. Note that we are not distinguishing X as an alphabet from X as
a language of strings of length 1.

Let £ be an alphabet. The regular expressions over X and the sets that they
denote are defined recursively as follows.
1) & is a regular expression and denotes the empty set.
2) c is a regular expression and denotes the set {}.
3) For each a in X, at is a regular expression and denotes the set {a}.

4) If r and s are regular expressions denoting the languages R and S, respectively,
then (r + s), (rs), and (r*) are regular expressions that denote the sets R U S,
RS, and R*, respectively.

+ To remind the reader when a symbol is part of a regular expression, we shall write it in boldface.
However, we view a and a as the same symbol.
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In writing regular expressions we can omit many parentheses if we assume
that * has higher precedence than concatenation or +, and that concatenation has
higher precedence than +. For example, ((0(1*)) + 0) may be written 01* + 0. We
may also abbreviate the expression rr* by r*. When necessary to distinguish
between a regular expression r and the language denoted by r, we use L(r) for the
latter. When no confusion is possible we use r for both the regular expression and
the language denoted by the regular expression.

Example 2.11 00 is a regular expression representing {00}. The expression
(0 + 1)* denotes all strings of 0’s and 1's. Thus, (0 + 1)*00(0 + 1)* denotes all
strings of 0’s and I's with at least two consecutive 0’s. The regular expression
(1 + 10)* denotes all strings of 0’s and 1’s beginning with 1 and not having two
consecutive 0’s. In proof, it is an easy induction on i that (1 + 10) does not have
two consecutive 0’s.t Furthermore, given any string beginning with 1 and not
having consecutive 0’s, one can partition the string into 1’s, with a following 0 if
there is one. For example, 1101011 is partitioned 1-10-10-1-1. This partition
shows that any such string is in (1 + 10), where i is the number of 1’s. The regular
expression (0 + €)(1 + 10)* denotes all strings of 0's and 1’s whatsoever that do
not have two consecutive 0’s. .

For some additional examples, (0 + 1)*011 denotes all strings of 0's and 1’s
ending in 011. Also, 0*1*2* denotes any number of 0’s followed by any number of
I’s followed by any number of 2’s. This is the language of the NFA of Fig. 2.8.
00*11*22* denotes those strings in 0¥1*2* with at least one of each symbol. We
may use the shorthand 0*1*%2% for 00*11*22*.

Equivalence of finite automata and regular expressions

We now turn to showing that the languages accepted by finite automata are
precisely the languages denoted by regular expressions. This equivalence was the
motivation for calling finite automaton languages regular sets. Our plan will be to
show by induction on the size of (number of operators in) a regular expression
that there is an NFA with ¢-transitions denoting the same language. Finally, we
show that for every DFA there is a regular expression denoting its language. These
Constructions, together with Theorems 2.1 and 2.2, show that all four language
defining mechanisms discussed in this chapter define the same class of languages,
the regular sets. Figure 2.12 shows the constructions we shall perform or have
performed, where an arrow from A4 to B means that for any descriptor of type 4 a
construction yields an equivalent descriptor of type B.

We proceed to prove that for every regular expression there is an equivalent
NFA with e-transitions.

1 r is a regular expression, r* stands for rr -+ r (i times).
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Nondeterministic
finite
automata

NFA’s
with
€e-transitions

Deterministic
finite
automata

Regular
expressions

Fig. 2.12 Constructions of this chapter.

Theorem 2.3 Let r be a regular expression. Then there exists an NFA with
e-transitions that accepts L(r).

Proof We show by induction on the number of operators in the regular expres-
sion r that there is an NFA M with e-transitions, having one final state and no
transitions out of this final state, such that L(M) = L{r).

Basis (Zero operators) The expression r must be ¢, &, or a for some a in X. The
NFA’s in Fig. 2.13(a), (b), and (c) clearly satisfy the conditions.

Start Start Start @ a

(a) r=¢ by r=3a (¢c)r=a

Fig. 2.13 Finite automata for basis step of Theorem 2.3.

Induction (One or more operators) Assume that the theorem is true for regular
expressions with fewer than i operators, i > 1. Let r have i operators. There are
three cases depending on the form of r.

CASE 1 r=r; + r,. Both r; and r, must have fewer than i operators. Thus there
are NFA’s M, = (Qy, Z,, 65, g, {/1}) and M, = (Q, Z,, 63, g2, {f3}) with
L(M,) = L{r,) and L(M,) = L{(r,). Since we may rename states of an NFA at will,
we may assume Q, and Q, are disjoint. Let g, be a new initial state and f, a new
final state. Construct

M= (Q, v Q; Y {g0, fo}» Z1 V 23, 0, do, {fo})»
where ¢ is defined by

l) 5(‘]0’ 6) = {qu 42}’
ii) 8(g, a)=6,(q, a) for gin @, —~ {f;}and ain X, U {¢},
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iii) 6(q, a) = 6,(g, a) for gin Q, — {f5} and a in Z, U {¢},
iv) 8(fy, €)= é\((fz, €) = {fo}-

Recall by the inductive hypothesis that there are no transitions out of f; or f; in
M, or M,. Thus all the moves of M; and M, are present in M.

The construction of M is depicted in Fig 2.14(a). Any path in the transition
diagram of M from ¢, to f, must begin by going to either g, or g, on ¢. If the path
goes to g,, it may follow any path in M, to f; and then go to f, on ¢. Similarly,
paths that begin by going to g, may follow any path in M, to f, and then go to f,
on ¢. These are the only paths from g, to f,. It follows immediately that there is a
path labeled x in M from g, to f, if and only if there is a path labeled x in M, from
g, to fy or a path in M, from g, to f5. Hence L{M) = L(M,) u L(A@)/x as desired.

Start

Fig. 2.14 Constructions used in induction of Theorem 2.3. (a) For union. (b) For con-
catenation. (c) For closure.

CASE2 r=r,r,. Let M, and M, be as in Case 1 and construct
M=(Q, v 05 %, VX0 {g:} {2})
where § is given by
i) 8(g, a) = 8,(q, a) for gin Q; — {fi}and ain X, U {¢},

i) 6(/,, €) = {42}
iii) 6(q, a) = 6,(g, a) for gin Q, and a in E, L {¢}.
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The construction of M is given in Fig. 2.14(b). Every path in M from g, to f is
a path labeled by some string x from ¢, to fj, followed by the edge from f; to g,
labeled ¢, followed by a path labeled by some string y from g, to f5. Thus L(M) =
{xy|xis in L(M,) and y is in L(M,)} and L(M) = L(M,)L(M ) as desired.

casE3 r=r} Let M, =(Q,, X, 8;, 41, {f1}) and L(M,) = r,. Construct
= (Ql Y {qO’fO}, 21, 6’ do» {fo})y

where ¢ is given by

i) (g0, €) = (/1> €) = {q1, fo}
ii) 8(g, a) = 6,(q, a) for gin Q; —{fi} and ain T, U {¢}.

The construction of M is depicted in Fig. 2.14(c). Any path from g, to f
consists either of a path from g, to f, on € or a path from g, to q, on ¢, followed by
some number (possibly zero) of paths from g, to f;, then back to g, on ¢, each
labeled by a string in L(M,), followed by a path from g, tof, on astring in L(M ),
then to f;, on ¢. Thus there is a path in M from g, to f; labeled x if and only if we
can write x = x; X, *-- x; for some j > 0 (the case j = 0 means x = ¢) such that
each x; is in L(M ). Hence L(M) = L(M)* as desired. O

Example 2.12 Let us construct an NFA for the regular expression 01* + 1. By
our precedence rules, this expression is really (0(1*)) + 1, so it is of the form
ry + ry, where r; = 01* and r, = 1. The automaton for r, is easy; it is

Start 0 !

We may express r, as r;r,, where r; = 0 and r, = 1*. The automaton for r5 is also

easy:
Start @ 0

In turn, r, is r¥, where rs is 1. An NFA for rg is

Start ° !

Note that the need to keep states of different automata disjoint prohibits us from
using the same NFA for r, and rs, although they are the same expression.

To construct an NFA for r, = r¥ use the construction of Fig. 2.14(c). Create
states g, and gg playing the roles of g, and f;, respectively. The resulting NFA for
r4 is shown in Fig. 2. 15(a) Then, for ry = ryr, use the construction of Fig. 2.14(b).
The result is shown in Fig. 2.15(b). Finally, use the construction of Fig. 2. 14(a) to
find the NFA for r = ry + r,. Two states g4 and g, are created to fill the roles of
go and f; in that construction, and the result is shown in Fig. 2.15(c).
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G O O

Start

Fig. 2.15 Constructing an NFA from a regular expression. (a) For ry = 1*. (b) For
ry = 01* (c) For r = 01* + 1.

The proof of Theorem 2.3 is in essence an algorithm for converting a regular
expression to a finite automaton. However, the algorithm implicitly assumes that
the regular expression is fully parenthesized. For regular expressions without
redundant parentheses, we must determine whether the expression is of the form
p + q, pq, or p*. This is equivalent to parsing a string in a context-free language,
and thus such an algorithm will be delayed until Chapter S where it can be done
more elegantly.

Now we must show that every set accepted by a finite automaton is denoted
by some regular expression. This result will complete the circle shown in Fig. 2.12.

Theorem 2.4 1If L is accepted by a DFA, then L is denoted by a regular expres-
sion.

Proof Let L be the set accepted by the DFA

M = ({qh s qn}v 2: 5: qlv F)

Let R denote the set of all strings x such that 8(q;, x) = g;, and if 6(g;, y) = q,, for
any y that is a prefix (initial segment) of x, other than x or ¢, then / < k. That is,
RY; is the set of all strings that take the finite automaton from state g; to state g;
without going through any state numbered higher than k. Note that by “going
through a state,” we mean both entering and then leaving. Thus i or j may be

n

greater than k. Since there is no state numbered greater than n, R; denotes all
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strings that take g; to q;. We can define RY; recursively:

RY; = RE (R ')*RiG ' v R, (2.1)
{a |5(qn a) = q]} lf i %]’
{aldlg a)=qj} v {g ifi=].

Informally, the definition of R¥; above means that the inputs that cause M to
go from g; to g; without passing through a state higher than g, are either

R} =

1) in R4 ! (that is, they never pass through a state as high as g,); or

2) composed of a string in RE ™! (which takes M to g, for the first time) followed
by zero or more strings in R}, ! (which take M from g, back to g, without
passing through g, or a higher-numbered state) followed by a string in R}; *
(which takes M from state g, to g;).

We must show that for each i, j, and k, there exists a regular expression r};
denoting the language R¥;. We proceed by induction on k.

Basis (k= 0). R is a finite set of strings each of which is either ¢ or a single
symbol. Thus r{; can be writtenas a, + a, + -+ a, (ora; +a, + - +a, + ¢if
i = j), where {a,, a,, ..., a,} is the set of all symbols a such that (q;, a) = q;. If
there are no such a’s, then & (or € in the case i = j) serves as r{;.

Induction The recursive formula for RY; given in (2.1) clearly involves only the
regular expression operators: union, concatenatron and closure. By the induction
hypothesis, for each # and m there exists a regular expression r},' such that
L(r. ') = Rk, '. Thus for r}; we may select the regular expression

(5 e X ) + iy

which completes the induction.
To finish the proof we have only to observe that

LiM)= |) Rj;
qjin F
since Rj; denotes the labels of all paths from q, to g;. Thus L{M) is denoted by the
regular expressmn

Pt Pt

J1

where F = {qu Gjzs --+> qin}' -

Example 2.13 Let M be the FA shown in Fig. 2.16. The values of r¥; for all i and j
and for k=0, 1, or 2 are tabulated in Fig. 2.17. Certain equlvalences among
regular expressions such as (r + s)t = rt + st and (¢ + r)* = r* have been used to
simplify the expressions (see Exercise 2.16). For example, strictly speaking, the
expression for rj, is given by

2= "(2’1("(1’1)*"(1)2 + "gz = 0(5)*0 +e
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Start

7 € € (00)*

iz 0 0 0(00)*

s 1 1 0*1

T 0 0 0(00)*

s € €+ 00 (00)*

s 1 1+01 0*1

e} %] %) (0 + 1)(00)*0
52 | 0+1 0+1 (0 + 1)(00)*
s € € €+ (0 + 1)0*1

Fig. 2.17 Tabulation of r¥; for FA of Fig. 2.16.

Similarly,
ris =riy(ry)*ris + riz = 0(e + 00)*(1 + 01) + 1.

Recognizing that (¢ + 00)* is equivalent to (00)* and that 1 + 01 is equivalent to
(€ + 0)1, we have

r3, = 0(00)*(c + 0)1 + 1.

Observe that (00)*(c + 0) is equivalent to 0*. Thus 0(00)*(c + 0)1 + 1 is equiv-
alent to 00*1 + 1 and hence to 0*1.

To complete the construction of the regular expression for M, which is
132 + 15, we write

Fh =), + 12
0_*1(e + (0 + 1)0*1)*(0 + l)(00)* + 0(00)*
= 0*1((0 + 1)0*1)*(0 + 1)(00)* + 0(00)*

and
ris =ris(r3s)*rds +ris
= 0*1(c + (0 + 1)0*1)*(c + (0 + 1)0*1) + 0*1
= 0*1((0 + 1)0*1)*.
Hence

32 + ris = 0%1((0 + 1)0*1)*(e + (0 + 1)(00)*) + 0(00)*.
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2.6 TWO-WAY FINITE AUTOMATA

We have viewed the finite automaton as a control unit that reads a tape, moving
one square right at each move. We added nondeterminism to the model, which
allowed many “copies” of the control unit to exist and scan the tape simulta-
neously. Next we added ¢-transitions, which allowed change of state without read-
ing the input symbol or moving the tape head. Another interesting extension is to
allow the tape head the ability to move left as well as right. Such a finite automa-
ton is called a two-way finite automaton. It accepts an input string if it moves the
tape head off the right end of the tape, at the same time entering an accepting state.
We shall see that even this generalization does not increase the power of the finite
automaton; two-way FA accept only regular sets. We give a proof only for a
special case of a two-way FA that is deterministic and whose tape head must move
left or right (not remain stationary) at each move. A more general model is
considered in the exercises.

A two-way deterministic finite automaton (2DFA) is a quintuple M = (Q, X, 4,
qo, F), where Q, X, qo, and F are as before, and 4 is a map from Q x X to
Q x {L, R}.1f (g, a) = (p, L), then in state g, scanning input symbol a, the 2DFA
enters state p and moves its head left one square. If (g, a) = (p, R), the 2DFA
enters state p and moves its head right one square.

In describing the behavior of a one-way FA, we extended 6 to Q x X*. This
corresponds to thinking of the FA as receiving a symbol on an input channel,
processing the symbol and requesting the next. This notion is insufficient for the
two-way FA, since the 2DFA may move left. Thus the notion of the input being
written on the tape is crucial. Instead of trying to extend J, we introduce the
notion of an instantaneous description (I1D) of a 2DFA, which describes the input
string, current state, and current position of the input head. Then we introduce
the relation | on ID’s such that I, |1, if and only if M can go from
the instantaneous description I, to I, in one move.

An ID of M is a string in Z*QX*. The ID wgx, where w and x are in 2* and ¢
is in Q, is intended to represent the facts that

1) wx is the input string,
2) q is the current state, and
3) the input head is scanning the first symbol of x.

If x = ¢, then the input head has moved off the right end of the input.
We define the relation }5 or just }— if M is understood, by

1) aja; " a;_yqa; - a,}—a,a, ~* a;_,a;pa;.y - a, whenever 4(q, a;) =
(p, R), and

2) aya; t G;_28;_,q0; " @, }—ayay """ @;_2pa; 1 a; *** a, whenever 6(q, a;) =
(p, Lyand i > 1.

The conditioni > 1 prevents any action in the event that the tape head would move
off the left end of the tape. Note that no move is possible if i = n + 1 (the tape
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head has moved off the right end). Let |- be the reflexive and transitive closure of
— That is, I = I for all ID’s I, and I, | I, whenever I, |— I, |— - }—I, for
some I,, ..., I, _;.

We define

L(M)={w|gowF*wp forsome pinF}.

That is, w is accepted by M if, starting in state g, with w on the input tape and the
head at the left end of w, M eventually enters a final state at the same time it falls
off the right end of the input tape.

Example 2.14 Consider a 2DFA M that behaves as follows: Starting in state g,
M repeats a cycle of moves wherein the tape head moves right until two 1’s have
been encountered, then left until encountering a 0, at which point state g, is
reentered and the cycle repeated. More precisely, M has three states, all of which
are final; ¢ is given in Fig. 2.18.

0 1

9o (90, R) (91, R)
q1 (91, R) (92, L)
92 | (90-R) (g2, L)

Fig. 2.18 The transition function for the 2DFA of Example 2.14.

Consider the input 101001. Since g, is the initial state, the first ID is g,101001.
To obtain the second 1D, note that the symbol to the immediate right of the state
qo in the first ID is a 1 and 6(qo, 1) is (¢;, R). Thus the second ID is 14,01001.
Continuing in this fashion we get the result shown in Table 2.1. Hence M even-
tually moves off the right end of the tape in an accepting state. Thus 101001 is in
L(M).

Table 2.1

q0101001 |— 14,01001
|— 10g,1001
— 1¢4,01001
[— 10941001
|— 1014,001
|— 10104,01
|— 10100q, 1
|— 10104,01
— 10100g,1
— 1010014,
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Crossing sequences

A useful picture of the behavior of a 2DFA consists of the input, the path followed
by the head, and the state each time the boundary between two tape squares is
crossed, with the assumption that the control enters its new state prior to moving
the head. For example, the behavior of the 2DFA M of Example 2.14 on 101001 is
shown in Fig. 2.19.

o — 4 — ‘h)
Ca
o— 4y — 4 — ‘I|>
s
qu_ql

Fig. 2.19 Behavior of the 2DFA of Example 2.14.

The list of states below each boundary between squares is termea a crossing
sequence. Note that if a 2DFA accepts its input, no crossing sequence may have a
repeated state with the head moving in the same direction, otherwise the 2DFA,
being deterministic, would be in a loop and thus could never fall off the right end.

Another important observation about crossing sequences is that the first time
a boundary is crossed, the head must be moving right. Subsequent crossings must
be in alternate directions. Thus odd-numbered elements of a crossing sequence
represent right moves and even-numbered elements represent left moves. If the
input is accepted, it follows that all crossing sequences are of odd length.

A crossing sequence q,, ¢, ---, qx is said to be valid if it is of odd length, and
no two odd- and no two even-numbered elements are identical. A 2DFA with s
states can have valid crossing sequences of length at most 2s, so the number of
valid crossing sequences is finite.

Our strategy for showing that any set accepted by a 2DFA M is regular is to
construct an equivalent NFA whose states are the valid crossing sequences of M.
To construct the transition function of the NFA we first examine the relationship
between adjacent crossing sequences.

Suppose we are given an isolated tape square holding the symbol a and are
also given valid crossing sequences q,, q,, .-, g; and py, p,, ..., p, at the left and
right boundaries of the square, respectively. Note that there may be no input
strings that could be attached to the left and right of symbol a to actually produce
these two crossing sequences. Nevertheless we can test the two sequences for local
compatibility as follows. If the tape head moves left from the square holding a in
state g;, restart the automaton on the square holding a in state g;, ,. Similarly,
whenever the tape head moves right from the square in state p;, restart the autom-
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aton on the square in state p;,,. By this method we can test the two crossing
sequences to be sure that they are locally consistent. These ideas are made precise
below.

We define right-matching and left-matching pairs of crossing sequences recur-
sively in (i) through (v) below. The intention is for gy, g, -- -, g, to right-match p,,
P2, .-, P, on a if these sequences are consistent, assuming we initially reach a in
state q; moving right, and for the two crossing sequences to left-match if the
sequences are consistent, assuming we initially reach a in state p; moving left. In
each case, we take q,, q,, ..., g, to appear at the left boundary of aand p,, p,, ..,
p, at the right boundary.

i) The null sequence left- and right-matches the null sequence. That is, if we
never reach the square holding q, then it is consistent that the boundaries on
neither side should be crossed.

i) If g3, ..., g, right-matches p,, ..., p, and d(q,, a) = (g5, L), then q, ..., g,
right-matches p;, ..., p,. That is, if the first crossing of the left boundary is in
state ¢, and the head immediately moves left in state g,, then if we follow
these two crossings by any consistent behavior starting from another crossing
of the left boundary, we obtain a consistent pair of sequences with first cross-
ing moving right, i.e., a right-matched pair.

iii) If q,, ..., g, left-matches p,, ..., p, and d(q,, a) = (py, R), then q,, ..., g,
right-matches p,, ..., p,. That is, if the first crossing of the left boundary is in
state g, and the head immediately moves right in state p,, then if we follow
these two crossings by any consistent behavior starting from a crossing of the
right boundary, we obtain a consistent pair of sequences with the first cross-
ing from the left, i.e., a right-matched pair. Note that this case introduces the
need for left-matched sequences, even though we are really only interested in
right-matched pairs.

iv) If q, ..., q, left-matches ps, ..., p, and 8(p,, a) = (p3, R), then qy, ..., g
left-matches p, ..., p,. The justification is similar to that for rule (ii).

v) If q,, ..., g, right-matches p,, ..., p, and 8(p,, @) = (qy, L), then q,, ..., g,
left-matches p,, ..., p,. The justification is similar to rule (iii).

Example 2.15 Consider the 2DFA M of Example 2.14 and a tape square con-
taining the symbol 1. The null sequence left-matches the null sequence, and
(4o, 1) = (qy, R). Thus g, right-matches g, on 1 by rule (iii). Since §(q,, 1) =
(92, L), 91, 42 qo right-matches g, on 1 by rule (ii). This must be the case, since
there is in fact an accepting computation in which this pair of sequences actually
occurs to the left and right of a square holding a 1. Note, however, that a pair of
sequences could match, yet there could be no computation in which they appeared
adjacent, as it could be impossible to find strings to place to the left and right that
would “turn the computation around” in the correct states.




40 FINITE AUTOMATA AND REGULAR EXPRESSIONS

Equivalence of one-way and two-way finite automata
Theorem 2.5 If L is accepted by a 2DFA, then L is a regular set.

Proof LetM = (Q, =, 4, qo, F) be a 2DFA. The proof consists of constructing an
NFA M’ which accepts L{M). Define M’ to be (Q', Z, &, gj, F’), where

1) Q' consists of all valid crossing sequences for M.
2) g is the crossing sequence consisting of g, alone.
3) F'is the set of all crossing sequences of length one consisting of a state in F.

4) &'(c, a) = {d|d is a valid crossing sequence that is right-matched by ¢ on input
a}. Note that as d is valid it must be of odd length.

The intuitive idea is that M’ puts together pieces of the computation of M as it
scans the input string. This is done by guessing successive crossing sequences. If
M’ has guessed that c is the crossing sequence at a boundary, and a is the next
input symbol, then M’ can guess any valid crossing sequence that ¢ right-matches
on input a. If the guessed computation results in M moving off the right end of the
input in an accepting state, then M’ accepts.

We now show that L(M’) = L(M). Let w be in L(M). Look at the crossing
sequences generated by an accepting computation of M on w. Each crossing
sequence right-matches the one at the next boundary, so M’ can guess the proper
crossing sequences (among other guesses) and accept.

Conversely, if wis in L(M'), consider the crossing sequences ¢, ¢y, - .., ¢, of M
corresponding to the states of M’ as M’ scans w=a,4a, - a, For each i,
0 < i < n, ¢; right-matches c;, , on g;. We can construct an accepting computation
of M on input w by determining when the head reverses direction. In particular,
we prove by induction on i that M’ on reading a, a, --- a; can enter state

¢;=1[q1 .-, q only if

1) M started in state g, on a, a, - a; will first move right from position i in state
q,, and

2) forj=2,4,...,if M is started at position i in state g;, M will eventually move
right from position i in state g;, , (this implies that k must be odd).

Basis (i =0). As ¢o = [qo), (1) is satisfied since M begins its computation by
“moving right” from position 0 in state g,. Condition (2) holds vacuously.

Induction Assume the hypothesis true for i — 1. Suppose that M’ on reading
a,a, --- a; can enter state ¢; = [py, ..., p,] from state ¢;_, = [q,, ..., g]. Since k
and / are odd, and c;_, right-matches c; on a;, there must exist an odd j such that
in state g; on input a;, M moves right. Let j, be the smallest such j. By definition of
“right-matches” it follows that d(g;,, a,) = (p;, R). This proves (1). Also by the
definition of “right-matches” (rule iii) [gj, + 1, - - -» gi] left-matches [p,, ..., p,]. Now
if 8(pj, a;) = (pj4+ 1, R) for all even j, then (2) follows immediately. In the case that
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for some smallest even j,, d(pj,, a;) = (g, L), then by the definition of “left-
matches” (rule v) ¢ must be g;, ., and [g;, 5, ..., ] right-matches [p;,, 4, ..., p/}.
The argument then repeats with the latter sequences in place of ¢;_, and ;.
With the induction hypothesis for all i established, the fact that ¢, = [p] for
some p in F implies that M accepts a, a, ‘- a,. Od

Example 2.16 Consider the construction of an NFA M’ equivalent to the 2DFA
M of Example 2.14. Since q, is only entered on a left move, and g, and g5 are only
entered on right moves, all even-numbered components of valid crossing se-
quences must be gq,. Since a valid crossing sequence must be of odd length, and no
two odd-numbered states can be the same, nor can two even-numbered states be
the same, there are only four crossing sequences of interest; these are listed in Fig.
2.20 along with their right matches.

Valid crossing Right matches Right matches
sequences on 0 on 1
[90] [90] [a:]
[q:] [9:), [91, 92, 90] -
[0, 2, 41] - _
[91, 92, g0] - [a:]

Fig. 220 Valid crossing sequences along with their right matches.

We note immediately that state [qo, ¢,, 4,] may be removed from the con-
structed NFA M, since it has no right match. The resulting M’ is shown in Fig.
221. Note that L(M’) = (e + 1)(0 + 01)*, that is, all strings of 0’s and 1’s without
two consecutive 1’s.

Consider the input 1001, which is accepted by M’ using the sequence of states
(90} [91]: [91): [91> 92 40}, [91]- We can visualize the crossing sequences as in Fig.
2.22. Note that §(qo, 1) = (g4, R)justifies the first move and that 6(q,, 0) = (q;, R)

Fig. 221 The NFA M’ constructed from the 2DFA M.
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‘lo—-—-‘ll—‘h—q])

4,
qu —q

Fig. 2.22 Crossing sequences of 2DFA on input 1001.

justifies the second and third. Since §(q,, 1) = (q,, L) we see the justification for
the fourth move, which reverses the direction of travel. Then (g5, 0) = (¢o, R)
again reverses the direction, and finally 8(qo, 1) = (¢,, R) explains the last
move.

2.7 FINITE AUTOMATA WITH OUTPUT

One limitation of the finite automaton as we have defined it is that its output is
limited to a binary signal: “accept”/“don’t accept.” Models in which the output is
chosen from some other alphabet have been considered. There are two distinct
approaches; the output may be associated with the state (called a M oore machine)
or with the transition (called a Mealy machine). We shall define each formally and
then show that the two machine types produce the same input-output mappings.

Moore machines

A Moore machine is a six-tuple (Q, Z, A, 9, 4, go), where Q, %, J, and g, are as in
the DFA. A is the output alphabet and A is a mapping from Q to A giving the
output associated with each state. The output of M in response to input a; a, *-*
a,, n >0, is A(go)A(q,) - -* A(g,), where qq, 44, --., g, is the sequence of states such
that 6(¢;_, a;) = ¢; for 1 <i < n. Note that any Moore machine gives output
A(qo) in response to input ¢. The DFA may be viewed as a special case of a Moore
machine where the output alphabet is {0, 1} and state g is “accepting” if and only if

AMg) =1

Example 2.17 Suppose we wish to determine the residue mod 3 for each binary
string treated as a binary integer. To begin, observe that if i written in binary is
followed by a 0, the resulting string has value 2i, and if i in binary is followed by a
1, the resulting string has value 2i + 1. If the remainder of i/3 is p, then the
remainder of 2i/3 is 2pmod 3. If p=0, 1, or 2, then 2p mod 3 is O, 2, or 1,
respectively. Similarly, the remainder of (2i + 1)/3 is 1, 0, or 2, respectively.

It suffices therefore to design a Moore machine with three states, q,, q;, and
q,, where g; is entered if and only if the input seen so far has residue j. We define
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0 0 2

1 1
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0 1

Fig. 2.23 A Moore machine calculating residues.

Mg;)=j for j=0, 1, and 2. In Fig. 2.23 we show the transition diagram, where
outputs label the states. The transition function é is designed to reflect the rules
regarding calculation of residues described above.

On input 1010 the sequence of states entered is qq, 4, 42, 42, 41, giving output
sequence 01221. That is, € (which has “value” 0) has residue 0, 1 has residue 1, 2 (in
decimal) has residue 2, 5 has residue 2, and 10 (in decimal) has residue 1.

Mealy machines

A Mealy machine is also a six-tuple M = (Q, %, A, 8, 4, qo), where all is as in the
Moore machine, except that A maps Q x X to A. That is, A(g, a) gives the output
associated with the transition from state q on input a. The output of M in response
to input a, a, *** a, is AM(qo, a;)A(qy, a3) - ** Adu- 1> a,), Where gq, g, ---, g, is the
sequence of states such that §(q;_,, a;) = ¢; for 1 < i < n. Note that this sequence
has length n rather than length n + 1 as for the Moore machine, and on input ¢ a
Mealy machine gives output ¢.

Example 2.18 Even if the output alphabet has only two symbols, the Mealy
machine model can save states when compared with a finite automaton. Consider
the language (0 + 1)*(00 + 11) of all strings of 0’s and 1’s whose last two symbols
are the same. In the next chapter we shall develop the tools necessary to show that
this language is accepted by no DFA with fewer than five states. However, we may
define a three-state Mealy machine that uses its state to remember the last symbol
read, emits output y whenever the current input matches the previous one, and
emits n otherwise. The sequence of y’s and n’s emitted by the Mealy machine
corresponds to the sequence of accepting and nonaccepting states entered by a
DFA on the same input; however, the Mealy machine does not make an output
prior to any input, while the DFA rejects the string ¢, as its initial state is nonfinal.

The Mealy machine M = ({qo, Po, P1}» {0, 1}, {y, n}, 8, 4, go) is shown in Fig.
224. We use the label a/b on an arc from state p to state q to indicate that
o(p, a) = q and A(p, a) = b. The response of M to input 01100 is nnyny, with the
sequence of states entered being qq po Py P Po Po- Note how p, remembers a zero
and p, remembers a one. State g, is initial and “remembers” that no input has yet
been received.
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Fig. 2.24 A Mealy machine.

Equivalence of Moore and Mealy machines

Let M be a Mealy or Moore machine. Define T,,(w), for input string w, to be the
output produced by M on input w. There can never be exact identity between the
functions Ty, and T,,. if M is a Mealy machine and M’ a Moore machine, because
| Tu(w)| is one less than |T,.(w)| for each w. However, we may neglect
the response of a Moore machine to input ¢ and say that Mealy machine M and
Moore machine M’ are equivalent if for all inputs w, bTy,(w) = T,,.(w), where b is
the output of M’ for its initial state. We may then prove the following theorems,
equating the Mealy and Moore models.

Theorem 2.6 IfM, = (Q, %, A, §, 4, q,) is a Moore machine, then there is a Mealy
machine M, equivalent to M,.

Proof Let M, =(Q,%, A, J, A, g,) and define X'(g, a) to be A(d(g, a)) for all states
q and input symbols a. Then M, and M, enter the same sequence of states on the
same input, and with each transition M, emits the output that M, associates with
the state entered. O

Theorem 2.7 Let M, = (Q, Z, A, J, 4, qo) be a Mealy machine. Then there is a
Moore machine M, equivalent to M,.

Proof Let My =(Q x A, Z, A, &, A, [qo, bo]), where by, is an arbitrarily selected
member of A. That is, the states of M, are pairs [g, b] consisting of a state of M,
and an output symbol. Define &'([g, b], a) = [8(q, a), A(g, a)] and A'([g, b]) = b.
The second component of a state [g, b] of M, is the output made by M, on some
transition into state g. Only the first components of M,’s states determine the
moves made by M,. An easy induction on n shows that if M, enters states g,
di» ---» g, ON input a,a, -~ a,, and emits outputs b,, b,, ..., b,, then M, enters
states [qo, bo), [q1> 1), ---» [qn» bs] and emits outputs by, by, b, ..., b,. O

Example 2.19 Let M, be the Mealy machine of Fig. 2.24. The states of M, are
(90> 1 (90, 1), [P0 ¥), [Pos 1, [Py, ¥}, and [py, n). Choose b, = n, making [go, 1]
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Fig. 2.25 Moore machine constructed from Mealy machine.

M ’s start state. The transitions and outputs of M, are shown in Fig. 2.25. Note
that state [qo, y] can never be entered and may be removed.

2.8 APPLICATIONS OF FINITE AUTOMATA

There are a variety of software design problems that are simplified by automatic
conversion of regular expression notation to an efficient computer implementa-
tion of the corresponding finite automaton. We mention two such applications
here; the bibliographic notes contain references to some other applications.

Lexical analyzers

The tokens of a programming language are almost without exception expressible
as regular sets. For example, ALGOL identifiers, which are upper- or lower-case
letters followed by any sequence of letters and digits, with no limit on length, may
be expressed as

(letter)(letter + digit)*

where “letter” stands for A+ B+ +Z +a+ b+ -+ z and “digit” stands
for 0 + 1+ --- +9. FORTRAN identifiers, with length limit six and letters re-
stricted to upper case and the symbol $, may be expressed as

(letter)(c + letter + digit)®

where “letter” now stands for ($ + A + B+ - + Z). SNOBOL arithmetic con-
stants (which do not permit the exponential notation present in many other
languages) may be expressed as

(e + —)(digit* (- digit* + ¢) + - digit™)

A number of lexical-analyzer generators take as input a sequence of regular
expressions describing the tokens and produce a single finite automaton recogniz-
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ing any token. Usually, they convert the regular expression to an NFA with
e-transitions and then construct subsets of states to produce a DFA directly,
rather than first eliminating e-transitions. Each final state indicates the particular
token found, so the automaton is really a Moore machine. The transition function
of the FA is encoded in one of several ways to take less space than the transition
table would take if represented as a two-dimensional array. The lexical analyzer
produced by the generator is a fixed program that interprets coded tables,
together with the particular table that represents the FA recognizing the tokens
(specified to the generator in regular expression notation). This lexical analyzer
may then be used as amodule in a compiler. Examples of lexical analyzer generators
that follow the above approach are found in Johnson et al. [1968] and Lesk [1975].

Text editors

Certain text editors and similar programs permit the substitution of a string for
any string matching a given regular expression. For example, the UNIX text
editor allows a command such as

5/bbb*/b/

that substitutes a single blank for the first string of two or more blanks found in a
given line. Let “any” denote the expression a, + a, + - - + a,, where the a;s are
all of a computer’s characters except the “newline” character. We could convert a
regular expression r to a DFA that accepts any*r. Note that the presence of any*
allows us to recognize a member of L(r) beginning anywhere in the line. However,
the conversion of a regular expression to a DFA takes far more time than it takes
to scan a single short line using the DFA, and the DFA could have a number of
states that is an exponential function of the length of the regular expression.
What actually happens in the UNIX text editor is that the regular expression
any*r is converted to an NFA with ¢-transitions, and the NFA is then simulated
directly, as suggested in Fig. 2.6. However, once a column has been constructed
listing all the states the NFA can enter on a particular prefix of the input, the
previous column is no longer needed and is thrown away to save space. This
approach to regular set recognition was first expressed in Thompson [1968].

EXERCISES

*S 2.1 Find a finite automaton whose behavior corresponds to the circuit in Fig. 2.26, in the
sense that final states correspond to a 1-output. A circle with a dot represents an AND-gate,
whose output is 1 only if both inputs have value 1. A circle with a + represents an OR-gate,
whose output is 1 whenever either input has value 1. A circle with a ~ represents an
inverter, whose output is 1 for input 0 and 0 for input 1. Assume there is sufficient time
between changes in input values for signals to propagate and for the network to reach a
stable configuration.
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Output

Input x

Fig. 2.26 A logic circuit.

2.2 Historically, finite automata were first used to model neuron nets. Find a finite
automaton whose behavior is equivalent to the neuron net in Fig. 2.27. Final states of the
automaton correspond to a l-output of the network. Each neuron has excitatory (circles)
and inhibitory (dots) synapses. A neuron produces-a 1-output if the number of excitatory
synapses with 1-inputs exceeds the number of irthibitory synapses with l-inputs by at least
the threshold of the neuron (number inside the triangle). Assume there is sufficient time
between changes in input value for signals to propagate and for the network to reach a
stable configuration. Further assume that initially the values of y,, y,, and y; are all 0.

Input ]
—_— 1 = »O Output

UTHITAL

|

Fig. 2.27 A neuron net.

23 Consider the toy shown in Fig. 2.28. A marble is dropped in at 4 or B. Levers x,, x3,
and x, cause the marble to fall either to the left or right. Whenever a marble encounters a
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A B
Xl A\'2
~ ~
C D

Fig. 2.28 A toy.

lever, it causes the lever to change state, so that the next marble to encounter the lever will
take the opposite branch.
a) Model this toy by a finite automaton. Denote a marble in at A by a O-input and a
marble in at B by a l-input. A sequence of inputs is accepted if the last marble comes
out at D.
b) Describe the set accepted by the finite automaton.
c) Model the toy as a Mealy machine whose output is the sequence of C’s and D’s out of
which successive marbles fall.
2.4 Suppose d is the transition function of a DFA. Prove that for any input strings x and
¥, 8(g, xy) = 6((q, x), y). [Hint: Use induction on |y|.]
" 25 Give deterministic finite automata accepting the following languages over the
alphabet {0, 1}.
a) The set of all strings ending in 00.
b) The set of all strings with three consecutive 0’s.
c) The set of all strings such that every block of five consecutive symbols contains at least
two 0’s.
d) The set of all strings beginning with a 1 which, interpreted as the binary representation
of an integer, is congruent to zero modulo 5.
e) The set of all strings such that the 10th symbol from the right end is 1.
* 26 Describe in English the sets accepted by the finite automata whose transition diagrams
are given in Fig. 2.29(a) through (c).

*'S 2.7 Prove that the FA whose transition diagram is given in Fig. 2.30 accepts the set of all
strings over the alphabet {0, 1} with an equal number of 0’s and 1’s, such that each prefix
has at most one more 0 than 1’s and at most one more 1 than 0.

28 Give nondeterministic finite automata accepting the following languages.
a) The set of strings in (0 + 1)* such that some two O’s are separated by a string whose
length is 4i, for some i > 0.
b) The set of all strings over the alphabet {a, b, c} that have the same value when eval-
uated left to right as right to left by multiplying according to the table in Fig. 2.31.
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Start

(b)

Fig. 2.31 Nonassociative multiplication table.
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c) The set of all strings of 0’s and 1’s such that the 10th symbol from the right end is a 1.
How does your answer compare with the DFA of Problem 2.5(e)?

29 Construct DFA’s equivalent to the NFA’s.
a) ({p, g, 7, s}, {0, 1}, 8y, p, {s}), b) ({p, ¢, 1> s}, {0, 1}, 62.p, {q, 5})
where 8, and §, are given in Fig. 2.32.

61 62

Fig. 2.32 Two transition functions.

2.10 Write regular expressions for each of the following languages over the alphabet
{0, 1}. Provide justification that your regular expression is correct.
*a) The set of all strings with at most one pair of consecutlve 0’s and at most one pair

of consecutive 1’s.
b) The set of all strings in which every pair of ad)acent 0’s appears before any pair of
adjacent I’s.
c) The set of all strings not containing 101 as a substring.
*d) The set of all strings with an equal number of 0’s and I's such that no prefix has two
more 0’s than 1I's nor two more 1’s than 0’s.
2.11 Describe in English the sets denoted by the following regular expressions.
a) (11 + 0)*(00 + 1)*
b) (1 + 01 + 001)*(c + 0 + 00)
c) [00 + 11 + (01 + 10)(00 + 11)*(01 + 10)]*
2.12 Construct finite automata equivalent to the following regular expressions.
a) 10 + (0 + 11)0*1
b) 01[((10)* + 111)* + 0]*1
c) ((0+ 1)(O0 + 1))* + ((0 + 1)(0 + 1)(0 + 1))*
2.13 Construct regular expressions corresponding to the state diagrams given in Fig. 2.33.
2.14 Use the ideas in the proof of Theorem 2.4 to construct algorithms for the following
problems.
a) Find the lowest-cost path between two vertices in a directed graph where each edge is

labeled with a nonnegative cost.
b) Determine the number of strings of length n accepted by an FA.

2.15 Construct an NFA equivalent to the 2DFA ({qo, ..., g5}, {0, 1}, 8, g0, {g2}), where & is
given by Fig. 2.34.
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(a) (b)
Fig. 2.33 Transition diagrams.

0 1

qdo (qu R) (qu R)
91 (91, R) (92, R)
q2 (92, R) (g3, L)
q3 (94, L) (g3, L)
qa (90, R) (94, L)

Fig. 2.34 A transition function for a 2DFA.

2.16 Prove the following identities for regular expressions r, s, and t. Here r = s means

L{r) = L(s).

a)r+s=s+r b) r+s)+t=r+(s+1)
c) (rs)t = r(st) d) r(s+t)=rs+rt
€) (r+s)=rt+st f) @*=¢
-8) () =r* h) (e +r)*=r i) (rs*)* = (r +9)
2.17 Prove or disprove the following for regular expressions r, s, and .
a) (rs+ r)*r =r(sr +r)* b) s(rs + s)*r = rr*s(rr*s)*

) (r+s)*=r*+s*
218 A two-way nondeterministic finite automaton (2NFA) is defined in the same manner as
the 2DFA, except that the 2NFA has a set of possible moves for each state and input
symbol. Prove that the set accepted by any 2NFA is regular. [Hint: The observation in the
proof of Theorem 2.5 that no state may repeat with the same direction in a valid crossing
sequence is no longer true. However, for each accepted input we may consider a shortest
computation leading to acceptance.]

219 Show that adding the capability of the 2NFA to keep its head stationary (and change
state) on a move does not increase the class of languages accepted by 2NFA.

*220 A 2NFA with endmarkers is a 2NFA with special symbols ¢ and $ marking the left
and right ends of the input. We say that input x, which contains no ¢ or $ symbols, is
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accepted if the 2NFA started with ¢x$ on its tape and with the tape head scanning ¢ enters
an accepting state anywhere on its input. Show that the 2NFA with endmarkers accepts only
regular sets.

221 Consider a 2DFA M = (Q, %, §, qo, F). For each string x construct a mapping f from
Q1o Q U {¢}, where f (q) = p if the 2DFA started on the rightmost symbol of x eventually
moves off x to the right, in state p. f(q) = ¢ means that the 2DFA when started on the
rightmost symbol of x either never leaves x or moves off the left end. Construct a DFA
which simulates M by storing in its finite control a table f instead of a crossing sequence.

** 222 Let r and s be regular expressions. Consider the equation X =rX + s, where rX
denotes the concatenation of r and X, and + denotes union. Under the assumption that the
set denoted by r does not contain ¢, find the solution for X and prove that it is unique. What
is the solution if L(r) contains ¢?

** 223 One can construct a regular expression from a finite automaton by solving a set of
linear equations of the form

X1 ayy Gy2 7 Qg X1 €y
X2 azy QGz2 "7 Qg X2 C2
A = - : . + o1,
Xn any an2 o Anp Xn Cn

where a;; and c; are sets of strings denoted by regular expressions, + denotes set union, and
multiplication denotes concatenation. Give an algorithm for solving such equations.

2.24 Give Mealy and Moore machines for the following processes:

a) For input from (0 + 1)*, if the input ends in 101, output A; if the input ends in 110,
output B; otherwise output C.

b) For input from (0 + | + 2)* print the residue modulo 5 of the input treated as a
ternary (base 3, with digits 0, 1, and 2) number.

Solutions to Sample Exercises

2.1 Note that the gate output at y, affects the gate output at y, and conversely. We shall
assume values for y, and y, and use these assumed values to compute new values. Then we
repeat the process with the new values until we reach a stable state of the system. In Fig.
2.35 we have tabulated the stable values of y; and y, for each possible assumed values for y,
and y, and for input values 0 and 1.

Fig. 2.35 Transitions of switching circuit.
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If y, and y, are both assumed to have value 0, then gates A and B have output 0 and
gate C has output equal to the value of the input x. Since both inputs to gate D are 0, the
output of gate D is 0. The output of gate E has the value of the input x. Thus the top row in
Fig. 2.35(a) has entries 00 and 01. The remaining entries are computed in a similar manner.

We can model the circuit by assigning a state to each pair of values for y, y,. This is
done in Fig. 2.35(b). Since y, = y, = 1 produces a 1-output, q, is a final state. The circuit
can be seen to record the parity of pulses (1-inputs) and produce an output pulse for every
odd-numbered input pulse.

2.7 We are asked to prove that a set informally described in English is the set accepted by
the FA. Clearly we cannot give a completely formal proof. We must either argue intuitively
that some formal description of the set is equivalent to the English description and then
proceed formally or else simply give an informal proof. We choose the latter.

The proof consists of deducing the properties of strings, taking the automaton to each
of the four states, and then proving by induction on the length of a string that our inter-
pretation is correct.

We say that a string x is proper if each prefix of x has at most one more 0 than 1 and at
most one more 1 than 0. We argue by induction on the length of a string x that

1) 6(qo, x) = qo if and only if x is proper and contains an equal number of 0’s and 1’s,
2) 8(qo, x) = q, if and only if x is proper and contains one more 0 than 1’s,

3) 8(qo, x) = q2 if and only if x is proper and contains one more 1 than 0’s,

4) 8(qo, x) = q5 if and only if x is not proper.

Observe that the induction hypothesis is stronger than the desired theorem. Conditions (2),
(3), and (4) are added to allow the induction to go through.

We prove the “if” portions of (1) through (4) first. The basis of the induction, |x| =0,
follows since the empty string has an equal number of 0’s and 1’s and d(go, ¢) = go-

Assume the induction hypothesis is true forall x, [x| < n, n > 1. Consider a string y of
length n, such that y is proper and has an equal number of 0's and I’s. First consider the
case that y ends in 0. Then y = x0, where x is proper and has one more 1 than 0’s. Thus
(g0, x) = q,. Hence

0(go. ¥) = 8(go, x0) = 5(q2, 0) = go-

The case where y ends in a | is handled similarly.

Next consider a string y, |y| = n such that y is proper and has one more 0 than 1. If

y = x0, then x has two more O’s than I's, contradicting the fact that y is proper. Thus
= x1, where x is proper and has an equal number of 0’s and I's. By the induction
hypothesis, 5(go. x) = go; hence 5(qo. ¥) = q1.

The situation where y is proper and has one more 1 than 0, and the situation where y is
not proper are treated similarly.

We must now show that strings reaching each state have the interpretations given in (1)
through (4). Suppose that 6(qo, ¥) = qo and || > L. If y = x0, then 6(go. X) = g2, since g,
is the only state with a O-transition to state go. Thus by the induction hypothesis x is proper
and has one more 1 than 0. Thus y is proper and has an equal number of 0’s and 1's. The
case where y ends in a | is similar, as are the cases 8(qo, }) = 41, 42, OT g3-
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Ullman [1977].
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CHAPTER

PROPERTIES OF
REGULAR
SETS

There are several questions one can ask concerning regular sets. One important
question is: given a language L specified in some manner, is L a regular set? We
also might want to know whether the regular sets denoted by different regular
expressions are the same, or find the finite automaton with fewest states that
denotes the same language as a given FA.

In this chapter we provide tools to deal with questions such as these regarding
regular sets. We prove a “pumping lemma” to show that certain languages are
nonregular. We provide “closure properties” of regular sets; the fact that lan-
guages constructed from regular sets in certain specified ways must also be regular
can be used to prove or disprove that certain other languages are regular. The issue
of regularity or nonregularity can also be resolved sometimes with the aid of the
Myhill-Nerode Theorem of Section 3.4. In addition, we give algorithms to answer
a number of other questions about regular expressions and finite automata such
as whether a given FA accepts an infinite language.

3.1 THE PUMPING LEMMA FOR REGULAR SETS

In this section we prove a basic result, called the pumping lemma, which is a
powerful tool for proving certain languages nonregular. It is also useful in the
development of algorithms to answer certain questions concerning finite autom-
ata, such as whether the language accepted by a given FA is finite or infinite.

If a language is regular, it is accepted by a DFA M = (Q, X, 9, q,, F) with
some particular number of states, say n. Consider an input of n or more symbols
aya, - a,, m>n, and for i=1,2, ..., m let 6(qo, a,a, - a;) = q;. It is not
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possible for each of the n + 1 states ¢,, ¢, - . ., g, to be distinct, since there are only
n different states. Thus there are two integers j and k, 0 <j < k < n, such that
q; = qx- The path labeled a, a, - - a,, in the transition diagram of M is illustrated
in Fig. 3.1. Since j < k, the string a;.., -* @, is of length at least 1, and since k < n,
its length is no more than n.

Fig. 3.1 Path in transition diagram of DFA M.

If g, is in F, thatis, a,a; - @, isin L(M), then a, a, -** a;a,, a2 " @, is
also in L(M), since there is a path from g, to g, that goes through g; but not
around the loop labeled a;., - a,. Formally, by Exercise 2.4,

3(qo, @y~ @@y 4y T Q) = 6(6(qos @y 77 A) Ay 77 Gy)
=0(qj. Gy " Gp)
= 0(qy Ais1 """ G)
=q,.
Similarly, we could go around the loop of Fig. 3.1 more than once—in fact, as
many times as we like. Thus, a, - aj(a;s, - &) a., **- a, is in L(M) for any

i > 0. What we have proved is that given any sufficiently long string accepted by
an FA, we can find a substring near the beginning of the string that may be
“pumped,” i.e., repeated as many times as we like, and the resulting string will be
accepted by the FA. The formal statement of the pumping lemma follows.

Lemma 3.1 Let L be a regular set. Then there is a constant nsuch that if z is any
word in L, and |z| > n, we may write z = uvw in such a way that |ur| <n,
|v] = 1, and for all i >0, uv'w is in L. Furthermore, n is no greater than the
number of states of the smallest FA accepting L.

Proof See the discussion preceding the statement of the lemma. There, z is
14y " G, U=0a10; " A V=054 " G, and w=ay | " ap, O

Note that the pumping lemma states that if a regular set contains a long string
z, then it contains an infinite set of strings of the form uv'w. The lemma does not
state that every sufficiently long string in a regular set is of the form uv'w for some
large i. In fact, (0 + 1)* contains arbitrarily long strings in which no substring
appears three times consecutively. (The proof is left as an exercise.)
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Applications of the pumping lemma

The pumping lemma is extremely useful in proving that certain sets are not
regular. The general methodology in its application is an “adversary argument™ of
the following form.

1) Select the language L you wish to prove nonregular.

2) The “adversary” picks n, the constant mentioned in the pumping lemma. You
must be prepared in what follows for any finite integer »n to be picked, but
once the adversary has picked n, he may not change it.

3) Select a string z in L. Your choice may depend implicitly on the value of n
chosen in (2).

4) The adversary breaks z into u, r, and w, subject to the constraints that
|uv| <nand |v| > L

5) You achieve a contradiction to the pumping lemma by showing, for any u, r.
and w determined by the adversary, that there exists an i for which ur'w is not
in L. It may then be concluded that L is not regular. Your selection of i may
depend on n, u, v, and w.

It is interesting to note that your choice in the above “game” corresponds to
the universal quantifiers (V, or “for all”) and the “adversary’s” choices correspond
to the existential quantifiers (3. or “there exists™) in the formal statement of the
pumping lemma:

(VLY(3n)(Vz)[z in L and |z| > n implies that

(Fu, v, w)(z = uew, Juc] < nfe] = 1and (Vi)(ue'w is in L))).

Example 3.1 The set L ={0"|i is an integer, i > 1}, which consists of all strings
of 0’s whose length is a perfect square, is not regular. Assume L is regular and let n
be the integer in the pumping lemma. Let = = 0. By the pumping lemma, 0"* may
be written as urw, where | < || < nand ur'w is in L for all i. In particular, let
i =2. However, n® < |ur?w| < n? + n < (n + 1)% That is. the length of ur*w lies
properly between n? and (n + 1), and is thus not a perfect square. Thus ur*w is
not in L, a contradiction. We conclude that L is not regular.

Example 3.2 Let L be the set of strings of 0's and I's. beginning with a 1. whose
value treated as a binary number is a prime. We shall make use of the pumping
lemma to prove that L is not regular. We need two results from number theory.
The first is that the number of primes is infinite and that there are therefore
arbitrarily large primes. The second, due to Fermat, is that 27~ ' — 1 is divisible by
p for any prime p > 2. Stated another way, 2°"' = | mod p (see Hardy and
Wright [1938]).
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Suppose L were regular, and let n be the integer in the pumping lemma. Let z
be the binary representation of a prime p such that p > 2". Such a prime exists
since there are infinitely many primes. By the pumping lemma we may write
z = uvw, where |v| > 1 and uv'w is the binary representation of a prime for all i.
Let ny, n,, and n,, be the values of u, v, and w treated as binary numbers. If u or w
are ¢, then n, or n,, respectively, is 0. Choose i = p. Then uv®w is the binary
representation of a prime g. The numerical value of q is

n2*piel 4 n,,2'”"(1 42y 2(p—1)lvl) + n,,.
By Fermat’s theorem, 2P~ = 1 mod p. If we raise both sides to the power
|v], we get 27~ V" = 1 mod p. Thus
2PI01 = 2= DIRIRPI = 2Iol mod p.
Let s =1+ 2" 4 - 4 207 DIl Then
(2" —1)s=2r — 1,
which is 2!" — 1 mod p. Thus (2" — 1)(s — 1) is divisible by p. But 1 < |v| <n,

s0 2 < 2" < 2" < p. Therefore p cannot divide 2""! — 1, so it divides s — 1. That is,
s =1 mod p. But

q=n2M+Pl 4 p 25 4,
SO

g=n2MH0l 4 p 2 4y mod p. (3.1)
But the right-hand side of (3.1) is the numerical value of p. Thus g = p mod p,
which is to say q is divisible by p. Since g > p > 1, g cannot be prime. But by the

pumping lemma, the binary representation of ¢ is in L, a contradiction. We
conclude that L is not regular.

3.2 CLOSURE PROPERTIES OF REGULAR SETS

There are many operations on languages that preserve regular sets, in the sense
that the operations applied to regular sets result in regular sets. For example, the
union of two regular sets is a regular set, since if r, and r, are regular expressions
denoting regular sets L, and L,, then r; + r, denotes L, U L,,s0 L, u L, is also
regular. Similarly, the concatenation of regular sets is a regular set and the Kleene
closure of a regular set is regular.

If a class of languages is closed under a particular operation, we call that fact a
closure property of the class of languages. We are particularly interested in effective
closure properties where, given descriptors for languages in the class, there is an
algorithm to construct a representation for the language that results by applying
the operation to these languages. For example, we just gave an algorithm to
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construct a regular expression for the union of two languages denoted by regular
expressions, so the class of regular sets is effectively closed under union. Closure
properties given in this book are effective unless otherwise stated.

It should be observed that the equivalences shown in Chapter 2 between the
various models of finite automata and regular expressions were effective equiv-
alences, in the sense that algorithms were given to translate from one representa-
tion to another. Thus in proving effective closure properties we may choose the
representation that suits us best, usually regular expressions or deterministic finite
automata. We now consider a sequence of closure properties of regular sets;
additional closure properties are given in the exercises.

Theorem 3.1 The regular sets are closed under union, concatenation, and Kleene
closure.

Proof Immediate from the definition of regular expressions. O

Boolean operations

Theorem 3.2 The class of regular sets is closed under complementation. That is,
if L is a regular set and L < X*, then £* — L is a regular set.

Proof Let L be L(M) for DFA M = (Q, X,, 4, qo, F) and let L = Z*. First, we
may assume X, = X, for if there are symbols in X, not in X, we may delete all
transitions of M on symbols not in Z. The fact that L = Z* assures us that we shall
not thereby change the language of M. If there are symbols in Z not in X, then
none of these symbols appear in words of L. We may therefore introduce a “dead
state” d into M with §(d, a) = d for all a in X and (g, a) = dforallgin Q and a in
-z,

Now, to accept Z* — L, complement the final states of M. That is, let M" = (Q,
Z, 3, go, @ — F). Then M’ accepts a word w if and only if (¢,, w) is in Q — F, that
is, wis in £* — L. Note that it is essential to the proof that M is deterministic and
without € moves. O

Theorem 3.3 The regular sets are closed under intersection.

Proof L, n L, = L,u L,,where the overbar denotes complementation with
respect to an alphabet including the alphabets of L, and L,. Closure under inter-
section then follows from closure under union and complementation. O

It is worth noting that a direct construction of a DFA for the intersection of
two regular sets exists. The construction involves taking the Cartesian product of
states, and we sketch the construction as follows.

Let M, = (0}, %, 8,,q,, F)and M, = (Q,, Z, 8,, q,, F;) be two deterministic
finite automata. Let

M= (Ql X Q29 Z’ 67 [qb qZ]’ Fl X FZ)!
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where for all p, in Q,, p, in Q,,and a in X,

([P, P2} a) = [6:1(p1, a), 32(p>, a)].
It is easily shown thatm:lz(M) =T(M,) n T(M,).

Substitutions and homomorphisms

The class of regular sets has the interesting property that it is closed under substi-
tution in the following sense. For each symbol a in the alphabet of some regular
set R, let R, be a particular regular set. Suppose that we replace each word
a,a, ' a, in R by the set of words of the form w,w, --- w,, where w; is an
arbitrary word in R,. Then the result is always a regular set. More formally, a
substitution f is a mapping of an alphabet X onto subsets of A*, for some alphabet
A. Thus f associates a language with each symbol of Z. The mapping fis extended
to strings as follows:

Nfl=¢
2) f(xa) =f(x)f(a).
The mapping f is extended to languages by defining

fy=U fx)

xin L

Example 3.3 Let f(0) = a and f(1) = b*. That is, f (0) is the language {a} and f (1)
is the language of all strings of b’s. Then f(010) is the regular set ab*a. If L is the
language 0*(0 + 1)1*, then f(L) is a*(a + b*)(b*)* = a*b*.

Theorem 3.4 The class of regular sets is closed under substitution.

Proof Let R < T* be a regular set and for each a in £ let R, & A* be a regular
set. Let f* £ — A* be the substitution defined by f(a) = R,. Select regular expres-
sions denoting R and each R,. Replace each occurrence of the symbol a in the
regular expression for R by the regular expression for R,. To prove that the
resulting regular expression denotes f (R), observe that the substitution of a union,
product, or closure is the union, product, or closure of the substitution. [Thus, for
example, f(L, v L,)=f(L,;) v f(L,;)] A simple induction on the number of
operators in the regular expression completes the proof. O

Note that in Example 3.3 we computed f(L) by taking L’s regular expression
0*(1 + 0)1* and substituting a for 0 and b* for 1. The fact that the resulting
regular expression is equivalent to the simpler regular expression a*b* is a
coincidence. -

A type of substitution that is of special interest is the homomorphism. A
homomorphism h is a substitution such that h(a) contains a single string for each a.
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We generally take h(a) to be the string itself, rather than the set containing that
string. It is useful to define the inverse homomorphic image of a language L to be

h™Y(L) = {x|h(x) is in L}.
We also use, for string w;
h™Y(w) = {x|h(x) = w}.

Example 3.4 Let h(0) = aa and h(1) = aba. Then h(010) = aaabaaa. If L, is
(01)*, then h(L,) is (aaaba)*. Let L, = (ab + ba)*a. Then h~!(L,) consists only of
the string 1. To see this, observe that a string in L, that begins with b cannot be
h(x) for any string x of 0’s and 1’s, since h(0) and h(1) each begin with an a. Thus if
h™'(w) is nonempty and w is in L,, then w begins with a. Now either w = a, in
which case h™!(w) is surely empty, or w is abw’ for some w’ in (ab + ba)*a. We
conclude that every word in h™!(w) begins with a 1, and since h(1) = aba, w’ must
begin with a. If w' = g, we have w = aba and h™'(w) = {1}. However, if w' # q,
then w’ = abw” and hence w = ababw”. But no string x in (0 + 1)* has h(x) begin-
ning abab. Consequently we conclude that h~*(w) is empty in this case. Thus the
only string in L, which has an inverse image under h is aba, and therefore
h™!(L;) = {1}.

Observe that h(h™ '(L,)) = {aba} # L,. On the other hand, it is easily shown
that h(h™ (L)) = L and h™'(h(L)) 2 L for any language L.

Theorem 3.5 The class of regular sets is closed under homomorphisms and in-
verse homomorphisms.

Proof Closure under homomorphisms follows immediately from closure under
substitution, since every homomorphism is a substitution, in which h(a) has one
member.

To show closure under inverse homomorphism, let M = (Q, Z, 8, qo, F) be a
DFA accepting L, and let h be a homomorphism from A to £*. We construct a
DFA M’ that accepts h™*(L) by reading symbol a in A and simulating M on h(a).
Formally, let M’ = (Q, A, &, qo, F) and define &'(g, a), for g in Q and a in A to be
0(q, h(a)). Note that h(a) may be a long string, or ¢, but § is defined on all strings by
extension. It is easy to show by induction on |x| that &(qo, X) = 6(go, h(x)).
Therefore M’ accepts x if and only if M accepts h(x). That is, L(M') =
B L(M)). O

Example 3.5 The importance of homomorphisms and inverse homomorphisms
comes in simplifying proofs. We know for example that {0"1"|n > 1} is not regular.
Intuitively, {a"ba" | n > 1} is not regular for the same reasons. That is, if we had an
FA M accepting {a"ba" |n > 1}, we could accept {0"1"|n > 1} by simulating M on
input g for each 0. When the first 1 is seen, simulate M on ba and thereafter
simulate M on a for each 1 seen. However, to be rigorous it is necessary to
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formally prove that {a"ba"|n > 1} is not regular. This is done by showing that
{a"ba” |n > 1} can be converted to {0"1"|n > 1} by use of operations that preserve
regularity. Thus {a"ba"| > 1} cannot be regular.

Let h, and h, be the homomorphisms

hi(a) = a, hy(a) =0,
hi(b)=ba,  hy(b) =1,
hy(c) =a, hy(c) = 1.
Then
hy(hy '({a"ba" |n > 1}) N a*be*) = {0"1"|n > 1}. (3:2)

That is, hy *({a"ba" | n > 1}) consists of all strings in (a + ¢)*b(a + ¢)* such that the
number of symbols preceding the b is one greater than the number of symbols
following the b. Thus

hi'({a"ba"|n > 1}) N a*be* = {a"bc"~ ' |n > 1}.

Line (3.2) then follows immediately by applying homomorphism h,.

If {a"ba" | n > 1} were regular, then since homomorphisms, inverse homomor-
phisms, and intersection with a regular set all preserve the property of being
regular, it would follow that {0"1"|n > 1} is regular, a contradiction.

Quotients of languages

Now let us turn to the last closure property of regular sets to be proved in this
section. A number of additional closure properties are given in the exercises.
Define the quotient of languages L, and L,, written L, /L,, to be

{x|there exists y in L, such that xy is in L,}.

Example 3.6 Let L, be 0*10* and L, be 10*1. Then L, /L, is empty. Since every y
in L, has two I’s and every string xy which is in L, can have only one 1, there is no
x such that xy is in L, and y is in L,.

Let Ly be 0*1. Then L, /L5 is 0*, since for any x in 0* we may choose y = 1.
Clearly xy is in L; = 0*10* and y is in L; = 0*1. Since words in L, and L; each
have one 1, it is not possible that words not in 0* are in L, /L,. As another
example, L, /Ly = 10*, since for each x in 10* we may again choose y = 1 from L,
and xy will be in L, = 10*1. If xy is in L, and y is in L,, then evidently, x is in
10*.

Theorem 3.6 The class of regular sets is closed under quotient with arbitrary
sets.t

1 In this theorem the closure is not effective.
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Proof Let M =(Q, Z, §, gy, F) be a finite automaton accepting some regular set
R, and let L be an arbitrary language. The quotient R/L is accepted by a finite
automaton M’ = (Q, Z, 8, g, F'), which behaves like M except that the final states
of M’ are all states g of M such that there exists y in L for which &(g, y) is in F.
Then 6(go, x) is in F’ if and only if there exists y such that §(go, xy) is in F. Thus
M’ accepts R/L. d

One should observe that the construction in Theorem 3.6 is different from all
other constructions in this chapter in that it is not effective. Since L is an arbitrary
set, there may be no algorithm to determine whether there exists y in L such that
&(g, y) is in F. Even if we restrict L to some finitely representable class, we still may
not have an effective construction unless there is an algorithm to test for the
existence of such a y. In effect we are saying that for any L, there is surely some F’
such that M with F’ as the set of final states accepts R/L. However, we may not be
able to tell which subset of Q should be chosen as F'. In the next section we shall
see that if L is a regular set, we can determine F’, so the regular sets are effectively
closed under quotient with a regular set.

33 DECISION ALGORITHMS FOR REGULAR SETS

It is important to have algorithms to answer various questions concerning regular
sets. The types of questions we are concerned with include: is a given language
empty, finite, or infinite? Is one regular set equivalent to another? and so on.
Before we can establish the existence of algorithms for answering such questions
we must decide on a representation. For our purposes we shall assume regular sets
are represented by finite automata. We could just as well have assumed that
regular sets were represented by regular expressions or some other notation, since
there exist mechanical translations from these notations into finite automata.
However, one can imagine representations for which no such translation algo-
rithm exists, and for such representations there may be no algorithm to determine
whether or not a particular language is empty.

The reader at this stage may feel that it is obvious that we can determine
whether a regular set is empty. We shall see in Chapter 8, however, that for many
interesting classes of languages the question cannot be answered.

Emptiness, finiteness, and infiniteness

Algorithms to determine whether a regular set is empty, finite, or infinite may be
based on the following theorem. We shall discuss efficient algorithms after
presenting the theorem.

Theorem 3.7 The set of sentences accepted by a finite automaton M with n states
is:

1) nonempty if and only if the finite automaton accepts a sentence of length less
than n.
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2) infinite if and only if the automaton accepts some sentence of length ¢, where
n<¢<2n

Thus there is an algorithm to determine whether a finite automaton accepts zero,
a finite number, or an infinite number of sentences.

Proof

1) The “if” portion is obvious. Suppose M accepts a nonempty set. Let w be a
word as short as any other word accepted. By the pumping lemma, |w| < n,
for if w were the shortest and |w| > n, then w = uvy, and uy is a shorter word
in the language.

2) If wis in L(M) and n < |w| < 2n, then by the pumping lemma, L(M) is
infinite. That is, w = w, w, w3, and for all i, w, w,w, is in L. Conversely if
L(M) is infinite, then there exists w in L(M), where |w| > n.If |w| < 2n, we
are done. If no word is of length between n and 2n — 1, let w be of length at
least 2n, but as short as any word in L(M) whose length is greater than or
equal to 2n. Again by the pumping lemma, we can write w = w, w, wy with
1 < |w,| < nand w, wy in L(M). Either w was not a shortest word of length
2n or more, or |w | W3 | is between n and 2n — 1, a contradiction in either case.

In part (1), the algorithm to decide whether L(M) is empty is: “See if any word
of length up to nis in L(M).” Clearly there is such a procedure that is guaranteed
to halt. In part (2), the algorithm to decide whether L(M) is infinite is: “See if any
word of length between n and 2n — 1 is in L(M).” Again, clearly there is such a
procedure that is guaranteed to halt. d

It should be appreciated that the algorithms suggested in Theorem 3.7 are
highly inefficient. However, one can easily test whether a DFA accepts the empty
set by taking its transition diagram and deleting all states that are not reachable
on any input from the start state. If one or more final states remain, the language is
nonempty. Then without changing the language accepted, we may delete all states
that are not final and from which one cannot reach a final state. The DFA accepts
an infinite language if and only if the resulting transition diagram has a cycle. The
same method works for NFA’s, but we must check that there is a cycle labeled by
something besides ¢.

Equivalence

Next we show that there is an algorithm to determine if two finite automata accept
the same set.

Theorem 3.8 There is an algorithm to determine if two finite automata are
equivalent (i.e., if they accept the same language).

Proof Let M, and M, be FA accepting L, and L,, respectively. By Theorems 3.1,
32,and 3.3,(L, n L,;) u (L; n L,)is accepted by some finite automation, M. It
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is easy to see that M5 accepts a word if and only if L, # L,. Hence, by Theorem
3.7, there is an algorithm to determine if L, = L,. O

3.4 THE MYHILL-NERODE THEOREM AND MINIMIZATION OF
FINITE AUTOMATA

Recall from Section 1.5 our discussion of equivalence relations and equivalence
classes. We may associate with an arbitrary language L a natural equivalence
relation R ; namely, xR, y if and only if for each z, either both or neither of xz and
yzisin L. In the worst case, each string is in an equivalence class by itself, but there
may be fewer classes. In particular, the index (number of equivalence classes) is
always finite if L is a regular set.

There is also a natural equivalence relation on strings associated with a finite
automaton. Let M = (Q, X, 6, qo, F) be a DFA. For x and y in £* let xR, y ifand
only if 6(go, x) = 6(qo, y)- The relation R,, is reflexive, symmetric, and transitive,
since “=" has these properties, and thus R,, is an equivalence relation. R, divides
the set * into equivalence classes, one for each state that is reachable from gq. In
addition, if xR, y, then xzR,, yz for all z in Z*, since by Exercise 2.4,

6(go, xz) = 8(5(qo, x), 2) = 8(8(g0, y), 2) = 6(do y2).

An equivalence relation R such that xRy implies xzRyz is said to be right invariant
(with respect to concatenation). We see that every finite automaton induces a right
invariant equivalence relation, defined as R,, was defined, on its set of input
strings. This result is formalized in the following theorem.

Theorem 3.9 (The Myhill-Nerode theorem). The following three statements are
equivalent:

1) The set L < X* is accepted by some finite automaton.

2) L is the union of some of the equivalence classes of a right invariant equiv-
alence relation of finite index.

3) Let equivalence relation R, be defined by: xR, y if and only if for all z in Z*,
xz is in L exactly when yz is in L. Then R, is of finite index.

Proof

(1)> (2) Assume that L is accepted by some DFA M = (Q, Z, 8, qo, F). Let Ry
be the equivalence relation xR,y if and only if §(qo, x) = 6(qo, y)- Ry is right
invariant since, for any z, if 8(qo, x) = 6(qo, y), then &(qo, xz) = 6(qo, yz). The
index of R, is finite, since the index is at most the number of states in Q. Further-
more, L is the union of those equivalence classes that include a string x such that
(o, x) is in F, that is, the equivalence classes corresponding to final states.

(2) > (3) We show that any equivalence relation E satisfying (2) is a refinement of

R ; that is, every equivalence class of E is entirely contained in some equivalence
class of R;. Thus the index of R, cannot be greater than the index of E and so is
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finite. Assume that xEy. Then since E is right invariant, for each z in £*, xzEyz,
and thus yz is in L if and only if xz is in L. Thus xR, y, and hence the equivalence
class of x in E is contained in the equivalence class of x in R;. We conclude that
each equivalence class of E is contained within some equivalence class of R;.

(3)— (1) We must first show that R, is right invariant. Suppose xR, y, and let w
be in X* We must prove that xwR, yw; that is, for any z, xwz is in L exactly when
ywz is in L. But since xR, y, we know by definition of R, that for any v, xvisin L
exactly when yv is in L. Let v = wz to prove that R, is right invariant.

Now let Q' be the finite set of equivalence classes of R, and [x] the element of
Q' containing x. Define '([x], a) = [xa]. The definition is consistent, since R, is
right invariant. Had we chosen y instead of x from the equivalence class [x], we
would have obtained &'([x], a) = [ya]. But xR, y, so xz is in Lexactly when yz is in
L. In particular, if z = az/, xaz’ is in L exactly when yaz' is in L, so xaR, ya, and
[xa] = [ya]. Let g5 =[] and let F' ={[x]|x is in L}. The finite automaton
M =(Q,Z,&, qo, F') accepts L, since §'(qp, x) = [x], and thus x is in L{M’) if and
only if [x] is in F'. O

Example 3.7 Let L be the language 0*10*. L is accepted by the DFA M of Fig.
3.2. Consider the relation R,, defined by M. As all states are reachable from the
start state, R,, has six equivalence classes, which are

C, = (00)*, C, = (00)*01,
C, = (00)*0,  C,=0*100%,
C.=(00)*1,  C,=0*10*1(0 + 1)*

L is the union of three of these classes, C,, C,, and C..
The relation R, for L has xR, y if and only if either

i) x and y each have no I’s,

Fig. 3.2 DFA M accepting L.
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Fig. 3.3 Diagram showing Ry, is a refinement of R; .

ii) x and y each have one 1, or
iii) x and y each have more than one 1.

For example, if x = 010 and y = 1000, then xz is in Lif and only if z is in 0*. But yz
is in L under exactly the same conditions. As another example, if x = 01 and
y = 00, then we might choose z = 0 to show that xR, y is false. That is, xz = 010
is in L, but yz = 000 is not.

We may denote the three equivalence classes of R, by C; = 0*, C, = 0*10%*,
and C; = 0*10*1(0 + 1)*. L is the language consisting of only one of these classes,
C,. The relationship of C,, ..., C, to C,, C,, and Cj is illustrated in Fig. 3.3.
For example C, u C, = (00)* + (00)*0 = 0* = C,.

From R, we may construct a DFA as follows. Pick representatives for C, C,,
and Cj,say ¢, 1,and 11. Then let M’ be the DFA shown in Fig. 3.4. For example,
0'([1], 0) = [1], since if w is any string in [1] (note [1] is C,), say 0°10, then w0 is
0°10’*!, which is also in C, = 0*10*.

Fig. 3.4 The DFA M’

Minimizing finite automata

The Myhill-Nerode theorem has, among other consequences, the implication that
there is an essentially unique minimum state DFA for every regular set.

Theorem 3.10 The minimum state automaton accepting a set L is unique up to
an isomorphism (i.e., a renaming of the states) and is given by M’ in the proof of
Theorem 3.9.
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Proof In the proof of Theorem 3.9 we saw that any DFA M = (Q, Z, 6, gqo, F)
accepting L defines an equivalence relation that is a refinement of R;. Thus the
number of states of M is greater than or equal to the number of states of M’ of
Theorem 3.9. If equality holds, then each of the states of M can be identified with
one of the states of M'. That is, let g be a state of M. There must be some x in X*,
such that &(qy, x) = g, otherwise g could be removed from Q, and a smaller
automaton found. Identify q with the state 6'(qp, x), of M. This identification will
be consistent. If 6(qo, x) = 8(qo, ¥) = g then, by the proof of Theorem 3.9, x and y
are in the same equivalence class of R,. Thus &'(qp, x) = 6'(5, ¥)- O

A minimization algorithm

There is a simple method for finding the minimum state DFA M’ of Theorems 3.9
and 3.10 equivalent to a given DFAM = (Q, %, 6, q,, F). Let = be the equivalence
relation on the states of M such that p = q if and only if for each input string x,
8(p, x) is an accepting state if and only if 5(g, x) is an accepting state. Observe that
there is an isomorphism between those equivalence classes of = that contain a
state reachable from g, by some input string and the states of the minimum state
FA M'. Thus the states of M’ may be identified with these classes.

Rather than give a formal algorithm for computing the equivalence classes of
= we first work through an example. First some terminology is needed. If p = ¢,
we say p is equivalent to q. We say that p is distinguishable from q if there exists an
x such that §(p, x) is in F and &(g, x) is not, or vice versa.

Example 3.8 Let M be the finite automaton of Fig. 3.5. In Fig. 3.6 we have
constructed a table with an entry for each pair of states. An X is placed in the table
each time we discover a pair of states that cannot be equivalent. Initially an X is
placed in each entry corresponding to one final state and one nonfinal state. In our
example, we place an X in the entries (a, ¢), (b, ¢), (¢, d), (c, e), (¢, f), (¢, g), and
(c, h).

Fig. 3.5 Finite automaton.
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gl XX | X | X | X | X

n X X{X | X | X | X

a h ¢ d e ! g

Fig. 3.6 Calculation of equivalent states.

Next for each pair of states p and g that are not already known to be distin-
guishable we consider the pairs of states r = §(p, a) and s = d(q, a) for each input
symbol a. If states r and s have been shown to be distinguishable by some string x,
then p and g are distinguishable by string ax. Thus if the entry (r, s) in the table
has an X, an X is also placed at the entry (p, q). If the entry (r, s) does not yet have
an X, then the pair (p, q) is placed on a list associated with the (r, s)-entry. At
some future time, if the (r, s) entry receives an X, then each pair on the list
associated with the (r, s)-entry also receives an X.

Continuing with the example, we place an X in the entry (a, b), since the entry
(6(b, 1), 8(a, 1)) = (c, f) already has an X. Similarly, the (a, d)-entry receives an X
since the entry (6(a, 0), 8(d, 0)) = (b, c) has an X. Consideration of the (a, ¢)-entry
on input 0 results in the pair (a, e) being placed on the list associated with (b, h).
Observe that on input 1, both a and e go to the same state f and hence no string
starting with a 1 can distinguish a from e. Because of the 0-input, the pair (a, g) is
placed on the list associated with (b, g). When the (b, g)-entry is considered, it
receives an X on account of a 1-input, and hence the pair (a, g) receives an X since
it was on the list for (b, g). The string 01 distinguishes a from g.

On completion of the table in Fig. 3.6, we conclude that the equivalent states
are a = ¢, b = h, and d = f. The minimum-state finite automaton is given in Fig.
3.7

The formal algorithm for marking pairs of inequivalent states is shown in Fig.
}.8. Lemma 3.2 proves that the method outlined does indeed mark all pairs of
Inequivalent states.

Lemma 32 Let M = (Q, Z, 4, qo, F) be a DFA. Then p is distinguishable from
qif and only if the entry corresponding to the pair (p, q) is marked in the above
procedure.
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A
Fig. 3.7 Minimum state finite automaton.

begin
1) for pin F and q in Q — F do mark (p, q);
2) for each pair of distinct states (p, ¢)in F x F or (Q — F) x (Q — F) do
3) if for some input symbol a, (6(p, a), (g, a)) is marked then

begin
4) mark (p, q);
5) recursively mark all unmarked pairs on the list for (p, ) and on the lists

of other pairs that are marked at this step.
end
else /* no pair (6(p, a), 6(q, a)) is marked */

6) for all input symbols a do
7) put (p, g) on the list for (5(p, a), 5(q, a)) unless

o(p, a) = 6(g, a)
end

Fig. 3.8 Algorithm for marking pairs of inequivalent states.

Proof Assume p is distinguishable from g, and let x be a shortest string distin-
guishing p from q. We prove by induction on the length of x that the entry
corresponding to the pair (p, q) is marked. If x = ¢ then exactly one of p and ¢
is a final state and hence the entry is marked in line (1). Assume that the hypothesis
is true for |x| <i, i>1, and let |x|=i. Write x =ay and let t = é(p, a) and
u = 6(q, a). Now y distinguishes ¢ from « and |y| =i — 1. Thus by the induction
hypothesis the entry corresponding to the pair (¢, u) eventually is marked. If this
event occurs after the pair (p, q) has been considered, then either the (p, q) entry
has already been marked when (t, u) is considered, or the pair (p, q) is on the
list associated with (t, u), in which case it is marked at line (5). If (p, g) is con-
sidered after (t, u) then (p, ¢) is marked at the time it is considered. In any event
the entry (p, q) is marked. A similar induction on the number of pairs marked
shows that if the entry (p, q) is marked then p and q are distinguishable. O
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The algorithm of Fig. 3.8 is more efficient than the obvious marking algo-
rithm, although it is not the most efficient possible. Let £ have k symbols and Q
have n states. Line 1 takes 0(n?) steps.t The loop of lines 2 through 7 is executed
0(n?) times, at most once for each pair of states. The total time spent on lines 2
through 4, 6, and 7 is 0(kn?). The time spent on line 5 is the sum of the length of all
lists. But each pair (r, s) is put on at most k lists, at line 7. Thus the time spent on
line 5 is O(kn?), so the total time is also 0(kn?).

Theorem 3.11 The DFA constructed by the algorithm of Fig. 3.8, with inacces-
sible states removed, is the minimum state DFA for its language.

Proof LetM = (Q, Z, 6, qo, F) be the DFA to which the algorithm is applied and
M =(Q, %, &, [g], F') be the DFA constructed. That is,

Q' ={[q]|q is accessible from g},
F ={[q]|qis in F}

(g}, a) = [5(g, @)}

It is easy to show that &' is consistently defined, since if g = p, then d(q, a) =
o(p, a). That is, if 5(qg, a) is distinguished from J(p, a) by x, then ax distinguishes g
from p. It is also easy to show that &([go], w) = [6(go, w)] by induction on |w|.
Thus L(M') = L(M).

Now we must show that M’ has no more states than R, has equivalence
classes, where L = L(M). Suppose it did; then there are two accessible states g and
p in Q such that [q] # [p], yet there are x and y such that 5(qo, X) = ¢, 6(go, ¥) = P,
and xR, y. We claim that p = g, for if not, then some w in Z* distinguishes p from
g. But then xwR, yw is false, for we may let z = ¢ and observe that exactly one of
xwz and ywz is in L. But since R, is right invariant, xwR yw is true. Hence q and p
do not exist, and M’ has no more states than the index of R;. Thus M’ is the
minimum state DFA for L. ]

and

EXERCISES

3.1  Which of the following languages are regular sets? Prove your answer.
a) {07 |n > 1
b) {0"1"0™*"|m > 1 and n > 1}
¢) {0*|n is a prime}
d) the set of all strings that do not have three consecutive 0's.
e) the set of all strings with an equal number of 0’s and Is.
f) {x]xin (0 + 1)* and x = x®} xR is x written backward; for example, (011)% = 110.
8) {xwx®|x, win (0 + 1)*}
*h) {xxfw|x, win (0 + 1)*}

t We say that g(n) is O(f(n)) if there exist constants ¢ and n, such that g(n) < ¢f(n) for all n > no.
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3.2 Prove the following extension of the pumping lemma for regular sets. Let L be a
regular set. Then there exists a constant n such that for each zy, z,, z3, with z, z, z5 in Land
|z2] = n, z; can be written z, = uvw such that |v| > 1and for each i > 0, z, uv'wzs is in L.
3.3 Use Exercise 3.2 to prove that {0'1™2™|i > 1, m > 1} is nonregular.
* 34 Let L be aregular set. Which of the following sets are regular? Justify your answers.
a) {ayasas - aza-y|ayazasa, - ay, is in L}
S b) {a;ajasas - az,az,-1|aya; - ay, is in L}
¢) CYCLE(L) = {x; x5 |x;x, is in L for strings x, and x,}
d) MAX(L) = {x in L|for no y other than ¢ is xy in L}
e) MIN(L) = {x in L|no proper prefix of x is in L}
f) INIT(L) = {x|for some y, xy is in L}
g) IF={x|x®isin L}
h) {x|xx® is in L}
* 35 Let value(x) be the result when the symbols of x are multiplied from left to right
according to the table of Fig. 2.31.
a) Is L = {xy||x| = |y| and value(x) = value(y)} regular?
b) Is L = {xy|value(x) = value(y)} regular?
Justify your answers.
* 3.6 Show that {0'l/|gcd(i, j) = 1} is not regular.
** 37 Let L be any subset of 0*. Prove that L* is regular.

3.8  Aset ofintegers is linear if it is of the form {c + pi|i = 0, 1,2, ...}. A set is semilinear if
it is the finite union of linear sets. Let R = 0* be regular. Prove that {i|0 is in R} is
semilinear.

3.9 Is the class of regular sets closed under infinite union?

3.10 What is the relationship between the class of regular sets and the least class of
languages closed under union, intersection, and complement containing all finite sets?

* 311 Give a finite automaton construction to prove that the class of regular sets is closed
under substitution.

** 312 Is the class of regular sets closed under inverse substitution?

3.13 Let h be the homomorphism h(a) = 01, h(b) = 0.
a) Find h™*(L,), where L, = (10 + 1)*
b) Find h(L,), where L, = (a + b)*
c) Find h™'(L;), where L is the set of all strings of 0’s and 1’s with an equal number of 0's
and Is.

3.14 Show that 2DFA with endmarkers (see Exercise 2.20) accept only regular sets by
making use of closure properties developed in this chapter.

** 315 The use of n with regular expressions does not allow representation of new sets.
However it does allow more compact expression. Show that n can shorten a regular
expression by an exponential amount. [Hint: What is the regular expression of shortest
length describing the set consisting of the one sentence (... ((a3 a,)%a;)? ---)2 7]
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** 3,16 Let L be a language. Define }(L) to be
{x |for some y such that |x| = |y|, xy is in L}.

That is, 4(L) is the first halves of strings in L. Prove for each regular L that 4(L) is regular.

** 317 1If L is regular, is the set of first thirds of strings in L regular? What about the last
third? Middle third? Is the set
{xz|for some y with |x| = |y| = |z|, xyz is in L}
regular?
** 3,18 Show that if L is regular, so are
a) SQRT(L) = {x|for some y with |y| = |x|? xy is in L}
b) LOG(L) = {x|for some y with |y| = 2", xy is in L}

* 3.19 A one-pebble 2DFA is a 2DFA with the added capability of marking a tape square by
placing a pebble on it. The next state function depends on the present state, the tape symbol
scanned, and the presence or absence of a pebble on the tape square scanned. A move
consists of a change of state, a direction of head motion, and possibly placing or removing
the pebble from the scanned tape cell. The automaton “jams” if it attempts to place a
second pebble on the input. Prove that one-pebble 2DFA’s accept only regular sets. [Hint :
Add two additional tracks to the input that contain tables indicating for each state p, the
state g in which the 2DFA will return if it moves left or right from the tape cell in state p,
under the assumption that the pebble is not encountered. Observe that the one-pebble
2DFA operating on the augmented tape need never leave its pebble. Then make use of a
homomorphic mapping to remove the additional tracks.]

* 3.20 In converting an NFA to a DFA the number of states may increase substantially.
Give upper and lower bounds on the maximum increase in number of states for an n-state
NFA. [Hint: Consider Exercises 2.5(¢) and 2.8(c).]

3.21 Give a decision procedure to determine if the set accepted by a DFA is

a) the set of all strings over a given alphabet,
b) cofinite (a set whose complement is finite).

** 322 Considera DFA M. Suppose you are told that M has at most n states and you wish
todetermine the transition diagram of M. Suppose further that the only way you can obtain
information concerning M is by supplying an input sequence x and observing the prefixes
of x which are accepted.

a) What assumptions must you make concerning the transition diagram of M in order to
be able to determine the transition diagram?

b) Giveanalgorithm for determining the transition diagram of M (except for the start state)
including the construction of x under your assumptions in part (a).

**$ 323 Give an efficient decision procedure to determine if x is in the language denoted by
an extended regular expression (a regular expression with operators v, - (concatenation),
*, N, and -, that is complement).

3.24 Give an efficient decision procedure for determining if a semi-extended regular ex-
pression r (a regular expression with U, -, *, n) denotes a nonempty set. [Hint : Space 0( | r|)

and time 0(2!") are sufficient.] .
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Fig. 3.9 A finite automaton.

3.25 Find the minimum-state finite automaton equivalent to the transition diagram of
Fig. 3.9.

3.26

a) What are the equivalence classes of R, in the Myhill-Nerode theorem (Theorem 3.9)
for L={0"1"|n > 1}?

b) Use your answer in (a) to show {0"1"|n > 1} not regular.

c) Repeat (a) for {x|x has an equal number of 0’s and 1's}.

* 3.27 R is a congruence relation if xRy implies wxzRwyz for all w and z. Prove that a set is
regular if and only if it is the union of some of the congruence classes of a congruence
relation of finite index.

* 328 Let M be a finite automaton with n states. Let p and q be distinguishable states of M
and let x be a shortest string distinguishing p and q. How long can the string x be as a
function of n?

** 329 In atwo-tape FA each state is designated as reading tape 1 or tape 2. A pair of strings
(x, y) is accepted if the FA, when presented with strings x and y on its respective tapes,
reaches a final state with the tape heads immediately to the right of x and y. Let L be the set
of pairs accepted by a two-tape FA M. Give algorithms to answer the following questions.

a) Is L empty? b) Is L finite?
c) Do there exist L, and L, such that L= L, x L,?
3.30

a) Prove that there exists a constant ¢ > 0 such that the algorithm of Fig. 3.8 requires time
greater than cn? for infinitely many DFA where 7 is the number of states and the input
alphabet has two symbols.

**b) Give an algorithm for minimizing states in a DFA whose execution time is
0(|Z|n log n). Here X is the input alphabet. [Hint: Instead of asking for each pair of
states (p, q) and each input a if 5(p, a) and (g, a) are distinguishable, partition the
states into final and nonfinal states. Then refine the partition by considering all states
whose next state under some input symbol is in one particular block of the partition.
Each time a block is partitioned, refine the partition further by using the smaller sub-
block. Use list processing to make the algorithm as efficient as possible.]

Solutions to Selected Exercises

3.4(')) L= {az a,Q4a3 """ Q2,025 !al az; - " az,,is in L} is regular. LetM = (Q, Z, (S, o, F)
be a DFA accepting L. We construct a DFA M’ that accepts L. M’ will process tape
symbols in pairs. On seeing the first symbol a in a pair, M’ stores a in its finite control. Then
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on seeing the second symbol b, M’ behaves like M on the input ba. More formally

M=(QuUQxZ,ZJ, g F) -
where
i) &(q, a) = [q, a), and
i) &((g, al, ) = (g, ba).

To prove that M’ accepts L we show by induction on even i that
(g, azaya4as -+~ aia;- ) = 6(q, aya; -+ a;).

Clearly, for i = 0, §'(q, €) = q = &(q, ¢). Assume the hypothesis is true for all even j < i. By
the induction hypothesis,

5'(q, azay - a;-20;-3) = 6(q, aya, - a;-;)
=p for some p.

Thus
5(q, azay - a;a;_ 1) =9(p, a;a;- 1)

=([p, al}, ai-1)
=4(p, a;-,a;)
= (S(q, ayas - ag).

Therefore aya,asa; +* a;a;—, is in L(M') if and only if a;a, -+ g; is in L{M), and thus
LM')= L. O
323 One can clearly construct a finite automaton equivalent to R by combining finite
automata corresponding to subexpressions of R and then simulating the automaton on x.
We must examine the combining process to see how it affects the size of the resulting
automaton. If we work with DFA’s then the number of states for a union or intersection
grows as the product. However, concatenation and closure may increase the number of
states exponentially, as we need to convert DFA’s to NFA’s and then perform the subset
construction. If we work with NFA’s, then the number of states is additive for union,
concatenation, and closure and increases as the product for intersection. However, comple-
ments require a conversion from an NFA to a DFA and hence an exponential increase in
the number of states. Since operators can be nested, the number of states can be exponen-
tiated on the order of n times for an expression with n opegators, and thus this technique is
not in general feasible.

A more efficient method based on a dynamic programming technique (see Aho,
Hopcroft, and Ullman [1974]) yields an algorithm whose execution time is polynomial in
the length of the input w and the length of the regular eXpression s. Let n = [w| + |s|.
Construct a table which for each subexpression r of s and each substring x;; of w gives the
answer to the question: Is x;; in L(r), where x;; is the substring of w of length j beginning at
position i? The table is of size at most n?, since there are at most n subexpressions of s and
n(n + 1)/2 substrings of w. Fill in the table starting with entries for small subexpressions
(those without operators, that is, a, ¢, or ). Then fill in entries for x and r, where r is of one
of the forms r, N ry, ry + 1y, Fy 1, ¥, of 7ry. We handle only the case r}. We proceed in
order of the length of x. To determine if x.is in r}, given that we already know for each
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proper substring y of x whether y is in r; or in r}, we need only check for each x, and x,
such that x = x; x, and x; # ¢, whether x, is in r, and x, is in r}. Thus to calculate the
table entry for x and r requires time O(| x| + |r|). Hence the time to fill in the entire table is
0(n*). To determine if w is in s we need only consult the entry for s and w, noting that
w = xyi, where k = |w].

BIBLIOGRAPHIC NOTES

The pumping lemma for regular sets is based on the formulation of Bar-Hillel, Perles, and
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Example 3.2, the unrecognizability of the primes in binary, was proved by Minsky and
Papert [1966] by another method. Proportional removal operations, such as Exercise 3.16,
were first studied in generality by Stearns and Hartmanis [1963]. Generalizations such as
Exercise 3.18 were considered by Kosaraju [1974] and Seiferas [1974], and the question of
what functions of the string length may be removed from the front to yield regular sets was
solved completely by Seiferas and McNaughton [1976]. A solution to Exercise 3.22 was first
considered by Hennie [1964]. An algorithm for determining equivalence for deterministic
two-tape FA is found in Bird [1973].



CHAPTER

CONTEXT-FREE
GRAMMARS

41 MOTIVATION AND INTRODUCTION

In this chapter we introduce context-free grammars and the languages they
describe—the context-free languages. The context-free languages, like the regular
sets, are of great practical importance, notably in defining programming lan-
guages, in formalizing the notion of parsing, simplifying translation of program-
ming languages, and in other string-processing applications. As an example,
context-free grammars are useful for describing arithmetic expressions, with arbi-
trary nesting of balanced parentheses, and block structure in programming lan-
guages (that is, begin’s and end’s matched like parentheses). Neither of these aspects
of programming languages can be represented by regular expressions.

A context-free grammar is a finite set"of variables (also called nonterminals or
syntactic categories) each of which represents a language. The languages repre-
sented by the variables are described recursively in terms of each other and
primitive symbols called terminals. The rules relating the variables are called
productions. A typical production states that the language associated with a given
variable contains strings that are formed by concatenating strings from the lan-
guages of certain other variables, possibly along with some terminals.

The original motivation for context-free grammars was the description of
natural languages. We may write rules such as

(sentence) — {noun phrase ){verb phrase)
{noun phrase ) — {adjective )(noun phrase)
{noun phrase) — {(noun)
{(noun) — boy
(adjective) — little 4.1

77
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where the syntactic categoriest are denoted by angle brackets and terminals by
unbracketed words like “boy” and “little.”
The meaning of

{sentence) — {noun phrase){verb phrase)

is that one way to form a sentence (a string in the language of the syntactic
category (sentence)) is to take a noun phrase and follow it by a verb phrase. The
meaning of

{noun) - boy

is that the string consisting of the one-terminal symbol “boy” is in the language of
the syntactic category {noun ). Note that “boy” is a single terminal symbol, not a
string of three symbols.

For a number of reasons, context-free grammars are not in general regarded
as adequate for the description of natural languages like English. For example, if
we extended the productions of (4.1) to encompass all of English, we would be
able to derive “rock” as a noun phrase and “runs” as a verb phrase. Thus “rock
runs” would be a sentence, which is nonsense. Clearly some semantic information
is necessary to rule out meaningless strings that are syntactically correct. More
subtle problems arise when attempts are made to associate the meaning of the
sentence with its derivation. Nevertheless context-free grammars play an impor-
tant role in computer linguistics.

While linguists were studying context-free grammars, computer scientists
began to describe programming languages by a notation called Backus-Naur
Form (BNF), which is the context-free grammar notation with minor changes in
format and some shorthand. This use of context-free grammars has greatly
simplified the definition of programming languages and the construction of com-
pilers. The reason for this success is undoubtedly due in part to the natural way in
which most programming language constructs are described by grammars. For
example, consider the set of productions

1) {expression) — {expression) + {expression)

2) {expression) — {expression) * {expression )

3) {expression) — ({expression))

4) (expression) — id 4.2)

which defines the arithmetic expressions with operators + and * and operands
represented by the symbol id. Here {expression) is the only variable, and the
terminals are +, *, (, ), and id. The first two productions say that an expression

t Recall that the term “syntactic category” is a synonym for “variable.” It is preferred when dealing
with natural languages.
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can be composed of two expressions connected by an addition or multiplication
sign. The third production says that an expression may be another expression
surrounded by parentheses. The last says a single operand is an expression.

By applying productions repeatedly we can obtain more and more com-
plicated expressions. For example,

(expression ) = {expression ) * {expression )
= ({expression )) » {expression )
= ({expression ) * id
= ({expression) + {expression))  id
= ({expression) + id) * id
= (id + id) » id (43)

The symbol = denotes the act of deriving, that is, replacing a variable by the
right-hand side of a production for that variable. The first line of (4.3)is obtained
from the second production. The second line is obtained by replacing the first
{expression) in line 1 by the right-hand side of the third production. The remain-
ing lines are the results of applying productions (4), (1), (4), and (4). The last line,
(id + id) * id, consists solely of terminal symbols and thus is a word in the lan-
guage of {expression).

42 CONTEXT-FREE GRAMMARS

Now we shall formalize the intuitive notions introduced in the previous section. A
context-free grammar (CFG or just grammar) is denoted G = (V, T, P, S), where
V and T are finite sets of variables and terminals, respectively. We assume that V
and T are disjoint. P is a finite set of productions; each production is of the form
A — o, where A is a variable and « is a string of symbols from (V U T)*. Finally, S
is a special variable called the start symbol.

Example 4.1 Suppose we use E instead of {expression) for the variable in the
grammar (4.2). Then we could formally express this grammar as ({E}, {+, *, (, ),
id}, P, E), where P consists of

E—-E+E
E-ExE
E—(E)
E—id
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In this and the next two chapters we use the following conventions regarding
gramimars.

1) The capital letters 4, B, C, D, E, and S denote variables; S is the start symbol
unless otherwise stated.

2) The lower-case letters a, b, c, d, e, digits, and boldface strings are terminals.

3) The capital letters X, Y, and Z denote symbols that may be either terminals or
variables.

4) The lower-case letters u, v, w, x, y, and z denote strings of terminals.

5) The lower-case Greek letters o, B, and y denote strings of variables and
terminals.

By adhering to the above conventions, we can deduce the variables, terminals,
and the start symbol of a grammar solely by examining the productions. Thus we
often present a grammar by simply listing its productions. If 4 > oy, 4 > a5, ...,
A - o, are the productions for the variable A of some grammar, then we may
express them by the notation

A- oy |og] |,

where the vertical line is read “or.” The entire grammar of Example 4.1 could be
written

E—>E+E|ExE|(E)|id

Derivations and languages

We now formally define the language generated by a grammar G = (V, T, P, S).
To do so, we develop notation to represent a derivation. First we define two
relations = and % z between strings in (V U T)*.1f A — Bis a production of P and
a and y are any strings in (V U T)*, then aAy = afy. We say that the production
A — B is applied to the string a4y to obtain aﬂy or that aAy directly derives affy in
grammar G. Two strings are related by = exactly when the second is obtained
from the first by one application of some production.
Suppose that a;, a, ..., a,, are strings in (V U T)*, m > 1, and

a, Ay, a2 A3y veey Ay ?am.

Then we say «, ? a,, Or a, derives a,, in grammar G. That is, 2 is the reflexive and
transitive closure of = (see Section 1.5 for a discussion of closures of relations).
Alternatively, « : ﬂ if g follows from o by application of zero or more productions
of P. Note that acza for each stnng a. Usually, if it is clear which grammar G is
involved, we use = for = and % for & . If a derives B by exactly i steps, we say
as .

The language generated by G [denoted L(G)] is {w|wisin T*and S Z: w}. That
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is, a string is in L{G) if:
1) The string consists solely of terminals.
2) The string can be derived from S.
We call L a context-free language (CFL) if it is L(G) for some CFG G. A string of

terminals and variables o is called a sentential form if S % a. We define grammars
G, and G, to be equivalent if L(G,) = L(G,).

Example 42 Consider a grammar G = (V, T, P, S), where V ={S}, T = {a, b}
and P = {S — aSh, S — ab}. Here, S is the only variable; a and b are terminals.
There are two productions, S — aSb and S — ab. By applying the first production
n — 1 times, followed by an application of the second production, we have

S = aSb = aaSbb = a>Sh3 = --- = a" " 1Sb" " ! = a"b".

Furthermore, the only strings in L(G) are a"b" for n > 1. Each time S — aSb is
used, the number of S’s remains the same. After using the production S — ab we
find that the number of S’s in the sentential form decreases by one. Thus, after
using S — ab, no S’s remain in the resulting string. Since both productions have an
S on the left, the only order in which the productions can be applied is S — aSb
some number of times followed by one application of S — ab. Thus, L(G) =
{a"b"|n = 1}.

Example 4.2 was a simple example of a grammar. It was relatively easy to
determine which words were derivable and which were not. In general, it may be
exceedingly hard to determine what is generated by the grammar Here is another,
more difficult example.

Example 43 Consider G= (V, T, P, S), where V = {S, 4, B}, T = {a, b}, and P
consists of the following:
S —aB A—>bAA

S - bA B—b
A-a B—bS
A—aS B— aBB

The language L(G) is the set of all words in T* consisting of an equal number
of a’s and b’s. We shall prove this statement by induction on the length of a word.

Inductive hypothesis For win T+,

1) S% w if and only if w consists of an equal number of a’s and b’s.
2) A% w if and only if w has one more a than it has b’s.
3) B% w if and only if w has one more b than it has a’s.
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The inductive hypothesis is certainly true if |w| = 1, since 42 a, B2 b, and
no terminal string of length one is derivable from S. Also, since all productions but
A — a and B — b increase the length of a string, no strings of length one other than
a and b are derivable from A4 and B, respectively. Also, no strings of length one are
derivable from S.

Suppose that the inductive hypothesis is true for all w of length k — 1 or less.
We shall show that it is true for |w| = k. First, if S % w, then the derivation must
begin with either S — aB or S — bA. In the first case, w is of the form aw,, where

|w,| = k — 1 and B2 w,. By the inductive hypothesis, the number of b’s in w, is
one more than the number of a’s, so w consists of an equal number of a’s and b’s. A
similar argument prevails if the derivation begins with S — bA.

We must now prove the “only if” of part (1), that is, if |w| = k and w consists
of an equal number of a’s and b’s, then S 2 w. Either the first symbol of w is a or it
is b. Assume that w = aw,. Now |w, | = k — 1, and w, has one more b than it has
a’s. By the inductive hypothesis, B> w,. But then S => aB % aw, = w. A similar
argument prevails if the first symbol of w is b.

Our task is not done. To complete the proof, we must prove parts (2) and (3)
of the inductive hypothesis for w of length k. We do this in a manner similar to our
method of proof for part (1); this part is left to the reader.

43 DERIVATION TREES

It is useful to display derivations as trees. These pictures, called derivation (or
parse) trees, superimpose a structure on the words of a language that is useful in
applications such as the compilation of programming languages. The vertices of a
derivation tree are labeled with terminal or variable symbols of the grammar or
possibly with e. If an interior vertex n is labeled A, and the sons of n are labeled X ,,
X,, ..., X, from the left, then 4 - X X, --- X, must be a production. Figure 4.1
shows the parse tree for derivation (4.3). Note that if we read the leaves, in
left-to-right order, we get the last line of (4.3), (id + id) * id.

<expression>

T

<expression> * <expression>
T |
<expression> id
/ | \
<expression> <expression>
|
iL id

Fig. 4.1 Derivation tree.
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More formally, let G = (V, T, P, S) be a CFG. A tree is a derivation (or parse)
tree for G if: :
1) Every vertex has a label, which is a symbol of ¥ U T U {e}.
2) The label of the root is S.
3) If a vertex is interior and has label 4, then A must be in V.
4) If n has label A and vertices n,, n,, ..., m are the sons of vertex n, in order
from the left, with labels X, X,, ..., X,, respectively, then
A- XX, X,
must be a production in P.
5) If vertex n has label ¢, then n is a leaf and is the only son of its father.

Example 44 Consider the grammar G = ({S, A4}, {a, b}, P, S), where P consists of
S—aAS|a
A— SbA|SS |ba

We draw a tree, just this once, with circles instead of points for the vertices.
The vertices will be numbered for reference. The labels will be adjacent to the
vertices. See Fig. 4.2.

The interior vertices are 1, 3, 4, 5, and 7. Vertex 1 has label S, and its sons,
from the left, have labels g, 4, and S. Note that S — aAS is a production. Likewise,
vertex 3 has label 4, and the labels ofits sons are S, b, and A4 from the left.
A — SbA is also a production. Vertices 4 and 5 each have label S. Their only sons
each have label g, and S — a is a production. Lastly, vertex 7 has label 4 and its
sons, from the left, have labels b and a. A — ba is also a production. Thus, the
conditions for Fig. 4.2 to be a derivation tree for G have been met.

Fig. 42 Example of a deri;/ation tree.
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We may extend the “from the left” ordering of sons to produce a left-to-right
ordering of all the leaves. In fact, for any two vertices, neither of which is an
ancestor of the other, one is to the left of the other. Given vertices v, and v,, follow
the paths from these vertices toward the root until they meet at some vertex w. Let
x, and x, be the sons of w on the paths from v, and v,, respectively. If v, is not an
ancestor of v,, or vice versa, then x; # x,. Suppose x, is to the left of x, in the
ordering of the sons of w. Then v, is to the left of v,. In the opposite case, v, is to
the left of v,. For example, if v, and v, are 9 and 11 in Fig. 4.2, thenwis 3,x, = 5,
and x, = 7. As 5 is to the left of 7, it follows that 9 is to the left of 11.

We shall see that a derivation tree is a natural description of the derivation of
a particular sentential form of the grammar G. If we read the labels of the leaves
from left to right, we have a sentential form. We call this string the yield of the
derivation tree. Later, we shall see that if a is the yield of some derivation tree for
grammar G = (V, T, P, S), then § %» o, and conversely.

We need one additional concept, that of a subtree. A subtree of a derivation
tree is a particular vertex of the tree together with all its descendants, the edges
connecting them, and their labels. It looks just like a derivation tree, except that
the label of the root may not be the start symbol of the grammar. If variable 4
labels the root, then we call the subtree an A-tree. Thus “S-tree” is a synonym for
“derivation tree” if S is the start symbol.

Example 4.5 Consider the grammar and derivation tree of Example 4.4. The
derivation tree of Fig. 4.2 is reproduced without numbered vertices as Fig. 4.3(a).
The yield of the tree in Fig. 4.3(a) is aabbaa. Referring to Fig. 4.2 again, we see that
the leaves are the vertices numbered 2, 9, 6, 10, 11, and 8, in that order, from the
left. These vertices have labels q, a, b, b, a, a, respectively. Note that in this case all
leaves had terminals for labels, but there is no reason why this should always be
so; some leaves could be labeled by ¢ or by a variable. Note that S £ aabbaa by
the derivation

S => aAS = aSbAS = aabAS = aabba$ => aabbaa.
Figure 4.3(b) shows a subtree of the tree illustrated in part (a). It is vertex 3 of

Fig. 4.2, together with its descendants. The yield of the subtree is abba. The label of
the root of the subtree is 4, and A % abba. A derivation in this case is

A= SbA = abA = abba.

The relationship between derivation trees and derivations

Theorem 4.1 Let G = (V, T, P, S) be a context-free grammar. Then S % « if and
only if there is a derivation tree in grammar G with yield a.

Proof We shall find it easier to prove something in excess of the theorem. What
we shall prove is that for any 4 in ¥, A% a if and only if there is an A-tree with «
as the yield.
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N

(a) (b)
Fig. 43 Derivation tree and subtree.

a a b a

Suppose, first, that a is the yield of an A-tree. We prove, by induction on the
number of interior vertices in the tree, that 4 % a. If there is only one interior
vertex, the tree must look like the one in Fig. 4.4. In that case, X, X, --- X, must
be a, and A —» a must be a production of P, by definition of a derivation tree.

Fig. 44 Tree with one interior vertex.

Now, suppose that the result is true for trees with up to k — 1 interior vertices.
Also, suppose that « is the yield of an A-tree with k interior vertices for some
k > 1. Consider the sons of the root. These could not all be leaves. Let the labels of
the sons be Xy, X5, ..., X, in order from the left. Then surely, 4 - X, X, --- X, is
a production in P. Note that n may be any integer greater than or equal to one in
the argument that follows.

If the ith son is not a leaf, it is the root of a subtree, and X; must be a variable.
The subtree must be an X-tree and has some yield ;. If vertex i is a leaf, let
o; = X;. It is easy to see that if j < i, vertex j and all of its descendants are to the
left of vertex i and all of its descendants. Thus & = &, &, - ** &,. A subtree must have
fewer interior vertices than its tree does, unless the subtree is the entire tree. By the
inductive hypothesis, for each vertex i that is not a leaf, X; % a;, since the subtree
with root X is not the entire tree. If X; = «;, then surely X; % «;. We can put all
these partial derivations together, to see that

A=X X, X, 50, X, X, 2o 0, Xy X, 2 Baa, o, =a.
(4.4)

Thus 4% &. Note that (4.4) is only one of many possible derivations we could
Produce from the given parse tree.
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Now, suppose that 4 % «. We must show that there is an A-tree with yield a.
If A% o by a single step, then A — « is a production in P, and there is a tree with
yield a, of the form shown in Fig. 4.4.

Now, assume that for any variable 4 if A% a by a derivation of fewer than k
steps, then there is an A-tree with yield a. Suppose that A % o by a derivation of k
steps. Let the first step be A - X, X, -+ X,. It should be clear that any symbol in
o must either be one of X, X5, ..., X, or be derived from one of these. Also, the
portion of a derived from X; must lie to the left of the symbols derived from X, if
i <j. Thus, we can write a as a, o, - «,, where for each i between 1 and n,

1) a; = X; if X; is a terminal, and
2) X; %« if X, is a variable.

If X, is a variable, then the derivation of «; from X; must take fewer than k
steps, since the entire derivation A4 % o takes k steps, and the first step is surely not
part of the derivation X; 2 «;. Thus, by the inductive hypothesis, for each X, that
is a variable, there is an X-tree with yield «;. Let this tree be T,.

We begin by constructing an A-tree with n leaves labeled X, X,, ..., X,, and
no other vertices. This tree is shown in Fig. 4.5(a). Each vertex with label X,
where X is not terminal, is replaced by the tree T.. If X, is a terminal, no replace-
ment is made. An example appears in Fig. 4.5(b). The yield of this tree is «. [J

1 A
Xl 'YZ Tt Xn ",l XZ X3 M /"n —1 Xll
(terminal) j i\- (terminal) f

(a) (b)

Fig. 45 Derivation trees.

Example 4.6 Consider the derivation S 2> aabbaa of Example 4.5. The first step
is S — aAS. If we follow the derivation, we see that A eventually is replaced by
SbA, then by abA, and finally, by abba. Figure 4.3(b) is a parse tree for this
derivation. The only symbol derived from S in aAS is a. (This replacement is the
last step.) Figure 4.6(a) is a tree for the latter derivation.

Figure 4.6(b) is the derivation tree for S — aAS. If we replace the vertex with
label 4 in Fig. 4.6(b) by the tree of Fig. 4.3(b) and the vertex with label S in Fig.
4.6(b) with the tree of Fig. 4.6(a), we get the tree of Fig. 4.3(a), whose yield is
aabbaa.
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S /Sl\
a a A S

(a) (b)
Fig. 4.6 Derivation trees.

Leftmost and rightmost derivations; ambiguity

If at each step in a derivation a production is applied to the leftmost variable, then
the derivation is said to be lefimost. Similarly a derivation in which the rightmost
variable is replaced at each step is said to be rightmost. If w is in L(G) for CFG G,
then w has at least one parse tree, and corresponding to a particular parse tree, w
has a unique leftmost and a unique rightmost derivation. In the proof of Theorem
4.1, the derivation of a from A corresponding to the parse tree in question is
leftmost, provided the derivations X; % «; are made leftmost. If instead of deriva-
tion (4.4) we (recursively) made the derivation X; % a; be rightmost and replaced
the X’s by o; from the right rather than the left, we would obtain the rightmost
derivation corresponding to the parse tree.

Of course, w may have several rightmost or leftmost derivations since there
may be more than one parse tree for w. However, it is easy to show that from each
derivation tree, only one leftmost and one rightmost derivation may be obtained.
Also, the construction of Theorem 4.1 produces different derivation trees from
different leftmost or different rightmost derivations.

Example 4.7 The leftmost derivation corresponding to the tree of Fig. 4.3(a) is
S = aAS = aSbAS = aabAS = aabba$ => aabbaa.
The corresponding rightmost derivation is

S = aAS = aAa=> aSbAa = aSbbaa = aabbaa.

A context-free grammar G such that some word has two parse trees is said to
be ambiguous. From what we have said above, an equivalent definition of ambigu-
ity is that some word has more than one leftmost derivation or more than one
rightmost derivation. A CFL for which every CFG is ambiguous is said to be an
inherently ambiguous CFL. We shall show in Section 4.7 that inherently ambi-
guous CFL’s exist.

44 SIMPLIFICATION OF CONTEXT-FREE GRAMMARS

There are several ways in which one can restrict the format of productions without
reducing the generative power of context-free grammars. If L is a nonempty
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context-free language then it can be generated by a context-free grammar G with
the following properties.

1) Each variable and each terminal of G appears in the derivation of some word
in L
2) There are no productions of the form 4 — B where A and B are variables.

Furthermore, if ¢ is not in L, there need be no productions of the form A — €. In
fact, if ¢ is not in L, we can require that every production of G be of one of the
forms A —» BC and A — a, where A, B, and C are arbitrary variables and a is an
arbitrary terminal. Alternatively, we could make every production of G be of the
form A — aa, where a is a string of variables (perhaps empty). These two special
forms are called Chomsky normal form and Greibach normal form, respectively.

Useless symbols

We now undertake the task of eliminating useless symbols from a grammar. Let
G=(V, T, P,S) be a grammar. A symbol X is useful if there is a derivation
S% aXpB2 w for some o, B, and w, where w is in T* (recall our convention
regarding names of symbols and strings). Otherwise X is useless. There are two
aspects to usefulness. First some terminal string must be derivable from X and
second, X must occur in some string derivable from S. These two conditions are
not, however, sufficient to guarantee that X is useful, since X may occur only in
sentential forms that contain a variable from which no terminal string can be
derived.

Lemma 4.1 Given a CFG G = (V, T, P, S), with L(G) #+ &, we can effectively
find an equivalent CFG G’ = (V', T, P’, S) such that for each A in V" there is some
w in T* for which 4% w.

Proof Each variable 4 with production 4 —» w in P clearly belongs in V'. If
A—- X,X, - X, is a production, where each X; is either a terminal or a variable
already placed in V7, then a terminal string can be derived from A by a derivation
beginning A=>X,X, --- X,, and thus 4 belongs in V'. The set V' can be
computed by a straightforward iterative algorithm. P’ is the set of all productions
whose symbols are in V' U T.

The algorithm of Fig. 4.7 finds all variables A that belong to V". Surely if A is
added to NEWV at line (2) or (5), then A4 derives a terminal string. To show
NEWYV is not too small, we must show that if 4 derives a terminal string w, then 4
is eventually added to NEWYV. We do so by induction on the length of the
derivation 4% w.

Basis If the length is one, then 4 — w is a production, and A is added to NEWV
in step (2).

Induction Let A= XX, - X,% w by a derivation of k steps. Then we may
write w = w,; w, - w,, where X; % w;, for 1 <i < n, by a derivation of fewer than
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begin
1) OLDV:= ¢;
2) NEWV:={4|A4 - w for some w in T*};
3) while OLDV # NEWYV do
begin
4) OLDV:= NEWV;
5) NEWYV:= OLDV u {4]| A - a for some « in (T v OLDV)*}
end;
6) V’':= NEWV
end

Fig. 47 Calculation of V".

k steps. By the inductive hypothesis, those X; that are variables are eventually
added to NEWV. At the while-loop test of line (3), immediately after the last of the
X/s is added to NEWYV, we cannot have NEWV = OLDY, for the last of these
X;’s is not in OLDV. Thus the while-loop iterates at least once more, and A will be
added to NEWYV at line (5).

Take ¥’ to be the set computed at line (6) and P’ to be all productions whose
symbols are in V' u T. Surely G’ = (V', T, P, S) satisfies the property that if 4 is
in V', then A% w for some w. Also, as every derivation in G’ is a derivation of G,
we know L{G') < L(G). But if there is some w in L(G) not in L(G’), then any
derivation of w in G must involve a variable in ¥ — V' or a production in P — P’
(which implies there is a variable in ¥ — ¥’ used). But then there is a variable in
V — V' that derives a terminal string, a contradiction. O

Lemma 4.2 Given a CFG G = (V, T, P, S) we can effectively find an equivalent
CFG G' = (V, T, P, S) such that for each X in ¥’ U T there exist « and § in
(V' U T')* for which §% X 8.

Proof The set V' U T’ of symbols appearing in sententia! forms of G is con-
structed by an iterative algorithm. Place S in V'. If 4 is placed in V' and

A-> o |ay| " |o,, then add all variables of a;, a5, ..., a, to the set V" and all
terminals of o, a5, ..., &, to T". P’ is the set of productions of P containing only
symbols of V' U T'. O

By first applying Lemma 4.1 and then Lemma 4.2, we can convert a grammar
to an equivalent one with no useless symbols. It is interesting to note that applying
Lemma 4.2 first and Lemma 4.1 second may fail to eliminate all useless symbols.

g'heorem 4.2 Every nonempty CFL is generated by a CFG with no useless sym-
ols.

Proof Let L= L(G) be a nonempty CFL. Let G, be the result of applying the
construction of Lemma 4.1 to G and let G, be the result of applying the construc-
tion of Lemma 4.2 to G,. Suppose G, has a useless symbol X. By Lemma 4.2, there
is a derivation S % aX B. Since all symbols of G, are symbols of G, it follows from
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Lemma 4.1 that S % a X 3> w for some terminal string w. Therefore, no symbol in
the derivation aX A is eliminated by Lemma 4.2. Thus, X derives a terminal
string in G,, and hence X is not useless as supposed. O

Example 4.8 Consider the grammar
S— AB|a
A—a (4.5)

Applying Lemma 4.1, we find that no terminal string is derivable from B. We
therefore eliminate B and the production S — AB. Applying Lemma 4.2 to the
grammar

S—a
A—a (4.6)

we find that only S and a appear in sentential forms. Thus ({S}, {a}, {S — a}, S)isan
equivalent grammar with no useless symbols.

Suppose we first applied Lemma 4.2 to (4.5). We would find that all symbols
appeared in sentential forms. Then applying Lemma 4.1 we would be left with
(4.6), which has a useless symbol, A.

e-Productions

We now turn our attention to the elimination of productions of the form 4 — ¢,
which we call e-productions. Surely if € is in L(G), we cannot eliminate all ¢-
productions from G, but if ¢ is not in L(G), it turns out that we can. The method is
to determine for each variable A whether A% . If so, we call A nullable. We may
replace each production B— XX, --- X, by all productions formed by striking
out some subset of those X’s that are nullable, but we do not include B — ¢, even if
all X;’s are nullable.

Theorem 4.3 If L = I(G) for some CFG G = (V, T, P, S), then L — {¢} is L(G’) for
a CFG G’ with no useless symbols or e-productions.

Proof We can determine the nullable symbols of G by the following iterative
algorithm. To begin, if A — ¢is a production, then A is nullable. Then, if B— aisa
production and all symbols of a have been found nullable, then B is nullable. We
repeat this process until no more nullable symbols can be found.

The set of productions P’ is constructed as follows. If A - X;X, --- X, 1s in
P, then add all productions A — a, a, *** a, to P’ where

1) if X, is not nullable, then a; = X;
2) if X; is nullable, then o; is either X or ¢;
3) not all a’s are e.
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Let G" = (V, T, P, S). We claim that for all Ain V and win T*, A% wifand
only if w # ¢ and A=>w

If LetA= => wand w # ¢. We prove by induction on i that 4 % s> w.Thebasis,i = 1,
is trivial, for A — w must be a production in P. Since w # ¢, it is alsoa productlon
of P'. For the inductive step, let i > 1. Then A= X, X, - X,/ —_» w. Write
W =w; w, *** w, such that for each j, X;% w;in fewer than i steps If w; # € and
Xjisa varlable, then by the inductive hypothesxs we have X ;% w;. If w; = ¢, then
X is nullable. Thus, A — B, §, - B, is a production in P’, where ﬂj = Xj ifw; # ¢
and f; = ¢ if w; = €. Since w # ¢, not all f; are . Hence we have a derivation

A=p5 '“ﬁnéwlﬁZ ﬂnéwlw2ﬁ3 ﬂnén.éWIWZ W, =W
in G".

Only if Suppose Az Low. Surely w# ¢, since G” has no e-productions. We
show by induction on i that A %> w. For the basis, i = 1, observe that A —» wis a
production in P’. There must be a production 4 — « in P such that by striking out
certain nullable symbols from o we are left with w. Then there is a derivation
Az« ;‘: w, where the derivation a £ w involves deriving ¢ from the nullable sym-
bols of « that were struck out in order to get w.

For the induction step, let i > 1. Then A= X, X, -+ X,,"GE?‘ w. There must be
some A — fin P such that X, X, --- X, is found by striking out some nullable
symbols from . Thus A% X, X, --- X,,. Write w = wyw, == w,, such that for all
i X2 jzz w; by fewer than i steps. By the inductive hypothesns X; => w;if Xjisa
variable. Certamly if X; is a terminal, then w; = X, and X; => w; 1s tr1v1ally true.
Thus A% w.

The last step of the proof is to apply Theorem 4.2 to G” to produce G’ with no
useless symbols. Since the constructions of Lemmas 4.1 and 4.2 do not introduce
any productions, G’ has neither nullable symbols nor useless symbols. Further-
more S 2 w if and only if w # ¢ and S - w. That is, L(G') = L(G) — {¢}. O

From here on we assume that no grammar has useless symbols. We now turn
our attention to productions of the form 4 — B whose right-hand side consists of
a single variable. We call these unit productions. All other productions, including
those of the form 4 — a and e-productions, are nonunit productions.

Theorem 4.4 Every CFL without ¢ is defined by a grammar with no useless
symbols, e-productions, or unit productions.

Proof Let L be a CFL without ¢ and L = I{G) for some G = (V, T, P, S). By
Theorem 4.3, assume G has no e-productions. Construct a new set of productions
P from P by first including all nonunit productions of P. Then, suppose that
A% = B, for A and Bin V. Add to P’ all productions of the form A — «, where B — «
is a nonunit production of P.
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Observe that we can easily test whether 4 %:» B, since G has no e-productions,
and if

Az B,z B> = B,=B,

and some variable appears twice in the sequence, we can find a shorter sequence of
unit productions that results in 4 2: B. Thus it is sufficient to consider only those
sequences of unit productions that do not repeat any of the variables of G.

We now have a modified grammar, G' = (V, T, P’, S). Surely, if A »a is a
production of P’, then 4 §> . Thus, if there is a derivation of w in G’, then there is a
derivation of w in G.

Suppose that w is in L(G), and consider a leftmost derivation of w in G, say

S=aop 3 P oh=W.

If, for 0 < i < n, o; 2> ;4 by a nonunit production, then a; => «;, ;. Suppose that
;= a;,; by a unit production, but that a;_, =>«; by a nonunit production, or
i=0. Also suppose that a;,,2>%.,z> "3, all by unit productions, and
;> a;,1 by a nonunit production. Then &;, &4y, ..., o; are all of the same
length, and since the derivation is leftmost, the symbol replaced in each of these
must be at the same position. But then «; =>«;,, by one of the productions of
P" — P. Hence L(G’) = L(G). To complete the proof, we observe that G’ has no
unit productions or ¢-productions. If we use Lemmas 4.1 and 4.2 to eliminate
useless symbols, we do not add any productions, so the result of applying the
constructions of these lemmas to G’ is a grammar satisfying the theorem. O

45 CHOMSKY NORMAL FORM

We now prove the first of two normal-form theorems. These each state that all
context-free grammars are equivalent to grammars with restrictions on the forms
of productions.

Theorem 4.5 (Chomsky normal form,or CNF) Any context-free language without
€ is generated by a grammar in which all productions are of the form 4 — BC or
A — a. Here, A, B, and C, are variables and a is a terminal.

Proof Let G be a context-free grammar generating a language not containing €.
By Theorem 4.4, we can find an equivalent grammar, G, = (V, T, P, S), such that
P contains no unit productions or ¢-productions. Thus, if a production has a
single symbol on the right, that symbol is a terminal, and the production is already
in an acceptable form. -
Now consider a production in P, of the form 4 —» X, X, --- X,,, where m > 2.
If X, is a terminal, q, introduce a new variable C, and a production C, — a, which
is of an allowable form. Then replace X; by C,. Let the new set of variables be V*
and the new set of productions be P’. Consider the grammar G, = (V', T, P, S).1 If

+ Note that G, is not yet in Chomsky normal form.
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az> f, then a=> p. Thus L(G,) = L(Gz) Now we show by induction on the
number of steps in a derivation that if 4 % &w for Ain V and win T*, then A £ W
The result is trivial for one- -step derivations. Suppose that it is true for derxvatlons
of up to k steps. Let 4 => wbe a (k + 1)-step derivation. The first step must be of
the form A— B, B, *- B,,,, m > 2. We can write w = w; w, - w,,, where B, => Wi,
1<i<m

If B; is C,, for some terminal ai, then w; must be a;. By the construction of P,
there is a production 4 - X, X, - X,, of P where X; =B, if B;isin V and
X;=a;if B;isin V' — V_For those B; in V, we know that the derivation B; =>w
takes no more than k steps, so by the inductive hypothesis, X => w;. Hence A % W

We have now proved the intermediate result that any context free language
can be generated by a grammar for which every production is either of the form
A—aor A-» BB, - B, for m > 2. Here A and By, B,, ..., B, are variables,
and a is a terminal.

Consider such a grammar G, = (V', T, P, S). We modify G, by adding some
additional symbols to ¥’ and replacing some productions of P’. For each produc-
tion A— B, B, -** B,, of P', where m > 3, we create new variables D,, D,, ...,
D,,_, and replace A —» B, B, --- B,, by the set of productions

{A_’BlDl’ Dl _’BZDZ’ RS ] Dm—3 _'Bm—ZDm—b Dm—Z—’Bm—le}'

Let V” be the new nonterminal vocabulary and P” the new set of productions. Let
Gy=(V", T, P", S). G; is in CNF. It is clear that if A0=>ﬁ then A:ﬂ S0

L(G,) = L(G ) But it is also true that I(G,;) < L(G,), as can be shown in essen-
tially the same manner as it was shown that I(G,) < L(G,). The proof will be left
to the reader. O

Example 4.9 Let us consider the grammar ({S, 4, B}, {a, b}, P, S) that has the
productions:

S—»bAIaB
A—bAA|aS|a
B— aBB|bS|b

and find an equivalent grammar in CNF.

First, the only productions already in proper form are 4 —a and B—b.
There are no unit productions, so we may begin by replacing terminals on the
right by variables, except in the case of the productions A —»a and B— b. S — bA
is replaced by S — C, A and C, — b. Similarly, A — aS is replaced by A — C, S and
C.—a; A—>bAA is replaced by A— C, AA; S — aB is replaced by S — C,B;
B bS is replaced by B— C, S, and B — aBB is replaced by B— C, BB.

In the next stage, the production A — C, AA is replaced by 4 —» C, D, and
Dy — AA, and the production B— C, BB is replaced by B— C,D, and D, — BB.
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The productions for the grammar in CNF are shown below.
S—C,A|C,B D, > AA
A-C,S|C,Di|la D,— BB
B-C,S|C,D,|b C,—a
C,—b

4.6 GREIBACH NORMAL FORM

We now develop a normal-form theorem that uses productions whose right-hand
sides each start with a terminal symbol perhaps followed by some variables. First
we prove two lemmas that say we can modify the productions of a CFG in certain
ways without affecting the language generated.

Lemma 4.3 Define an A-production to be a production with variable 4 on the
left. Let G = (V, T, P, S) be a CFG. Let 4 - o;Ba, be a production in P and
B— B,|B.| | B, be the set of all B-productions. Let G, = (V, T, P,, S) be ob-
tained from G by deleting the production A4 — a;Ba, from P and adding the
productions A — a, fya, |0y Baot; |- |y Byt,. Then L(G) = L(G,).

Proof Obviously L(G,) < L(G), since if A — «, B;a, is used in a derivation of G,
then Az>a,Ba, z>a; fio, can be used in G. To show that L(G) < L(G,), one
simply notes that A — oy B, is the only production in G not in G,. Whenever
A — ayBa, is used in a derivation by G, the variable B must be rewritten at some
later step using a production of the form B — ;. These two steps can be replaced
by the single step A4 5 oy ity « [
Lemma 44 Let G= (V, T, P,S)be a CFG. Let A » Aa, | A, |- | Ax, be the set
of A-productions for which A is the leftmost symbol of the right-hand side. Let
A - By|B,]| | B, be the remaining A-productions. Let G, = (V u {B}, T, P,, S)
be the CFG formed by adding the variable B to V and replacing all the A4-
productions by the productions:

I)A—)B‘ l1<'< 2) fll<i<r
1 s <I<STr.
A-gB[ = =3 B—oB
Then L(G,) = L(G).
Proof In a leftmost derivation, a sequence of productions of the form 4 — Aa;
must eventually end with a production A4 — f;. The sequence of replacements

A= Aw;, = Aoy, o == Aoy o, o o,

= ﬂj“i,,ai,_l A
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in G can be replaced in G, by

A=>ﬂjB=>ﬂjOt,~’B=>ﬂja,-,a~ B

ip-1

== B o B

= o0, , 0t o,
The reverse transformation can also be made. Thus L(G) = L(G,). Figure 4.8

shows this transformation on derivation trees, where we see that in G. a ghain of
A’sextending to the left is replaced in G, by a chain of B’s extending to the right. {J

(b)
Fig. 4.8 Transformation of Lemma 4.4 on portion of a derivation tree.

Theorem 4.6 (Greibach normal form or GNF) Every context-free language L
without ¢ can be generated by a grammar for which every production is of the
form A — ax, where A is a variable, a is a terminal, and « is a (possibly empty)
string of variables.

Proof Let G = (V, T, P, S) be a Chomsky normal form grammar generating the
CFL L. Assume that V = {4}, 4,, ..., A,}. The first step in the construction is to
modify the productions so that if A;— A;y is a production, then j > i. Starting
with 4, and proceeding to A,,, we do this as follows. We assume that the producf-
tions have been modified so that for 1 <i <k, 4;— A,y is a production only if
Jj>i. We now modify the A,-productions. )

If A, — A;y is a production with j < k, we generate a new set of produ.cnons
by substituting for A4, the right-hand side of each A4 production accordmg to
Lemma 4.3. By repeating the process k — 1 times at most, we obtain productions
of the form A, — A, 7, ¢ > k. The productions with /# = k are then replaced agcorq-
i};lg to Lemma 4.4, introducing a new variable B,. The precise algorithm is given in

ig. 4.9.
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begin
1)  for k:=1tomdo
begin
2) for j;=1to k — 1do
3) for each production of the form A, — 4;a do
begin
4) for all productions 4;— § do
5) add production 4, — fu;
6) remove production A, — 4o
end;
7) for each production of the form A4, — 4, do
begin
8) add productions B, — o and B, — aB,;
9) remove production 4, — A, a
end;
10) for each production 4, — B, where f does not
begin with 4, do
11) add production 4, — BB,
end
end

Fig. 49 Step 1 in the Greibach normal-form algorithm.

By repeating the above process for each original variable, we have only pro-
ductions of the forms:

1) - Ay, j>i,
2) A;— ay, ainT,
3) Bi—by, ym (VU{Bly BZ,‘”,BI'—I})*’

Note that the leftmost symbol on the right-hand side of any production for 4,
must be a terminal, since A4,, is the highest-numbered variable. The leftmost
symbol on the right-hand side of any production for A, ; must be either 4,, or a
terminal symbol. When it is 4,,, we can generate new productions by replacing A4,,
by the right-hand side of the productions for A4,, according to Lemma 4.3. These
productions must have right sides that start with a terminal symbol. We then
proceed to the productions for A4,,_,, ..., A,, A; until the right side of each
production for an 4; starts with a terminal symbol.

As the last step we examine the productions for the new variables, By, B, ...,
B,,. Since we began with a grammar in Chomsky normal form, it is easy to prove
by induction on the number of applications of Lemmas 4.3 and 4.4 that the
right-hand side of every A4;-production, 1 <i < n, begins with a terminal or 4; 4,
for somejand k. Thus « in line (7) of Fig. 4.9 can never be empty or begin with some
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B;, so no Bi-production can start with another B;. Therefore all B-productions
have right-hand sides beginning with terminals or 4;’s, and one more application
of Lemma 4.3 for each B;-production completes the construction. O

Example 4.10 Let us convert to Greibach normal form the grammar
G= ({Ah A,, As}’ {a, b}, P, Al),
where P consists of the following:
Ay —> Ay A,
Ay > A3 Aq|b
As—> Ay Ay|a

Step 1 Since the right-hand side of the productions for 4, and A, start with
terminals or higher-numbered variables, we begin with the production
Ay — A, A, and substitute the string A, A; for A;. Note that 4; — A, A5 is the
only production with 4, on the left.

The resulting set of productions is:

Ay~ Ay A,
Ay — A3 A,|b
Ay A3 A3 A, |a

Since the right side of the production A3 — A, A; A, begins with a lower-
numbered variable, we substitute for the first occurrence of 4, both 4; 4, and b.
Thus A5 — A, A5 A, is replaced by A; = A3 A; A3 A, and A; — bA; A,. The new
set is

A, > A, A,

Ay > A3 Ay |b

Ay~ A3 A A3 A, |bAs Ay |a
We now apply Lemma 4.4 to the productions

A3 > A3A, A3 A,|bA3 A4, |a.

Symbol B, is introduced, and the production A; — A3 A, A; A, is replaced by
A3 > bA; A, By, A3 > aB;, By > A, A3 A5, and B; - A A3 A, B;. The resulting
set is

Ay Ay As

Az—'A3A1lb
A3—'bA3AzB3'aB3|bA3A2|a
B3—'A1A3A2|A1A3A283
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Step 2 Now all the productions with A, on the left have right-hand sides that
start with terminals. These are used to replace A4; in the production A, - A3 A,
and then the productions with A, on the left are used to replace A4, in the
production A, — A, A,. The result is the following.

A3 > bA3A, B, A3y > bA3 A,

Az —aB; As—a

A, > bA3A, B3 A, A, > bAy A A,
A, > aB3 A, A, —aA,

A,—b

A; > bA3 A, B3 A1 A, Ay > bA;A,A, A,
Ay - aB3 A A, Ay —»aA A,

A - bA,

By > A, A3 A, By — A;A3A,B;

Step 3 The two B,-productions are converted to proper form, resulting in 1’0
more productions. That is, the productions

B;—> A A3 4, and By —> A, A3A4,B;

are altered by substituting the right side of each of the five productions with 4, on
the left for the first occurrences of A,. Thus By — A, A; A, becomes

B, —bA; A, By A, Ay As Ay, By —aBy A, A3 Ay A,
B3—’bA3A3A2, B3—’bA3A2AlA3A3A2, B3"’0A1A3A3A2.

The other production for Bj is replaced similarly. The final set of productions
is

Ay —bA3 A, B, A; > bAs A,

Az —aB; As;—a

A, > bA3;A, B3 A, A, - bAs;A, A,
A, > aB; A, A, —>aA,

A,—>b

A, > bA3;A,B3A, A; A > bAsA,A A,
A, > aB; A, A Ay —aAd A,
A, - bA,

B3—’bA3AzB3A1A3A3AzB3 B3—7bA3AzB3A1A3A3A2
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By —»aB3 A, A3 A3 A, B, B;—»aB3;A; A3 A5 A,
B3+ bA3A3A, B, By > bA3 A5 A,

By +>bA3;A, A A3 A3 A, B, By; > bA3 A, A1 A5 A5 A,
B3 »aA;A3A3 A, B, B; > aA;A3A3 A4,

47 THE EXISTENCE OF INHERENTLY AMBIGUOUS
CONTEXT-FREE LANGUAGES

It is easy to exhibit ambiguous context-free grammars. For example, consider the
grammar with productions S - 4,S - B,A —»a,and B— b. What is not so easy to
do is to exhibit a context-free language for which every CFG is ambiguous. In this
section we show that there are indeed inherently ambiguous CFL’s. The proof is
somewhat tedious, and the student may skip this section without loss of continu-
ity. The existence of such a language is made use of only in Theorem 8.16.

We shall show that the language

L={ab"c"d"|n>1,m> 1} u {ab"c"d"|n>1,m> 1}

is inherently ambiguous by showing that infinitely many strings of the form
a'b"c"d", n > 1, must have two distinct leftmost derivations. We proceed by first
establishing two technical lemmas.

Lemma 4.5 Let (N, M;), 1 <i <r, be pairs of sets of integers. (The sets may be
finite or infinite.) Let
S;={(n, m)|nin N;, min M}
and let
S=S,uS,u---us,.
If each pair of integers (n, m) is in S for all nand m, where n # m, then (n, n)isin S
for all but some finite set of n.

Proof Assume that for all n and m, where n # m, each (n, m) is in S, and that there
are infinitely many n such that (n, n) is not in S. Let J be the set of all n such that
(n, n) is not in S. We construct a sequence of sets J,, J,_y, ..., J, such that

J2J,2J,,2-2J;.
Each J, will be infinite, and for each n and m in J;, (n, m) is not in
S;uSis v uUS,.

For n in J, either n is not in N, or n is not in M, ; otherwise (n, n) would be in
S, and hence in S. Thus there is an infinite subset of J, call it J,, such that either for
allnin J,, nis not in N,, or for all nin J,, nis not in M,. Now for nand m in J,,
(n, m) is not in S,.
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Assume that J,, J,_,, ..., J;,, have been constructed, where i <r — 1. Then
J; is constructed as follows. For each n in J;, ,, either n is not in N; or not in M;
otherwise (n, n) would be in S; and hence in S, a contradiction since J;,; S J.
Thus, either an infinite subset of J;, , is not in N; or an infinite subset of J,, , is not
in M;. In either case, let the infinite subset be J;. Now for allnand min J;, (n, m) is
not in S; and hence notin S; U S;,; U -*- U §,.

Since J; contains an infinite number of elements, there exist n and m in J,,
n# m.Now (n, m)isnotin S, U S, U *-- U §, = §, contradicting the assumption
that all (n, m), where n # m, are in S. Thus (n, n) is in § for all but some finite set
of n. O

Lemma 4.6 Let G be an unambiguous CFG. Then we can effectively construct
an unambiguous CFG G’ equivalent to G, such that G’ has no useless symbols or
productions, and for every variable 4 other than possibly the start symbol of G’,
we have the derivation 4 % x; Ax,, where x, and x, are not both e.

Proof The construction of Lemmas 4.1 and 4.2, removing useless symbols and
productions, cannot convert an unambiguous grammar into an ambiguous ogg,
since the set of derivation trees for words does not change. The construction of
Theorem 4.4, removing unit productions, cannot introduce ambiguities. This is
because if we introduce production A — a, there must be a unique B such that
A% Band B— « is a production, else the original grammar was not unambig-
uous. Similarly, the construction of Theorem 4.3, removing ¢-productions, does
not introduce ambiguity.

Let us therefore assume that G has no useless symbols or productions, no
¢-productions, and no unit productions. Suppose that for no x, and x, not both ¢
does A% x,Ax,. Then replace each occurrence of A on the right side of any
production by all the right sides of A-productions. As there are no unit produc-
tions, ¢-productions or useless symbols, there cannot be a production 4 — a; Aa,,
else there is a derivation 4 % x, Ax,, with x, and x, not both ¢. The above change
does not modify the generated language, by Lemma 4.3. Each new production
comes from a unique sequence of old productions, else G was ambiguous. Thus
the resulting grammar is unambiguous. We see that A is now useless and may be
eliminated. After removing variables violating the condition of the lemma in this
manner, the new grammar is equivalent to the old, is still unambiguous, and
satisfies the lemma. O

Theorem 4.7 The CFL,
L={ab"c"d™|n>1,m=> 1} v {ab"c"d"|n>1, m=>1]},
is inherently ambiguous.

Proof Assume that there is an unambiguous grammar generating L. By Lemma
4.6 we can construct an unambiguous grammar G = (V, T, P, S) generating L with
no useless symbols, and for each A4 in V — {S}, 4 % x, Ax, for some x,; and x, in
T*, not both e.
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We note that the grammar G has the following properties:

1) If A% x, Ax,, then x, and x, each consist of only one type of symbol (g, b, c,
or d); otherwise

*, * *
SS W AW = W XX AX) X W3 =W XX Wy Xy X, W3,

for some wy, w,, and w;. This last terminal string is not in L.

2) If A% x,Ax,, then x, and x, consist of different symbols. Otherwise, in a
derivation involving A4, we could increase the number of one type of symbol in
a sentence of L without increasing the number of any other type of symbols,
thereby generating a sentence not in L.

3) If A% x, Ax,, then |x, | = |x,|. Otherwise we could find words in L having
more of one symbol than any other.

4) If A% x,Ax, and A% x;A4x,, then x,; and x; consist of the same type of
symbol. Likewise x, and x,. Otherwise Property 1 above would be violated.

5) If A% x,Ax,, then either

a) x, consists solely of a’s and x, solely of b’s or of d’s,
b) x, consists solely of b’s and x, solely of ¢s, or
¢) x, consists solely of ¢’s and x, solely of d’s.

In any of the other cases it is easy to derive a string not in L. Thus the
variables other than S can be divided into four classes, C,,, C,4, Cy., and C_,.
C,, is the set of all 4 in V such that 4% x,Ax,, with x, in a* and x, in b*;
Co4, Cp., and C,, are defined analogously.

6) A derivation containing a symbol in C,, or C,, cannot contain a symbol in C,,
or C,, or vice versa. Otherwise, we could increase the number of three types of
symbols of a sentence in L without increasing the number of the fourth type of
symbol. In that case, there would be a sentence in L for which the number
of occurrences of one type of symbol is smaller than that of any other.

We now note that if a derivation contains a variable in C,, or C, then the
terminal string generated must be in {a"b"c¢™d™ |n > 1, m > 1}. For assume that 4
in C,, appears in a derivation of a sentence x not in {a"b"c"d™ |n > 1,m > 1}. Then
x must be of the form a"b™c™d", m # n. Since A is in C,,, a sentence a"*?b™* ?c™d",
m % n, for some p > 0, could be generated. Such a sentence is not in L. A similar
argument holds for 4 in C,,. Similar reasoning implies that if a derivation con-
tains a variable in C, or C,., then the sentence generated must be in
{a"b"'c"'d"ln >1L,m=>1}

We divide G into two grammars,

Gl = ({S} v Cab |V Ccd’ T, Px, S)
and

GZ = ({S} v Cad v Cbc’ Ta P27 S),
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where P, contains all productions of P with a variable form C,, or C_, on either
the right or left, and P, contains all productions of P with a variable from C,, or
C,. on either the right or left. In addition, P, contains all productions from P of
the form S — a"b"c™d™, n # m, and P, contains all productions from P of the form
S — a"b™c™d", n #+ m. Productions of P of the form S — a"b"c"d" are not in either P,
or P,.

Since G generates

{a"b"c"d™|n> 1, m>1} U {@b"c"d"|n> 1, m>1},
G, must generate all sentences in
{ab"cd™|n>1, m> 1, n+m}

plus possibly some sentences in {a"b"c"d"|n > 1}, and G, must generate all sen-
tences in
{ab"cmd*|n> 1, m> 1, n+ m}

plus possibly some sentences in {a"b"c"d" |n > 1}. We now show that this cannot be
the case unless G, and G, both generate all but a finite number of sentences in
{a"b"c"d"|n > 1}. Thus all but a finite number of sentences in {a"b"c"d"|n > 1} are
generated by both G, and G, and hence by two distinct derivations in G. This
contradicts the assumption that G was unambiguous.

To see that G, and G, generate all but a finite number of sentences in
{a"b"c"d" | n > 0}, number the productions in P, of the form S — « from 1 to r. For
1 <i<r if §—ais the ith production, let N; be the set of all n such that

Sgo (’?"T a"b"cmd”
for some m, and let M; be the set of all m such that

Sza ’E’% a"b"cmd™
for some n. We leave it to the reader to show that for any nin N; and any m in M|,

S = o % g"b"cmd™.

Gy G,
[Hint : Recall that the variables of a are in C,, or C_,.] It follows immediately from
Lemma 4.5 that G, must generate all but a finite number of sentences in
{a"b"c"d"|n > 1}.
A similar argument applies to G,. The reader can easily show that G, cannot

have a right side with two or more variables. We number certain productions and
pairs of productions in a single ordering. Productions of the form S — «, Ba,,

where B is in C,,, will receive a number, and if this number is i, let N, be the set of
all n such that for some m,

S = a,Bo, & a"b"cmd".
Also let M; be the set of m such that for some n,
S = B, & a"b"cmd".
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The pair of productions S — a and A — «a, Ba, will receive a number if « contains a
variable in C,4, A is in C,,, and B is in C,,. If this pair is assigned the number i,
then define N; to be the set of n such that for some m,

S=a x;Ax, = x4, Bayx, > a"b"c"d".
Also define M; to be the set of m such that for some n,
S=a2 x,Ax, = X, a, Bayx, 2 a"b"c"d".
Once again, for any n in N; and m in M,
S Gé‘:»z a"bmc"d",

and thus it follows from Lemma 4.5 that G, generates all but a finite number of
sentences in {a"b"c"d”|n > 1}. We conclude that for some n, a"b"c’d” is in both
L(G,) and L(G,). This sentence has two leftmost derivations in G. O

EXERCISES

4.1 Give context-free grammars generating the following sets.

S a) The set of palindromes (strings that read the same forward as backward) over alphabet
{a, b}.
b) The set of all strings of balanced parentheses, i.e., each left parenthesis has a matching
’ right parenthesis and pairs of matching parentheses are properly nested.
* c) The set of all strings over alphabet {a, b} with exactly twice as many d’s as b’s.

d) The set of all strings over alphabet {a, b, -, +, *, (, ), €, &} that are well-formed regular
expressions over alphabet {a, b}. Note that we must distinguish between ¢ as the empty
string and as a symbol in a regular expression. We use € in the latter case.

* ¢) The set of all strings over alphabet {a, b} not of the form ww for some string w.

f) {a'bic*|i # j or j + k).
*42 Let G be the grammar
S — aS|aSbhS |e.
Prove that
L(G) = {x |each prefix of x has at least as many a’s as b's}.
*43  Fori> 1, let b; denote the string in 1(0 + 1)* that is the binary representation of i.
Construct a CFG generating
0,1, #}* —{by#by# - #b,Jn2=1}.
*44 Construct a CFG generating the set
{w#wk# |w in (0 + 1)*}*
*45 The grammar
E—E+E|E» E|(E)|id
generates the set of arithmetic expressions with +, *, parentheses and id. The grammar is
ambiguous since id + id * id can be generated by two distinct leftmost derivations.

a) Construct an equivalent unambiguous grammar.
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b) Construct an unambiguous grammar for all arithmetic expressions with no redundant
parentheses. A set of parentheses is redundant if its removal does not change the
expression, €.g., the parentheses are redundant in id + (id * id) but not in (id + id)  id.

* 4.6 Suppose G is a CFG with m variables and no right side of a production longer than /.

Show that if 4 (";a ¢, then there is a derivation of no more than
derives ¢. How close to this bound can you actually come?

* 4.7 Show that for each CFG G there is a constant ¢ such that if w is in L(G), and
w # ¢, then w has a derivation of no more than c|w| steps.

1 steps by which 4

48 Let G be the grammar
S—aB|bA
A—alaS|bAA
B—b|bS|aBB
For the string aaabbabbba find a
a) leftmost derivation, b) rightmost derivation, c) parse tree.

*49 Is the grammar in Exercise 4.8 unambiguous?

4.10 Find a CFG with no useless symbols equivalent to

S~ AB|CA B— BC|AB

A—-a C - aB|b
4.11 Suppose G is a CFG and w, of length ¢, is in L(G). How long is a derivation of win G
if

a) G is in CNF b) G is in GNF.
4.12 Let G be the CFG generating well-formed formulas of propositional calculus with
predicates p and g:
§—~S|[s>5]ple

The terminals are p, g, ~, [, ], and o. Find a Chomsky normal-form grammar generating
“L(G).

4.13 Show that conversion to Chomsky normal form can square the number of produc-
tions in a grammar. [Hint: Consider the removal of unit productions.]

4.14 Find a Greibach normal-form grammar equivalent to the following CFG:
S— AA|0
A-SS|1
4.15 Show that every CFL without ¢ can be generated by a CFG all of whose productions

are of the form 4 —a, or A— BC, where B # C and if A >a;Ba; and 4 —y,By, are .
productions, then a; =y; =¢ora; =y, =¢

*S 4.16 Show that every CFL without ¢ is generated by a CFG all of whose productions are
of the form A —» a, A » aB, and A —» aBC.
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4.17 Show that every CFL without ¢ is generated by a CFG all of whose productions are
of the form A — a and 4 — aab.

4.18 Can every CFL without ¢ be generated by a CFG all of whose productions are of the
forms A - BCD and 4 — a?

*4.19 Show that if all productions of a CFG are of the form A - wB or A — w, then L(G) is
a regular set.

** 420 A CFG is said to be linear if no right side of a production has more than one instance
of a variable. Which of the languages of Exercise 4.1 have linear grammars?

**S 421 An operator grammar is a CFG with no e-productions such that no consecutive
symbols on the right sides of productions are variables. Show that every CFL without ¢ has
an operator grammar.

** 422 The algorithm given in Fig. 4.7 to determine which variables derive terminal strings
is not the most efficient possible. Give a computer program to perform the task in O(n) steps
if n is the sum of the length of all the productions.

** 423 Is{a'b/c*|i + jand j # k and k # i} a CFL?[Hint: Develop a normal form similar to
that in Theorem 4.7. (A pumping lemma is developed in Section 6.1 that makes exercises of
this type much easier. The reader may wish to compare his solution to that in Example 6.3).]

Solutions to Selected Exercises

4.1 a) The definition of “palindrome,” a string reading the same forward as backward is
of no help in finding a CFG. What we must do in this and many other cases is rework the
definition into a recursive form. We may define palindromes over {0, 1} recursively, as
follows:

1) ¢, 0, and 1 are palindromes;
2) if w is a palindrome, so are Ow0 and Iwl;
3) nothing else is a palindrome.

We proved in Exercise 1.3 that this is a valid definition of palindromes. A CFG for
palindromes now follows immediately from (1) and (2). It is:

S—0|1]e¢ (from 1);
S—0S0[1S1  (from 2).

416 Let G = (V, T, P, S) be a GNF grammar generating L. Suppose k is the length of the
longest right side of a production of G. Let V' = {[«]|a is in V" and |a| < k}. For each
production A — ax in P and each variable [48] in V' place [48] — a[a][B] in P". In the case
where a or B is ¢, [¢] is deleted from the right side of the production.

421 Let G=(V, T, P, S) be a GNF grammar generating L. By Exercise 4.16 we may
assume all productions are of the form 4 —a, A —aB and 4 — aBC. First replace each
production 4 — aBC by A — a[ BC], where [BC] is a new variable. After having replaced all
productions of the form A — aBC, then for each newly introduced variable [BC], B-
production B — «, and C-production C — g, add production [BC] — «f. Note that a and
are either single terminals or of the form bE, where E may be either a new or old variable.
The resulting grammar is an operator grammar equivalent to the original.
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BIBLIOGRAPHIC NOTES
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Backus-Naur form notation was used for the description of ALGOL in Backus [1959] and
Naur [1960]. The relationship between CFG’s and BNF was perceived in Ginsburg and
Rice [1962].
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CHAPTER

PUSHDOWN
AUTOMATA

5.1 INFORMAL DESCRIPTION

Just as the regular expressions have an equivalent automaton—the finite automa-
ton, the context-free grammars have their machine counterpart—the pushdown
automaton. Here the equivalence is somewhat less satisfactory, since the push-
down automaton is a nondeterministic device, and the deterministic version
accepts only a subset of all CFL’s. Fortunately, this subset includes the syntax of
most programming languages. (See Chapter 10 for a detailed study of deter-
ministic pushdown automaton languages.)

The pushdown automaton is essentially a finite automaton with control of
both an input tape and a stack, or “first in-last out” list. That is, symbols may be
entered or removed only at the top of the list. When a symbol is entered at the top,
the symbol previously at the top becomes second from the top, the symbol
previously second from the top becomes third, and so on. Similarly, when a
symbol is removed from the top of the list, the symbol previously second from the
top becomes the top symbol, the symbol previously third from the top becomes
second, and so on.

A familiar example of a stack is the stack of plates on a spring that one sees in
cafeterias. There is a spring below the plates with just enough strength so that
exactly one plate appears above the level of the counter. When that top plate is
removed, the load on the spring is lightened, and the plate directly below appears
above the level of the counter. If a plate is then put on top of the stack, the pile is
pushed down, and only the new plate appears above the counter. For our pur-
poses, we make the assumption that the spring is arbitrarily long, so we may add
as many plates as we desire.

107
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Such a stack of plates, coupled with a finite control, can be used to recognize a
nonregular set. The set L = {wew® |w in (0 + 1)*} is a context-free language, gen-
erated by the grammar S — 0S0|1S1|c. It is not hard to show that L cannot be
accepted by any finite automaton. To accept L, we shall make use of a finite
control with two states, ¢, and ¢,, and a stack on which we place blue, green, and
red plates. The device will operate by the following rules.

1) The machine starts with one red plate on the stack and with the finite control
in state q,.

2) If the input to the device is 0 and the device is in state g,, a blue plate is placed
on the stack. If the input to the device is 1 and the device is in state gy, a green
plate is placed on the stack. In both cases the finite control remains in state q;.

3) If the input is ¢ and the device is in state q,, it changes state to g, while no
plates are added or removed.

4) If the input is 0 and the device is in state g, with a blue plate, which represents
0, on top of the stack, the plate is removed. If the input is 1 and the device is in
state g, with a green plate, which represents 1, on top of the stack, the plate is
removed. In both cases the finite control remains in state g,.

5) If the device is in state g, and a red plate is on top of the stack, the plate is
removed without waiting for the next input.

6) For all cases other than those described above, the device can make no move.

The preceding rules are summarized in Fig. 5.1.

We say that the device described above accepts an input string if, on process-
ing the last symbol of the string, the stack of plates becomes completely empty.
Note that, once the stack is empty, no further moves are possible.

Essentially, the device operates in the following way. In state q,, the device
makes an image of its input by placing a blue plate og top of the stack of plates
each time a 0 appears in the input, and a green plate each time a | appears in the
input. When c is the input, the device enters state q,. Next, the remaining input is
compared with the stack by removing a blue plate from the top of the stack each
time the input symbol is a 0, and a green plate each time the input symbol is a 1.
Should the top plate be of the wrong color, the device halts and no further
processing of the input is possible. If all plates match the inputs, eventually the red
plate at the bottom of the stack is exposed. The red plate is immediately removed
and the device is said to accept the input string. All plates can be removed only
when the string that enters the device after the c is the reverse of what entered
before the c.

5.2 DEFINITIONS

We shall now formalize the concept of a pushdown automaton (PDA). The PDA
will have an input tape, a finite control, and a stack. The stack is a string of symbols
from some alphabet. The leftmost symbol of the stack is considered to be at the
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Input
Top A
plate State 0 1 c
Blue q Add blue plate; Add green plate; Go to
stay in state stay in state state ¢,.
q Q-
q Remove top
plate; stay in — —
state q,.
Green q: Add blue plate; Add green plate; Go to
stay in state stay in state state ¢,.
q;- q;-
q, Remove top
— plate; stay in —
state g,.
Red q Add blue plate; Add green plate; Go to
stay in state stay in state state q,.
qi- q;-
q2 Without waiting for next input, remove top plate.

Fig. 5.1 Finite control for pushdown automaton accepting {wew” |w in (0 + 1)*}.

“top” of the stack. The device will be nondeterministic, having some finite number
of choices of moves in each situation. The moves will be of two types. In the first
type of move, an input symbol is used. Depending on the input symbol, the top
symbol on the stack, and the state of the finite control, a number of choices are
possible. Each choice consists of a next state for the finite control and a (possibly
empty) string of symbols to replace the top stack symbol. After selecting a choice,
the input head is advanced one symbol.

The second type of move (called an e-move) is similar to the first, except that
the input symbol is not used, and the input head is not advanced after the move.
This type of move allows the PDA to manipulate the stack without reading input
symbols.

Finally, we must define the language accepted by a pushdown automaton.
There are two natural ways to do this. The first, which we have already seen, is to
define the language accepted to be the set of all inputs for which some sequence of
moves causes the pushdown automaton to empty its stack. This language is
referred to as the language accepted by empty stack.

The second way of defining the language accepted is similar to the way a finite
automaton accepts inputs. That is, we designate some states as final states and
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define the accepted language as the set of all inputs for which some choice of
moves causes the pushdown automaton to enter a final state.

As we shall see, the two definitions of acceptance are equivalent in the sense
that if a set can be accepted by empty stack by some PDA, it can be accepted by
final state by some other PDA, and vice versa.

Acceptance by final state is the more common notion, but it is easier to prove
the basic theorem of pushdown automata by using acceptance by empty stack.
This theorem is that a language is accepted by a pushdown automaton if and only
if it is a context-free language.

A pushdown automaton M is a system (Q, Z, I, 9, qo, Z,, F), where

1) Q is a finite set of states;
2) X is an alphabet called the input alphabet;
3) T is an alphabet, called the stack alphabet;
4) g, in Q is the initial state;
5) Z, in T is a particular stack symbol called the start symbol,
6) F < Q is the set of final states;
7) & is a mapping from Q x (£ v {e}) x I to finite subsets of Q x I'*.
~ Unless stated otherwise, we use lower-case letters near the front of the
alphabet to denote input symbols and lower-case letters near the end of the

alphabet to denote strings of input symbols. Capital letters denote stack symbols
and Greek letters indicate strings of stack symbols.

Moves

The interpretation of

8 a, Z) ={(P1» Y1) (P2> Y2)s -+ -5 (P> ¥m)}

where g and p;, 1 <i < m, are states, a is in Z, Z is a stack symbol, and y; is in T'*,
1 <i < m, is that the PDA in state g, with input symbol a and Z the top symbol on
the stack can, for any i, enter state p;, replace symbol Z by string y;, and advance
the input head one symbol. We adopt the convention that the leftmost symbol of
y; will be placed highest on the stack and the rightmost symbol lowest on the
stack. Note that it is not permissible to choose state p; and string y; for some j # i
in one move.
The interpretation of

6(‘1’ 6 Z) = {(pl’ 'Yl)’ (PZ’ 'YZ)’ e (pma 'Ym)}

is that the PDA in state g, independent of the input symbol being scanned and
with Z the top symbol on the stack, can enter state p; and replace Z by y; for any i,
1 <i < m. In this case, the input head is not advanced. N
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Example 5.1 Figure 52 gives a formal pushdown automaton that accepts
{wew® |w in (0 + 1)*} by empty stack. Note that for a move in which the PDA
writes a symbol on the top of the stack, é has a value (g, y) where |y| = 2. For
example, 5(q,, 0, R) = {(¢q,, BR)}. If y were of length one, the PDA would simply
replace the top symbol by a new symbol and not increase the length of the stack.
This allows us to let y equal ¢ when we wish to pop the stack.

Note that the rule §(q,, €, R) = {(q,, €)} means that the PDA, in state g, with
R the top stack symbol, can erase the R independently of the input symbol. In this
case, the input head is not advanced, and in fact, there need not be any remaining
input.

M= ({qlv qZ}a {01 l, C}, {R, B, G}, 6) q1 R, Q)

6(‘117 0’ R) = {(qu BR)} (5((]1, l) R) = {(qb GR)}
6(‘11) 0) B) = {(qb BB)} 5(‘]1) 1’ B) = {(ql) GB)}
6(‘11» 07 G) = {(qlv BG)} 6(‘111 1» G) = {(ql’ GG)}

(g1, ¢, R) = {(q2, R)}
(91, ¢, B) = {(42, B)}
(g1, ¢, G) = {(92, G)}
6(92, 0, B) = {(92, €)} 5(g2, 1, G) = {(g2, )}
(42, & R) = {(q2, €)}

Fig. 5.2 Formal pushdown automaton accepting {wew® |w in (0 + 1)*} by empty stack.

Instantaneous descriptions

To formally describe the configuration of a PDA at a given instant we define an
instantaneous description (ID). The ID must, of course, record the state and stack
contents. However, we find it useful to include the “unexpended input” as well.
Thus we define an ID to be a triple (g, w, y), where g is a state, w a string of input
symbols, and y a string of stack symbols. If M = (Q, Z, T, 6, qq, Zo, F) is a PDA,
we say (g, aw, Za) |5 (p, w, Bo) if 8(g, a, Z) contains (p, §). Note that a may be ¢ or
an input symbol. For example, in the PDA of Fig. 5.2, the fact that (g, BG) is in
(g4, 0, G) tells us that (g,, 011, GGR) |- (¢,, 11, BGGR).

We use |- for the reflexive and transitive closure of |- That is, I |* I for each
ID 1, and I |—J and J - K imply I |——K We write [ |—L—K|fIDIcan become K
after exactly i moves. The subscript is dropped from |, i, and |5 whenever the
particular PDA M is understood.
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Accepted languages

For PDA M = (Q, Z, I, 6, qo, Zo, F) we define L(M), the language accepted by
final state, to be

{w](go» W, Zo) = (p, ¢, y) for some p in F and y in I'*}.
We define N(M), the language accepted by empty stack (or null stack) to be
{wl(go> W, Zo) = (p, €, €) for some p in Q}.

When acceptance is by empty stack, the set of final states is irrelevant, and, in this
case, we usually let the set of final states be the empty set.

Example 52 Figure 5.3 gives a PDA that accepts {ww” |w in (0 + 1)*}. Rules (1)
through (6) allow M to store the input on the stack. In rules (3) and (6), M has a
choice of two moves. M may decide that the middle of the input string has been
reached and make the second choice: M goes to state g, and tries to match the
remaining input symbols with the contents of the stack. If M guessed right, and if
the input is of the form wwR, then the inputs will match, M will empty its stack and
thus accept the input string.

M= ({qh ‘h}v {0’ 1}’ {Rv B’ G}v 5» q1, R, Q)

1) 5(g1, 0, R) = {(q:, BR)} 6) (g1, 1, G) = {(q1, GG), (92, €)}
2) 4(q1> 1, R) = {(q1, GR)} 7) 6(q2, 0, B) = {(q2, €)}
3) 8(q1, 0, B) = {{q1, BB), (42, €)} 8) 8(g2, 1, G) = {(g2, )}
4) 4(q1, 0, G) = {(q1, BG)} 9) 6(q1, & R) ={(g2, ¢)}
5) d(q1, 1, B) = {(q:, GB)} 10) 4(q2, & R) ={(q2, )}

Fig. 5.3 A nondeterministic PDA that accepts {ww® |w in (0 + 1)*} by empty stack.

Like the nondeterministic finite automaton, a nondeterministic PDA M
accepts an input if any sequence of choices causes M to empty its stack. Thus M
always “guesses right,” because wrong guesses, in themselves, do not cause an
input to be rejected. An input is rejected only if there is no “right guess.” Figure 5.4
shows the accessible ID’s of M when M processes the string 001100.

Deterministic PDA’s

The PDA of Example 5.1 is deterministic in the sense that at most one move is
possible from any ID. Formally, we say thata PDA M = (Q, X, T, 4, qo, Z,, F), is
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Initial
!
(g1, 001100, R) - (g2, 001100, €)
!
(g1, 01100, BR)
!
(91, 1100, BBR) (g5, 1100, R) — (g5, 1100, ¢)

!
(q1, 100, GBBR)

LN

(91, 00, GGBBR) (g, 00, BBR)

i
(91, 0, BGGBBR) (g2, 0, BR)
!
(91, ¢, BBGGBBR) (g3, ¢, GGBBR) (g3, ¢ R)— (g3, ¢, ¢€)
i
Accept

Fig. 54 Accessible ID’s for the PDA of Fig. 5.3 with input 001100.

deterministic if:

1) for each g in Q and Z in I, whenever §(g, ¢, Z) is nonempty, then §(g, a, Z) is
empty for all a in Z;

2) forno qin Q, Z in T, and ain T U {¢} does §(g, a, Z) contain more than one
element.

Condition 1 prevents the possibility of a choice between a move independent
of the input symbol (e-move) and a move involving an input symbol. Condition 2
prevents a choice of move for any (g, a, Z) or (g, ¢, Z). Note that unlike the finite
automaton, a PDA is assumed to be nondeterministic unless we state otherwise.

For finite automata, the deterministic and nondeterministic models were
quivalent with respect to the languages accepted. The same is not true for PDA.
IPP fact wwR is accepted by a nondeterministic PDA, but not by any deterministic

DA.
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53 PUSHDOWN AUTOMATA AND
CONTEXT-FREE LANGUAGES

We shall now prove the fundamental result that the class of languages accepted by
PDA’s is precisely the class of context-free languages. We first show that the
languages accepted by PDA’s by final state are exactly the languages accepted by
PDA’s by empty stack. We then show that the languages accepted by empty stack
are exactly the context-free languages.

Equivalence of acceptance by final state and empty stack

Theorem 5.1 If L is L(M,) for some PDA M,, then Lis N(M,) for some PDA,
Ml-

Proof In brief, we would like M, to simulate M ,, with the option for M, to erase
its stack whenever M, enters a final state. We use state g, of M, to erase the stack,
and we use a bottom of stack marker X, for M,, so M, does not accidentally
accept if M, empties its stack without entering a final state. Let M, = (Q, Z, I, 8,
Go> Zy, F) be a PDA such that L = L(M,). Let

M, =(Q U {ge 9o}, Z, T U {Xo}, 9, 40, Xo, D),
where ¢’ is defined as follows.

1) 0'(go> & Xo) = {(0> Zo Xo)}-

2) (g, a, Z) includes the elements of 6(q, a, Z) for all gin Q,ain X or a = ¢, and
ZmT.

3) Forallgin F,and Z in T L {X,}, §(q, ¢, Z) contains (q., €).

4) Forall Zin T U {X,}, &(q., ¢, Z) contains (q,, €).

Rule (1) causes M, to enter the initial ID of M, except that M will have its
own bottom of the stack marker X,, which is below the symbols of M,’s stack.
Rule (2) allows M, to simulate M,. Should M, ever enter a final state, rules (3)
and (4) allow M, the choice of entering state g, and erasing its stack, thereby
accepting the input, or continuing to simulate M,. One should note that M, may
possibly erase its entire stack for some input x not in L{M). This is the reason
that M, has its own special bottom-of-stack marker. Otherwise M ,, in simulating
M,, would also erase its entire stack, thereby accepting x when it should not.

Let x be in L(M ). Then (go, X, Zo) ki, (¢ €, ) for some g in F. Now consider
M, with input x. By rule (1),

(40, %, Xo) H;_, (40> X, Zo Xo)s
By rule (2), every move of M, is a legal move for M, thus

(qO’ X, ZO) % (q7 ) Y)~
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If a PDA can make a sequence of moves from a given ID, it can make the same
sequence of moves from any ID obtained from the first by inserting a fixed string
of stack symbols below the original stack contents. Thus

(46, X, Xo) lﬁ, (90, X, Zo Xo) '%,(‘Ia 6 7Xo)
By rules (3) and (4),
(@ 6 7Xo) b, (ges & €)-
Therefore,
(90, %, Xo) by (4r € €),

and M, accepts x by empty stack.

Conversely, if M, accepts x by empty stack, it is easy to show that the
sequence of moves must be one move by rule (1), then a sequence of moves by rule
(2) in which M simulates acceptance of x by M ,, followed by the erasure of M ,’s
stack using rules (3) and (4). Thus x must be in L(M,). O

Theorem 52 If Lis N(M,) for some PDA M,, then L is (M) for some PDA
M2 .

Proof Our plan now is to have M, simulate M, and detect when M, empties its
stack. M, enters a final state when and only when this occurs. Let M, = (Q, X, T,
d, 40, Zo, J) be a PDA such that L = N(M,). Let

M, =(Q v {90 q . T U {Xo}, &, 45, Xo, {a/}),

where ¢’ is defined as follows:

1) 6/(q2)’ € XO) = {(qO» ZO XO)}
2) Forallgin Q,ainZ u {¢,and Z in T,

&'(g, a, Z) = (g, a, Z).
3) For all g in Q, &(q, ¢, X,) contains (g, €).

Rule (1) causes M, to enter the initial ID of M, except that M, will have its
own bottom-of-stack marker X, which is below the symbols of M,’s stack. Rule
(2) allows M ,» to simulate M,. Should M, ever erase its entire stack, then M,
when simulating M, will erase its entire stack except the symbol X at the
bottom. Rule (3) causes M,, when the X, appears, to enter a final state, thereby
accepting the input x. The proof that L(M,) = N(M,) is similar to the proof of
Theorem 5.1 and is left as an exercise. d

Equivalence of PDA’s and CFL’s

Theorem 5.3 If L is a context-free language, then there exists a PDA M such that
L= N(M).
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Proof We assume that € is not in L{G). The reader may modify the construction
for the case where ¢ is in L(G). Let G = (V, T, P, S) be a context-free grammar in
Greibach normal form generating L. Let

M = ({q}, T, V, 5, q, S, @)9

where &(q, a, A) contains (g, y) whenever 4 — ay is in P.

The PDA M simulates leftmost derivations of G. Since G is in Greibach
normal form, each sentential form in a leftmost derivation consists of a string of
terminals x followed by a string of variables a. M stores the suffix a of the left
sentential form on its stack after processing the prefix x. Formally we show that

S %> xa by a leftmost derivation if and only if (¢, x, S) by (¢, €, a).  (5.1)

First we suppose that (g, x, S) - (g, ¢, «) and show by induction on i that
S % xa. The basis, i = 0, is trivial since x = ¢ and « = S. For the induction, sup-
pose i > 1, and let x = ya. Consider the next-to-last step,

(9 ya, S)H (g, a, B) |- (4. 6 o). (52)

If we remove a from the end of the input string in the first i ID’s of the sequence
(5.2), we discover that (g, y, S) F=2 (g, ¢, B), since a can have no effect on the
moves of M until it is actually consumed from the input. By the inductive hypoth-
esis S 2 yB. The move (g, a, B) }— (g, ¢, «) implies that B = Ay for some A in V,
A — an is a production of G and a = ny. Hence

S yB= yany = xa,

and we conclude the “if” portion of (5.1).
Now suppose that S = xa by a leftmost derivation. We show by induction on i
that (g, x, S) ¥ (g, ¢, @). The basis, i = 0, is again trivial. Let i > 1 and suppose

S'S' yAy = yany,

where x = ya and « = ny. By the inductive hypothesis, (g, y, S) = (g, ¢, A7) and
thus (g, ya, S)+* (g, a, Ay). Since A — an is a production, it follows that (g, a, A)
contains (g, n). Thus

(¢ x. ) (9. a, AY) (4. ¢ @),

and the “only if” portion of (5.1) follows.
To conclude the proof, we have only to note that (5.1) with « = € says S % x if
and only if (g, x, ) (¢, ¢, ¢). That is, x is in L(G) if and only if x is in N(M).
O

Theorem 5.4 1If L is N(M) for some PDA M, then L is a context-free language.

Proof Let M be the PDA (Q, %, T, 6, g9, Zo, &). Let G=(V,Z, P. S) be a
context-free grammar where V is the set of objects of the form [g, 4, p],gand pin



53 | PUSHDOWN AUTOMATA AND CONTEXT-FREELANGUAGES 117

Q, and A in I, plus the new symbol S. P is the set of productions
1) § - [qo, Zo, q] for each g in Q;

2) [q’ A’ Im+ 1] - a[qla Bh qZ][qZ’ Bz, ‘13] T [qma Bm dm+ 1] for each 99154925 --+>»
gm+1 in Q, each ain X U {¢}, and 4, By, B,, ..., B, in I, such that 6(g, a, A)
contains (g;, B;B, - B,,). (If m = 0, then the production is [q, 4, q;] — a.)

To understand the proof it helps to know that the variables and productions
of G have been defined in such a way that a leftmost derivation in G of a sentence x
is a simulation of the PDA M when fed the input x. In particular, the variables
that appear in any step of a leftmost derivation in G correspond to the symbols on
the stack of M at a time when M has seen as much of the input as the grammar has
already generated. Put another way, the intention is that [g, 4, p] derive x if and
only if x causes M to erase an A4 from its stack by some sequence of moves
beginning in state q and ending in state p.

To show that L(G) = N(M), we prove by induction on the number of steps in
a derivation of G or number of moves of M that

q, A, p 2 x if and only if g, x, A) = (p, ¢ ¢). 53
G M

First we show by induction on i that if (g, x, A) F- (p, ¢, €), then [g, 4, p] 2 x.If
i =1, then (g, x, A) must contain (p, €). (Here x is ¢ or a single input symbol.)
Thus [g, 4, p] - x is a production of G.

Now suppose i > 1. Let x = ay and

(g ay, A) |~ (a1, v, BB, - B,)F= (p, ¢, ¢).

The string y can be written y = y, y, -*- y,, where y; has the effect of popping B;
from the stack, possibly after a long sequence of moves. That is, let y, be the prefix
of y at the end of which the stack first becomes as short as n — 1 symbols. Let y, be
the symbols of y following y, such that at the end of y, the stack first becomes as
short as n — 2 symbols, and so on. The arrangement is shown in Fig. 5.5. Note that
B, need not be the nth stack symbol from the bottom during the entire time y, is
being read by M, since B, may be changed if it is at the top of stack and is replaced
by one or more symbols. However, none of B, B; *-* B, are ever at the top while y,
is being read and so cannot be changed or influence the computation. In general,
B; remains on the stack unchanged while y, y, --- y;_, is read.
There exist states q,, g3, .., g,+ 1, Where g,4, = p, such that

(qj’ Vs Bj) [ (qj+l7 3]

by fewer than i moves (g ; is the state entered when the stack first becomes as short
as n — j + 1). Thus the inductive hypothesis applies and

[g5 Bj» gjs1]2y; for 1<j<n
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Fig. 5.5 Height of stack as a function of input consumed.

Recalling the original move (q, ay, A) |— (q,, y, By B, -+ B,), we know that
[q’ A7 P] =>a[ql’ B’ 42][42» BZ’ q3] [qm Bm qn+ l]’

50 g, 4, p] B> ay,y; - yu=x.

Now suppose [g, 4, p] = x. We show by induction on i that (g, x, A) - (p, €,
¢). The basis, i = 1, is immediate, since [g, A, p] = x must be a production of G and
therefore 6(g, x, A) must contain (p, €). Note x is ¢ or in Z here.

For the induction, suppose

[q’ A7 P] = a[qh Bh 42] [qm Bm qn+ l]i;>1 X,
where g, ; = p. Then we may write x = ax, x, *** x,, where [g;, Bj, g+ 1] = x; for
1 <j < n, with each derivation taking fewer than i steps. By the inductive hypoth-
esis, (g, xj, B;) - (gj+ 1, € €) for 1 <j < n.If we insert B; .., -** B, at the bottom of
each stack in the above sequence of ID’s we see that

(9j» xj» BjBj+y *** B,) - (‘Ij+ 16 Bjoy o By) (54)
From the first step in the derivation of x from [gq, A, p] we know that

(q’ X, A) i—— (qh XyXg "t Xy, BIBZ Bn)

is a legal move of M, so from this move and (5.4)forj = 1,2, ..., n, (g, x, A) I~ (p,
¢, €) follows. :
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The proof concludes with the observation that (5.3) with ¢ = g, and 4 =

says
[490» Zo, P2 x  ifand only if (g0, X, Zo) = (P, 6 €)-
This observation, together with rule (1) of the construction of G, says that
S%&x ifand only if  (go, X, Zo) = (p, ¢ €) for some state p.
That is, x is in L{G) if and only if x is in N(M).

119

Zy

Example 5.3 Let
M = ({q09 ql}, {O, 1}’ {X, ZO}’ 5; iIo, ZO, ®)9
where ¢ is given by
5((109 0’ ZO) = {(‘Io’ XZO)}’ 5(‘11’ 1 X) = {(ql’ ‘)}’
6(‘10’ 0’ X) = {(qu XX)}’ 6(‘11’ [ X) = {(qh ‘)}’
5(‘10’ 1 X) = {(‘Iv 6)}’ 5(‘11» €, ZO) = {(qh 6)}
To construct a CFG G = (V, T, P, S) generating N(M) let
V= {S’ [‘IO’ X’ q0]7 [‘Io’ X, ‘11]7 [‘117 Xv ‘10]’ [‘h’ X» ‘h]a

(90 Zo» 90): [90> Zo» 41): [41> Zo» 90 (91, Zo, a]}

and T = {0, 1}. To construct the set of productions easily, we must realize that
some variables may not appear in any derivation starting from the symbol S.
Thus, we can save some effort if we start with the productions for S, then add
productions only for those variables that appear on the right of some production

already in the set. The productions for S are
S = [g0, Zo> 90]
S~ [g0s Zo, q1]
Next we add productions for the variable [gq, Zo, go]- These are
(90, Zo, 90] = 0[40, X, 90)[40, Zo, 90]
[90: Zo 901 = 040> X, 91](41> Zo> 0]

These productions are required by §(qo, 0, Zo) = {(q0, XZ,)}- Next, the produc-

tions for [go, Z,, q,] are

[90> Zo, ‘11] - 0[g0, X, g0][q0> Zo» 91]
[qO’ ZO’ ql] - 0[‘10» X’ ql][ql’ ZO’ ql]
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These are also required by 8(qe, 0, Zo) = {(q0, XZ,)}. The productions for the
remaining variables and the relevant moves of the PDA are:

1) {40, X, 90] = 040, X, g0)[90, X; 0]

(90> X, 9] = O[do, X, q1][41, X, o]

[40: X, 41] = 0[go, X, 90][90> X, 9:]

[90: X, 1]~ 0[40, X, :][41, X, 44]

since (g0, 0, X) = {(g0, XX)}-
2) [90, X, 1]~ 1  since (g0, 1, X) ={(qs, €)}-
3) [ql? ZOa ql] —€ since 6(‘11’ 6 ZO) = {(ql’ 6)}
4) [qh X’ ql] —€ SiﬂCC 6(ql’ € X) = {(ql’ 6)}
5) [91, X, q1] > 1 since 5(ar, 1, X)={(q1, €)}-

It should be noted that there are no productions for the variables [q,, X, go]
and [qy, Z,, go)- As all productions for [q,, X, go] and [go, Z,, q0] have [q,, X, go]
or [y, Zy, go] on the right, no terminal string can be derived from [qo, X, go] or
[90, Zo, go] either. Deleting all productions involving one of these four variables
on either the right or left, we end up with the following productions.

S [g0, Zo, 41, (91, Zo, 1] — €

(90, Zo, 911 0[q0, X, 911[41> Zo, 91}, 9, X, 1] > €

(91> X, 9.1 040, X, q:][41, X, q1], [4:, X, q:] = 1.
[0, X, q1] > 1,

We summarize Theorems 5.1 through 5.4 as follows. The three statements
below are equivalent:

1) L is a context-free language.
2) L= N(M,) for some PDA M,.
3) L= L(M,) for some PDA M,.

EXERCISES

5.1 Construct pushdown automata for each of the languages in Exercise 4.1.
5.2 Construct a PDA equivalent to the following grammar.
S - adA, A—aS|bS|a.
53 Complete the proof of Theorem 5.3 by showing that every CFL L is the set accepted
by some PDA even if € is in L. [Hint: Add a second state to the PDA for L — {¢}.]

5.4 Show thatif Lis a CFL, then there is a PDA M accepting L by final state such that M
has at most two states and makes no ¢-moves.
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*55

a) Show that if Lis a CFL, then L is L{M) for some PDA M such that if §(g, a, X) contains
(P, v), then |y| <2.

b) Show that M of part (a) can be further restricted so that if (g, a, X) contains (p, y),
then y is either ¢ (a pop move), X (no change to the stack), or YX for some stack
symbol Y (a push move).

c) Can we put a bound on the number of states of M in part (a) and still have a PDA for
any CFL?

d) Can we put a bound on the number of states in part (b)?

56 Give a grammar for the language N(M) where

i M = ({go, 91}, {0, 1}, {Zo, X}, 3, go, Zo, D)

and ¢ is given by

(g0, 1, Zo) = {(90, XZo)}, (g0, & Zo) = {(40, €)}s

6(‘109 1’ X) = {(qO’ XX)}’ 6(‘?1’ 17 X) = {(qlv C)}’

6(‘10: 0’ X) = {(qlv X)}x 5(‘11, 0» ZO) = {(qu ZO)}
5.7  The deterministic PDA (DPDA) is not equivalent to the nondeterministic PDA. For
example, the language

L={0"1"|n>1} U {0"1*|n>1)}

is a CFL that is not accepted by any DPDA.

a) Show that L is a CFL.
** b) Prove that L is not accepted by a DPDA.

58 A language L is said to have the prefix property if no word in L is a proper prefix of
another word in L. Show that if L is N(M) for DPDA M, then L has the prefix property. Is
the foregoing necessarily true if L is N(M) for a nondeterministic PDA M?

*59  Show that Lis N(M) for some DPDA M if and only if L is L(M’) for some DPDA M’,
and L has the prefix property.

510 A two-way PDA (2PDA)is a PDA that is permitted to move either way on its input.
Like the two-way FA, it accepts by moving off the right end of its input in a final state.
Show that L = {0"1"2"|n > 1} is accepted by a 2PDA. We shall show in the next chapter
that L is not a CFL, by the way, so 2PDA’s are not equivalent to PDA’s.

*$ 511 Write a program to translate a regular expression to a finite automaton.
* 512 The grammar
E—-E+ E|E * E|(E)|id (5.5)
generates the set of arithmetic expressions with +, =, parentheses and id in infix notation
(operator between the operands). The grammar
P — +PP|+PP|id

generates the set of arithmetic expressions in prefix notation (operator precedes the oper-
ands). Construct a program to translate arithmetic expressions from infix to prefix notation
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using the following technique. Design a deterministic PDA that parses an infix expression
according to the grammar in (5.5). For each vertex in the parse tree determine the necessary
action to produce the desired prefix expression. [Hint: See the solution to Exercise 5.11.]

5.13 Construct a compiler for infix arithmetic expressions that produces an assembly
language program to evaluate the expression. Assume the assembly language has the single
address instructions: LOAD x (copy x to accumulator), ADD x (add x to accumulator),
MULT x (multiply contents of the accumulator by x) and STO x (store the contents of the
accumulator in x).

Solutions to Selected Exercises

5.11 Writing a program to translate a regular expression to a finite automaton can be
thought of as constructing a rudimentary compiler. We have already seen (Theorem 2.3)
that finite automata accepting &, ¢, 0, and 1 can be combined to obtain an automaton
equivalent to a given regular expression. The only problem is parsing the regular expression
to determine the order in which to combine the automata.

Our first step is to construct a CFG for the set of regular expressions. The next step is
to write a parser and finally the automaton-generating routines.

A grammar for regular expressions that groups subexpressions according to the con-
ventional precedence of operations is given below. Note that € is used for the symbol €.

E-P+E|P
PoT-P|T
T 0]1e] 2| T*(E)

The parsing routine is constructed directly from the grammar by writing a procedure
for each variable. A global variable STRING initially contains the following regular
expression.

procedure FIND_EXPRESSION;
begin
FIND_PRODUCT;
while first symbol of STRING is + do
begin
delete first symbol of STRING;
FIND_PRODUCT
end;
end FIND_EXPRESSION;
procedure FIND_PRODUCT;
begin
FIND_TERM;
while first symbol of STRING is - do
begin
delete first symbol of STRING;
FIND_TERM
end
end FIND_PRODUCT;
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procedure FIND_TERM;
begin
if first symbol of STRING is 0, 1, €, or & then
delete first symbol of STRING;
else if first symbol of STRING is ( then
begin
delete first symbol of STRING;
FIND_EXPRESSION;
if first symbol of STRING is ) then
delete first symbol of STRING
else error
end
while first symbol of STRING is * do
delete first symbol of STRING
end FIND_TERM

The actual parsing program consists of a single procedure call:
FIND_EXPRESSION;

Note that the recursive procedures FIND_EXPRESSION, FIND_PRODUCT, and
FIND_TERM have no local variables. Thus they may be implemented by a stack that
pushes E, P, or T, respectively, when a procedure is called, and pops the symbol when the
procedure returns. (Although FIND_EXPRESSION has two calls to FIND_PRODUCT,
both calls return to the same point in FIND_EXPRESSION. Thus the return location
need not be stored. Similar comments apply to FIND_PRODUCT). Thus, a deterministic
PDA suffices to execute the program we have defined.

Having developed a procedure to parse a regular expression, we now add statements to
output a finite automaton. Each procedure is modified to return a finite automaton. In
procedure FIND_TERM, if the input symbol is 0, 1, €, or &, a finite automaton accepting
0, 1, ¢, or Jis created and FIND_TERM returns this automaton. If the input symbol is (,
then the finite automaton returned by FIND_EXPRESSION is the value of
FIND_TERM. In either case, if the while loop for * is executed, the automaton is modified
to accept the closure.

In procedure FIND_PRODUCT, the value of FIND_PRODUCT is assigned the
value of the first call of FIND_TERM. Each time the “while” statement is executed, the
value of FIND_PRODUCT is set to an automaton accepting the concatenation of the sets
accepted by the current value of FIND_PRODUCT and the automaton returned by
the call to FIND_TERM in the “while” loop. Similar statements are added to
the procedure FIND_EXPRESSION.

BIBLIOGRAPHIC NOTES

The pushdown automaton appears as a formal construction in Oettinger [1961] and Schut-
zenberger [1963]. Its equivalence to context-free grammars was perceived by Chomsky
[1962] and Evey [1963].

A variety of similar devices have been studied. Counter machines have only one push-
down symbol, with the exception of a bottom-of-stack marker. They are discussed in
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Fischer [1966), and Fischer, Meyer, and Rosenberg [1968]; see also the bibliographic notes
to Chapter 7. Pushdown transducers are PDA’s that may print symbols at each move. They
have been studied by Evey [1963], Fischer [1963], Ginsburg and Rose [1966], Ginsburg and
Greibach [1966b), and Lewis and Stearns [1968].

The two-way PDA mentioned in Exercise 5.10 has been studied by Hartmanis, Lewis,
and Stearns [1965]. Its closure properties were considered by Gray, Harrison, and Ibarra
[1967], and characterizations of the class of languages accepted by the deterministic
(2DPDA) and nondeterministic (2NPDA) varieties have been given by Aho, Hopcroft, and
Ullman [1968], and Cook [1971c]. The latter contains the remarkable result that any
language accepted by a 2DPDA is recognizable in linear time on a computer. Thus, the
existence of a CFL requiring more than linear time to recognize on a computer, would
imply that there are CFL’s not accepted by 2DPDA’s. However, no one to date has proved
that such a language exists. Incidentally, the language {0"1"2"|n > 1} is an example of a
non-CFL accepted by a 2DPDA.



CHAPTER

PROPERTIES OF
CONTEXT-FREE
LANGUAGES

To a large extent this chapter parallels Chapter 3. We shall first give a pumping
lemma for context-free languages and use it to show that certain languages are not
context free. We then consider closure properties of CFL’s and finally we give
algorithms to answer certain questions about CFL’s.

6.1 THE PUMPING LEMMA FOR CFL’s

The pumping lemma for regular sets states that every sufficiently long string in a
regular set contains a short substring that can be pumped. That is, inserting as
many copies of the substring as we like always yields a string in the regular set.
The pumping lemma for CFL’s states that there are always two short substrings
close together that can be repeated, both the same number of times, as often as we
like. The formal statement of the pumping lemma is as follows.

Lemma 6.1 (The pumping lemma for context-free languages). Let L be any CFL.
Then there is a constant n, depending only on L, such thatif zisin Land |z| > n,
then we may write z = uvwxy such that

1) |ox| =1,

2) |owx| <n, and

3) for all i > Ouv‘wx'y is in L.
Proof Let G be a Chomsky normal-form grammar generating L — {¢}. Observe

that if z is in L{G) and z is long, then any parse tree for z must contain a long path.
More precisely, we show by induction on i that if the parse tree of a word

125
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generated by a Chomsky normal-form grammar has no path of length greater
than i, then the word is of length no greater than 2'~ 1. The basis, i = 1, is trivial,
since the tree must be of the form shown in Fig. 6.1(a). For the induction step, let
i > 1. Let the root and its sons be as shown in Fig. 6.1(b). If there are no paths of
length greater than i — 1 in trees T, and Ty, then the trees generate words of 2'~2
or fewer symbols. Thus the entire tree generates a word no longer than 27!

(a) (b)
Fig. 6.1 Parse trees.

Let G have k variables and let n = 2*.If z is in L(G) and |z| > n, then since
|z] > 2¥71, any parse tree for z must have a path of length at least k + 1. But such

a path has at least k + 2 vertices, all but the last of which are labeled by variables.
Thus there must be some variable that appears twice on the path.

We can in fact say more. Some variable must appear twice near the bottom of
the path. In particular, let P be a path that is as long or longer than any path in the
tree. Then there must be two vertices v, and v, on the path satisfying the following
conditions.

1) The vertices v, and v, both have the same label, say 4.
2) Vertex v, is closer to the root than vertex v,.
3) The portion of the path from v, to the leaf is of length at most k + 1.

To see that v, and v, can always be found, just proceed up path P from the
leaf, keeping track of the labels encountered. Of the first k + 2 vertices, only the
leaf has a terminal label. The remaining k + 1 vertices cannot have distinct vari-
able labels.

Now the subtree T, with root v, represents the derivation of a subword of
length at most 2*. This is true because there can be no path in T; of length greater
than k + 1, since P was a path of longest length in the entire tree. Let z, be the
yield of the subtree T,. If T, is the subtree generated by vertex v,, and z, is the
yield of the subtree T, then we can write z, as z, z, z,. Furthermore, z; and z,
cannot both be ¢, since the first production used in the derivation of z, must be of
the form A — BC for some variables B and C. The subtree T, must be completely
within either the subtree generated by B or the subtree generated by C. The above
is illustrated in Fig. 6.2.
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A
z; = bba

v
z = bbbaba
(a) (c)

z) = 232,24, wherezy = bb and z4 =€

G =({A. B, C}, {a, b}, {A=BC, B~BA, C»BA, A>a. B~b}, A)

Fig. 6.2 Illustration of subtrees T; and T, of Lemma 6.1. (a) Tree. (b) Subtree T,.
(c) Subtree T;.

We now know that
A% 234z, and A3z,  where |z3zyz4] <2*=n.

But it follows that 42>z z,2} for each i > 0. (See Fig. 6.3.) The string z can
clearly be written as uz;z,z, y, for some u and y. We let z3 = v, z, = w, and
z, = x, to complete the proof. O

Applications of the pumping lemma

The pumping lemma can be used to prove a variety of languages not to be context
free, using the same “adversary” argument as for the regular set pumping lemma.

Example 6.1 Consider the language L, = {a'b'c'|i > 1}. Suppose L were context
free and let n be the constant of Lemma 6.1. Consider z = a"b"c”. Write z = uvwxy
50 as to satisfy the conditions of the pumping lemma. We must ask ourselves
Where v and x, the strings that get pumped, could lie in a"b"c”. Since |vwx | < n, it
is not possible for vx to contain instances of a’s and c’s, because the rightmost a is
n + 1 positions away from the leftmost c. If v and x consist of a’s only, then uwy
(the string uv'wx’y with i = 0) has n b’s and n ¢’s but fewer than n a’s, since |vx| > 1.
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Fig. 6.3 The derivation of uv'wx'y, where u = b, v =bb, w=a, x = ¢, y = ba.

Thus, uwy is not of the form a’b’c’. But by the pumping lemma vwy is in L,, a
contradiction.

The cases where v and x consist only of b’s or only of ¢’s are disposed of
similarly. If vx has a’s and b’s, then uwy has more ¢’s than a’s or b’s, and again it is
not in L,. If vx contains b’s and ¢’s, a similar contradiction results. We conclude
that L, is not a context-free language.

The pumping lemma can also be used to show that certain languages similar
to L, are not context free. Some examples are

{dbic|j=i} and {a'bi|i<j<k}

Another type of relationship that CFG’s cannot enforce is illustrated in the next
example.

Example 6.2 Let L, = {a'b/c'd’|i > 1 and j > 1}. Suppose L, is a CFL, and let n
be the constant in Lemma 6.1. Consider the string z = a"b"c"d". Let z = uvwxy
satisfy the conditions of the pumping lemma. Then as |vwx| < n, vx can contain
at most two different symbols. Furthermore, if vx contains two different symbols,
they must be consecutive, for example, a and b. If vx has only a’s, then uwy has
fewer a’s than ¢’s and is not in L,, a contradiction. We proceed similarly if vx
consists of only b’s, only c¢’s, or only d’s. Now suppose vx has a’s and b’s. Then vwy
still has fewer a’s than c’s. A similar contradiction occurs if vx consists of b’s and
c’s or ¢’s and d’s. Since these are the only possibilities, we conclude that L, is not
context free.
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Ogden’s lemma

There are certain non-CFL’s for which the pumping lemma is of no help. For
example, )
Ly = {a'bic*d’|either i=0or j=k = ¢}

is not context free. However, if we choose z = b/c*d?, and write z = uvwxy, then it
is always possible to choose u, v, w, x, and y so that uv™wx™y is in L for all m. For
example, choose vwx to have only b’s. If we choose z = a'b/c/d’, then v and x might
consist only of &’s, in which case uv™wx™y is again in L, for all m.

What we need is a stronger version of the pumping lemma that allows us to
focus on some small number of positions in the string and pump them. Such an
extension is easy for regular sets, as any sequence of n + 1 states of an n-state FA
must contain some state twice, and the intervening string can be pumped. The
result for CFL’s is much harder to obtain but can be shown. Here we state and
prove a weak version of what is known as Ogden’s lemma.

Lemma 6.2 (Ogden’s lemma). Let L be a CFL. Then there is a constant n (which
may in fact be the same as for the pumping lemma) such that if z is any word in L,
and we mark any n or more positions of z “distinguished,” then we can write
z = upwxy, such that:

1) v and x together have at least one distinguished position,
2) vwx has at most n distinguished positions, and
3) for all i > 0, uv'wx'y is in L.

Proof Let G be a Chomsky normal-form grammar generating L — {¢}. Let G
have k variables and choose n = 2* + 1. We must construct a path P in the tree
analogous to path P in the proof of the pumping lemma. However, since we worry
only about distinguished positions here, we cannot concern ourselves with every
vertex along P, but only with branch points, which are vertices both of whose sons
have distinguished descendants.

Construct P as follows. Begin by putting the root on path P. Suppose r is the
last vertex placed on P. If r is a leaf, we end. If r has only one son with distin-
guished descendants, add that son to P and repeat the process there. If both sons
of r have distinguished descendants, call r a branch point and add the son with the
larger number of distinguished descendants to P (break a tie arbitrarily). This
process is illustrated in Fig. 6.4.

It follows that each branch point on P has at least half as many distinguished
descendants as the previous branch point. Since there are at least n distinguished
Ppositions in z, and all of these are descendants of the root, it follows that there are
at least k + 1 branch points on P. Thus among the last k + 1 branch points are
two with the same label. We may select v; and v, to be two of these branch points
with the same label and with v, closer to the root than v,. The proof then proceeds
exactly as for the pumping lemma. O
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X=X-X

Fig. 6.4 The path P. Distinguished positions are marked x. Branch points are marked b.

Example 6.3 Let L, = {a'b'c*|i # j, j # k and i # k}. Suppose L, were a context-
free language. Let n be the constant in Ogden’s lemma and consider the string
z=a"h"*"'c"* 2", Let the positions of the a’s be distinguished and let z = uvwxy
satisfy the conditions of Ogden’s lemma. If either v or x contains two distinct
symbols, then uv?wx?y is not in L,. (For example, if v is in a*b*, then uv*wx?y has
a b preceding an a.) Now at least one of v and x must contain a’s since only a’s are
in distinguished positions. Thus, if x is in b* or c*, v must be in a*. If x is in a*,
then v must be in a*, otherwise a b or ¢ would precede an a. We consider in detail
the situation where x is in b*. The other cases are handled similarly. Suppose x is
inb*and vin a*. Let p= |v|. Then 1 < p < n,s0 pdivides n! Let q be the integer
such that pg = n! Then

2g+1 2g+1

Z =up wx“17ly

isin L,. But p?9*! = g?P*P = g?"*?_Since uwy contains exactly (n — p) a’s, 2’
has (2n! + n) a’s. However, since v and x have no c’s, z’ also has (2n! + n) ¢s
and hence is not in L,, a contradiction. A similar contradiction occurs if x is in
a* or ¢*. Thus L, is not a context-free language.

Note that Lemma 6.1 is a special case of Ogden’s lemma in which all positions
are distinguished.

6.2 CLOSURE PROPERTIES OF CFL’s

We now consider some operations that preserve context-free languages. The oper-
ations are useful not only in constructing or proving that certain languages are
context free, but also in proving certain languages not to be context free. A given
language L can be shown not to be context free by constructing from L a language
that is not context free using only operations preserving CFL’s.



6.2 | CLOSURE PROPERTIES OF CFL’s 131

Theorem 6.1 Context-free languages are closed under union, concatenation
and Kleene closure.

Proof Let L, and L, be CFL’s generated by the CFG’s
G, = (Vl’ T,, Py, Sl) and G, = (V2a T;, P, S2)v

respectively. Since we may rename variables at will without changing the language
generated, we assume that V; and V, are disjoint. Assume also that S;, S,, and
S5 are not in V; or V,.

For L, u L, construct grammar Gy = (V; u V, U {S;}, Ty U T, P3, S3),
where P; is P; U P, plus the productions S3 — S, |S,. If w is in L,, then the
derivation S3z>S;Z>w is a derivation in G,, as every production of G, is a
production of é?3. Similarly, every word in L, has a derivation in G beginning
with S3=8,. Thus L, u L, = l.(G3).LEor the converse, let w be in L(G;). Then
the derivation 83% w begins with either S, 7Sz wor S3E—~;S2§‘§ w. In the
former case, as ¥, and V, are disjoint, only symbols of G; may appear in the
derivation S, (% w. As the only productions of P, that involve only symbols of G,
are those from P;, we conclude that only productions of P, are used in the
derivation S, Z>w. Thus S, 2w, and w is in L,. Analogously, if the derivation

3 G1 . .
starts S3 z> S,, we may conclude wis in L,. Hence L(G;) € L, v L,,s0 L(G3) =
L, u L,, as desired.

For concatenation, let G, = (V, v V, U {S,}, T, U Ty, P4, S,), where P, is
P, U P, plus the production S, —S,S,. A proof that L(G,) = L(G,)L(G,) is
similar to the proof for union and is omitted.

For closure, let Gs = (V; v {Ss}, Ty, Ps, Ss), where Py is P, plus the produc-
tions S5 — S, S5 | . We again leave the proof that L(Gs) = L(G,)* to the reader.

O

Substitution and homomorphisms
Theorem 6.2 The context-free languages are closed under substitution.

Proof Let Lbea CFL, L < X* and foreachain X let L, be a CFL. Let L be I(G)
and for each g in X let L, be L(G,). Without loss of generality assume that the
variables of G and the G,’s are disjoint. Construct a grammar G’ as follows. The
variables of G’ are all the variables of G and the G,’s; the terminals of G’ are
the terminals of the G,s. The start symbol of G’ is the start symbol of G.
The productions of G’ are all the productions of the G,’s together with those
productions formed by taking a production A —»a of G and substituting S,
the start symbol of G,, for each instance of an a in X appearing in . O

Example 6.4 Let L be the set of words with an equal number of a’s and b’s,
L,={0"1"|n> 1} and L, = {ww®|w is in (0 + 2)*}. For G we may choose

S — aSbS | bSaS | ¢
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For G, take

S,—0S,1]01
For G, take

S, — 05,0|28,2 ¢

If f is the substitution f(a) = L, and f(b) = L,, then f(L) is generated by the
grammar

S 5,55,58,55,5 |€
S,—08,1]01
S, — 08,0|25,2

One should observe that since {a, b}, {ab}, and a* are CFL’s, the closure of
CFL’s under substitution implies closure under union, concatenation, and *. The
union of L, and L, is simply the substitution of L, and L, into {a, b} and similarly
L,L, and L} are the substitutions into {ab} and a*, respectively. Thus Theorem 6.1
could be presented as a corollary of Theorem 6.2.

Since a homomorphism is a special type of substitution we state the following
corollary.

Corollary The CFL’s are closed under homomorphism.

Theorem 6.3 The context-free languages are closed under inverse homomor-
phism.

Proof As with regular sets, a machine-based proof for closure under inverse
homomorphism is easiest to understand. Let h: X — A be a homomorphism and L
be a CFL. Let L = L(M), where M is the PDA (Q, A, T, 6, qo, Z,, F). In analogy
with the finite-automaton construction of Theorem 3.5, we construct PDA M’
accepting h~*(L) as follows. On input a, M’ generates the string h(a) and simulates
M on h(a). If M’ were a finite automaton, all it could do on a string h(a) would be
to change state, so M’ could simulate such a composite move in one of its moves.
However, in the PDA case, M could pop many symbols on a string, or, since it is
nondeterministic, make moves that push an arbitrary number of symbols on the
stack. Thus M’ cannot necessarily simulate M’s moves on h(a) with one (or any
finite number of) moves of its own.

What we do is give M’ a buffer, in which it may store h(a). Then M’ may
simulate any e-moves of M it likes and consume the symbols of h(a) one at a time,
as if they were M’s input. As the buffer is part of M”s finite control, it cannot be
allowed to grow arbitrarily long. We ensure that it does not, by permitting M’ to
read an input symbol only when the buffer is empty. Thus the buffer holds a suffix
of h(a) for some a at all times. M’ accepts its input w if the buffer is empty and M is
in a final state. That is, M has accepted h(w). Thus L(M’) = {w|h(w) is in L}, that is
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Input to M’

A

1

¥

Control lﬂg_‘ Control
of M' of M

h

Stack of M and M’

Fig. 6.5 Construction of a PDA accepting h™'(L).

L(M’) = h™}(L(M)). The arrangement is depicted in Fig-6.5; the formal construc-
tion follows.

Let M'=(Q', 2, T, &, [go, €, Zo, F x {€}), where Q' consists of pairs [g, x]
such that g is in Q and x is a (not necessarily proper) suffix of some h(a) for ain X.
o' is defined as follows:

1) 8([g, x], €, Y) contains all ([p, x], y) such that (g, ¢, Y) contains (p, ). Sim-
ulate e-moves of M independent of the buffer contents.

2) 8'([g, ax], ¢, Y) contains all ([p, x], y) such that 5(q, a, Y)contains (p, y). Sim-
ulate moves of M on input a in A, removing a from the front of the buffer.

3) &([g, €}, a, Y) contains ([g, h(a)], Y) for all ain £ and Y in I'. Load the buffer
with h(a), reading a from M”s input; the state and stack of M remain
unchanged.

To show that L(M’) = h™'(L(M)) first observe that by one application of rule
(3), followed by applications of rules (1) and (2), if (g, h(a), a) I (p, €, B), then

(4. €. a. @) bz ([9: h@)), & ) b ([p» €], & B).
Thus if M accepts h(w), that is,
(qO» h(W), ZO) 'T*f- (P, €, B)

for some p in F and B in T'*, it follows that

([‘10» 6]’ w, ZO) H‘T ([p’ 6]7 6 ﬂ)*

so M’ accepts w. Thus L(M’') 2 h™}(L(M)).
Conversely, suppose M’ accepts w = a, a, ‘- a,. Then since rule (3) can be
applied only with the buffer (second component of M”’s state) empty, the sequence
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of the moves of M’ leading to acceptance can be written

([0, €], ara; "~ ay, Zo) B [Py, €], araz -+ ay, ),
b (1, h(a1)), azas - a,, ),
l%’ ([p2> €} azas - a,, a3),
b ([p2s h(a2)), asas -+ a,, a5),

% ([pn— 1» 6]’ ap, (Z,,),
b ([Pa- 1> hlay)), € a,),
% ([Pns €}, € ¥ns1);

where p, is in F. The transitions from state [p;, €] to [p;, h(a;)] are by rule (3), the
other transitions are by rules (1) and (2). Thus, (go, €, Zo) hs- (P, € ,), and for all i,

(Pi, hlas), ;) % (Pi+ 1> € %is 1)

Putting these moves together, we have

(qO’ h(alaZ o an)’ ZO) }'ﬁ' (pm € Opy 1)»

so h(a,a, **- a,) is in L(M). Hence L(M’) = h™}(L(M)), whereupon we conclude
LM') = h~ Y (L{M)). a

Boolean operations

There are several closure properties of regular sets that are not possessed by the
context-free languages. Notable among these are closure under intersection and
complementation.

Theorem 6.4 The CFL’s are not closed under intersection.

Proof In Example 6.1 we showed the language L, = {a'b'c'|i > 1} was not a
CFL. We claim that L, = {a’b'c/|i> 1 and j > 1} and L, = {@'¥’F|i > 1 and
Jj = 1} are both CFL’s. For example, a PDA to recognize L, stores the a’s on its
stack and cancels them against b’s, then accepts its input after seeing one or more
¢’s. Alternatively L, is generated by the grammar

S— AB
A — aAb|ab
B—cB|c
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where A generates a'b’ and B generates ¢’. A similar grammar

S—-CD
C—-aCla
D — bDc|bc

generates Lj.
However, L, n Ly = L,. If the CFL’s were closed under intersection, L,
would thus be a CFL, contradicting Example 6.1. O

Corollary The CFL’s are not closed under complementation.

Proof We know the CFL’s are closed under union. If they were closed under
complementation, they would, by DeMorgan’s law, L, n L, =L, v L, be
closed under intersection, contradicting Theorem 6.4. O

Although the class of CFL’s is not closed under intersection it is closed under
intersection with a regular set.

Theorem 6.5 If Lis a CFL and R is a regular set, then L n R is a CFL.

Proof Let Lbe L{M) for PDA M = (Qy, , T, 8y, 9o, Zo, Far), and let R be L(A4)
for DFA 4 = (Q4, Z, 84, Po, F4)- We construct a PDA M’ for L n R by “running
M and A in parallel,” as shown in Fig. 6.6. M’ simulates moves of M on input ¢
without changing the state of A. When M’ makes a move on input symbol a, M
simulates that move and also simulates A’s change of state on input a. M’ accepts
if and only if both 4 and M accept. Formally, let

M = (QA X QM7 27 r’ 57 [p0v qO]’ ZO7 FA X FM))

Input toA, M. and M’

Control Control Control
of M’ of A of M

Stack of
Mand M’

Fig. 6.6 Running an FA and a PDA in parallel.
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where 0 is defined by 6([p, g, a, X), contains ([p’, g'], y) if and only if 5 ,(p, a) = p,
and dy(g, a, X) contains (g, 7). Note that a may be ¢, in which case p’ = p.
An easy induction on i shows that

([Po> 4o} W, Zo) b= ([Ps g}, & )
if and only if

(qO’ w, ZO) I_A'l_ (q’ €, Y) and 6(p0’ W) = P

The basis, i = 0, is trivial, since p = py, ¢ = qq, Y = Z,, and w = ¢. For the induc-
tion, assume the statement for i — 1, and let

([Po> 90} xa. Zo) - ([P'> 41 a, B) 57 ([P, 4l & 7).
where w = xa, and a is ¢ or a symbol of X. By the inductive hypothesis,
04(Po> X) =P and (90> %, Z,) l% (d, € B).

By the definition of 6, the fact that ([p’, 4], a, B) kr ([, g}, & v) tells us that
04(p’, @)= p and (¢, a, B) lzr (4, € 7). Thus 6,(po, w) = p and

(QO7 w, ZO) Iﬁ (q’ €, Y)'
The converse, showing that (go, W, Zo) i (¢, ¢ ) and 8 4(po, w) = p imply

([p09 qO]’ w, ZO) }—IJI— ([p» q]’ €, Y)’
is similar and left as an exercise. 0O

Use of closure properties

We conclude this section with an example illustrating the use of closure properties
of context-free languages to prove that certain languages are not context free.

Example 6.5 Let L= {ww|w is in (a + b)*}. That is, L consists of all words
whose first and last halves are the same. Suppose L were context free. Then by
Theorem 6.5, L,=Lna*b*a*b* would also be a CFL. But L,=
{@bdb|i> 1, j>1}. L, is almost the same as the language proved not to be
context free in Example 6.2, using the pumping lemma. The same argument shows
that L, i1s not a CFL. We thus contradict the assumption that L is a CFL.

If we did not want to use the pumping lemma on L,, we could reduce it to
L, = {a'b’c'd’|i > 1 and j > 1}, the exact language discussed in Example 6.2. Let h
be the homomorphism h(a) = h(c) = a and h(b) = h(d) = b. Then h™*(L,) consists
of all words of the form x, x, x5 x,, where x, and x; are of the same length and in
(a+¢)*, and x, and x, are of equal length and in (b + d)*. Then h™*(L,) n
a*b*c*d* = L,. By Theorems 6.3 and 6.5, if L, were a CFL, so would be L,. Since
L, is known not to be a CFL, we conclude that L, is not a CFL.
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6.3 DECISION ALGORITHMS FOR CFL’s

There are a number of questions about CFL’s we can answer. These include
whether a given CFL is empty, finite, or infinite and whether a given word is in a
given CFL. There are, however, certain questions about CFL’s that no algorithm
can answer. These include whether two CFG’s are equivalent, whether a CFL is
cofinite, whether the complement of a given CFL is also a CFL, and whether a
given CFG is ambiguous. In the next two chapters we shall develop tools for
showing that no algorithm to do a particular job exists. In Chapter 8 we shall
actually prove that the above questions and others have no algorithms. In this
chapter we shall content ourselves with giving algorithms for some of the
questions that have algorithms.

As with regular sets, we have several representations for CFL’s, namely
context-free grammars and pushdown automata accepting by empty stack or by
final state. As the constructions of Chapter 5 are all effective, an algorithm that
uses one representation can be made to work for any of the others. We shall use
the CFG representation in this section.

Theorem 6.6 There are algorithms to determine if a CFL is (a) empty, (b) finite,
or (c) infinite.

Proof The theorem can be proved by the same technique (Theorem 3.7) as the
analogous result for regular sets, by making use of the pumping lemma. However,
the resulting algorithms are highly inefficient. Actually, we have already given a
better algorithm to test whether a CFL is empty. For a CFG G = (V, T, P, S), the
test of Lemma 4.1 determines if a variable generates any string of terminals.
Clearly, L(G) is nonempty if and only if the start symbol S generates some string of
terminals.

To test whether L(G) is finite, use the algorithm of Theorem 4.5 to find a CFG
G'=(V, T, P, S) in CNF and with no useless symbols, generating L(G) — {¢}.
L(G’) is finite if and only if L(G) is finite. A simple test for finiteness of a CNF
grammar with no useless symbols is to draw a directed graph with a vertex for
each variable and an edge from A to B if there is a production of the form 4 - BC
or A — CBfor any C. Then the language generated is finite if and only if this graph
has no cycles.

If there is a cycle, say Aq, 4,, ..., A, Ao, then

Ag= a1 A By =045, " = 0,4, 8,7 0wy 1 Ao Bar 1

where the o’s and B's are strings of variables, with |«; §;| = i. Since there are no
useless symbols, a,,, ; 2 w and B, ; % x for some terminal strings w and x of total
length at least n + 1. Since n > 0, w and x cannot both be ¢. Next, as there are no
useless symbols, we can find terminal strings y and z such that S% y4,z, and a
terminal string v such that Ay 2 v. Then for all i,

S%5 yAozE ywAgxz 2 yw?dgx’z % - 5 yw Ay x'z 2 ywivx'z.
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As |wx| > 0, yw'vx'z cannot equal yw/vx/z if i # j. Thus the grammar generates
an infinite number of strings.

Conversely, suppose the graph has no cycles. Define the rank of a variable 4
to be the length of the longest path in the graph beginning at 4. The absence of
cycles implies that the rank of A is finite. We also observe that if A — BC is a
production, then the rank of B and C must be strictly less than the rank of A4,
because for every path from B or C, there is a path of length one greater from A.
We show by induction on r that if A has rank r, then no terminal string derived
from A has length greater than 2".

Basis r=0. If A has rank O, then its vertex has no edges out. Therefore all
A-productions have terminals on the right, and 4 derives only strings of length 1.

Induction r > 0.If we use a production of the form 4 — a, we may derive only a
string of length 1. If we begin with A — BC, then as B and C are of rank r — 1 or
less, by the inductive hypothesis, they derive only strings of length 2"~ ! or less.
Thus BC cannot derive a string of length greater than 2".

Since § is of finite rank r,, and in fact, is of rank no greater than the number of
variables, S derives strings of length no greater than 27. Thus the language is
finite. O

Example 6.6 Consider the grammar
S— AB
A-BCla
B—CClb
C—a

whose graph is shown in Fig. 6.7(a). This graph has no cycles. The ranks of S, 4, B,
and C are 3,2, 1, and 0, respectively. For example, the longest path from Sis S, 4,
B, C. Thus this grammar derives no string of length greater than 23 = 8 and
therefore generates a finite language. In fact, a longest string generated from S is

S=> AB=> BCB= CCCB= CCCCC % aaaaa.

(a) (b)
Fig. 6.7 Graphs corresponding to CNF grammars.
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If we add production C — AB, we get the graph of Fig. 6.7(b). This new graph
has several cycles, such as 4, B, C, A. Thus we can find a derivation A4 % a3 A48, in
particular A= BC = CCC = CABC, where a3 = C and B; = BC. Since C*%a
and BC2 ba, we have A% aAba. Then as S% Ab and A% a, we now have
S 2 d'a(ba)'b for every i. Thus the language is infinite.

Membership

Another question we may answer is: Given a CFG G = (V, T, P, S) and string x in
T*, is x in I(G)? A simple but inefficient algorithm to do so is to convert G to
G' = (V, T, P, S), a grammar in Greibach normal form generating L(G) — {¢}.
Since the algorithm of Theorem 4.3 tests whether S% ¢, we need not concern
ourselves with the case x = ¢. Thus assume x # ¢, so x is in L(G’) if and only if x is
in L(G). Now, as every production of a GNF grammar adds exactly one terminal
to the string being generated, we know that if x has a derivation in G, it has one
with exactly | x| steps. If no variable of G’ has more than k productions, then there
are at most k™! leftmost derivations of strings of length |x|. We may try them all
systematically.

However, the above algorithm can take time which is exponential in |x|.
There are several algorithms known that take time proportional to the cube of
|x| or even a little less. The bibliographic notes discuss some of these. We shall
here present a simple cubic time algorithm known as the Cocke-Younger-Kasami
or CYK algorithm. It is based on the dynamic programming technique discussed
in the solution to Exercise 3.23. Given x of length n > 1, and a grammar G, which
we may assume is in Chomsky normal form, determine for each i and j and for
each variable A, whether A% x;;, where x;; is the substring of x of length j
beginning at position i.

We proceed by induction on j. For j=1, A% x; if and only if 4 > x;; is a
production, since x;; is a string of length 1. Proceeding to higher values of j, if
Jj>1, then A% x;; if and only if there is some production 4 — BC and some Kk,
1 <k < j, such that B derives the first k symbols of x;; and C derives the last j — k
symbols of x;;. That is, B% x;, and C% x;,, ;_,. Since k and j — k are both less
than j, we already know whether each of the last two derivations exists. We may
thus determine whether 4 % x;;. Finally, when we reach j = n, we may determine
whether S % x,,. But x,, = x, so x is in L(G) if and only if § % x,,.

To state the CYK algorithm precisely, let V;; be the set of variables 4 such
that 4 % x;;. Note that we may assume 1 <i < n — j + 1, for there is no string of
length greater than n — i + 1 beginning at position i. Then Fig. 6.8 gives the CYK
algorithm formally.

Steps (1) and (2) handle the case j = 1. As the grammar G is fixed, step (2)
takes a constant amount of time. Thus steps (1) and (2) take O(n) time. The nested
for-loops of lines (3) and (4) cause steps (5) through (7) to be executed at most n?
times, since i and j range in their respective for-loops between limits that are at

ij>
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begin
1) for i:= 1tondo .
2) Viy:={A]|A— ais a production and the ith symbol of x is a};
3) for j:= 2 to ndo
4) fori:==1ton—j+ 1do
begin
5) Viji=;
6) for k:=1toj— 1do
7) Viji=V;; u {A4|A— BC is a production, B is in ¥, and C
is in Vi+k,j—k}
end
end

Fig. 6.8. The CYK algorithm.

most n apart. Step (5) takes constant time at each execution, so the aggregate time
spent at step (5) is 0(n?). The for-loop of line (6) causes step (7) to be executed n or
fewer times. Since step (7) takes constant time, steps (6) and (7) together take 0(n)
time. As they are executed 0(n?) times, the total time spent in step (7) is 0(n*). Thus
the entire -algorithm is 0(n?).

Example 6.7 Consider the CFG
S— AB|BC
A— BA|a
B—CC|b
C— ABja

and the input string baaba. The table of Vs is shown in Fig. 6.9. The top row is
filled in by steps (1) and (2) of the algorithm in Fig. 6.8. That is, for positions 1 and
4, which are b, we set V;, = V,; = {B}, since Bis the only variable which derives b.

b a a b a
i
1 2 3 4 S
1 B A C A.C B A.C
j 2 S A B S.C S.A
13 %] B B
4 @ S.A.C
518.4.¢C

Fig. 6.9 Table of V.
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Similarly, V3, = V3, = V5, = {4, C}, since only A and C have productions with a
on the right.

To compute ¥; for j > 1, we must execute the for-loop of steps (6) and (7). We
must match ¥, against ¥, ;_,fork = 1,2, ...,j — 1, seeking variable D in Vj and
E in V,,, ;- such that DE is the right side of one or more productions. The left
sides of these productions are adjoined to V;. The pattern in the table which
corresponds to visiting V; and V., ;_, fork=1,2,...,j— 1 in tumn is to simul-
taneously move down column i and up the diagonal extending from V;; to the
right, as shown in Fig. 6.10.

|~

Fig. 6.10 Traversal pattern for computation of V;;.

For example, let us compute V,,, assuming that the top three rows of Fig. 6.9
are filled in. We begin by looking at V,, = {4, C} and V;; = {B}. The possible
right-hand sides in V,, V35 are AB and CB. Only the first of these is actually a right
side, and it is a right side of two productions S - AB and C — AB. Hence we add §
and C to V,,. Next we consider V,,V,, = {B}{S, A} ={BS, BA}. Only BA is a
right side, so we add the corresponding left side 4 to V,,. Finally, we consider
Va3 Vsy = {BKA, C} = {BA, BC}. BA and BC are each right sides, with left sides 4
and S, respectively. These are already in V,,, so we have V,, = {S, 4, C}. Since S is
a member of Vs, the string baaba is in the language generated by the grammar.

EXERCISES

6.1 Show that the following are not context-free languages.
~a) {d'bct|i<j <k}
b) {a'b/|) = i}
c) {a'|i is a prime}”
d) the set of strings of a’s, b’s, and ¢’s with an equal number of each
e) {a"b"c™|n < m < 2n} -
*62  Which of the following are CFL’s?
©a) {d'b/|i #j and i # 2j}
b) (a + b)* — (@b} |n = 1}
c) {wwhw|w is in (a + b)*}
d) {b; #b;+1|b; is i in binary, i > 1}
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e) {wxw|w and x are in (a + b)*}
f) (a+b)* — {(a"b)'|n> 1}
6.3  Prove that the following are not CFL’s.
a) {a'¥d*|j = max {i, k}}
b) {a"b"c’|i + n}
[Hint: Use Ogden’s lemma on a string of the form a"b"c™]
6.4 Show that the CFL’s are closed under the following operations:

* a) Quotient with a regular set, that is, if L is a CFL and R a regular set, then L/R is a CFL.
b) INIT
S** ¢) CYCLE
d) reversal

See Exercise 3.4 for the definitions of INIT and CYCLE.
* 6.5 Show that the CFL’s are not closed under the following operations.

S a) MIN b) MAX c) 4
d) Inverse substitution
e) INV, where INV(L) = {x|x = wyz and wy®z is in L}
MIN, MAX, and # are defined in Exercises 3.4 and 3.16.

* 6.6 Let T be an alphabet. Define homomorphisms h, h,, and h, by h(a) = h(a) = q,
hy(a) = a, hy(a) = ¢, hy(a) = ¢, and h,(a) = a for each a in T*. For L, < £* and L, < ¥,
define

Shuffle (L,, L;) = {x|for some y in h™*(x), h,(y) is in L, and h,(y) is in L,}.

That is, the Shuffle of L, and L, is the set of words formed by “shuffling” a word of L, with
a word of L,. Symbols from the two words need not alternate as in a “perfect shuffle.”

a) Show that the Shuffle of two regular sets is regular.
b) Prove that the Shuffle of two CFL’s is not necessarily a CFL.
c) Prove that the Shuffle of a CFL and a regular set is a CFL.

* 6.7 A Dyck Language is a language with k types of balanced parentheses. Formally, each
Dyck language is, for some k, L{G,), where G, is the grammar

S — SS|[1S1i|[28)2] - | LSk e.

For example, [,[2[,]:[2]2]2]: is in the Dyck language with two kinds of parentheses. Prove
that every CFL Lis h(L, n R), where h is a homomorphism, R a regular set, and L, a Dyck
language. [Hint: Let L be accepted by empty stack by a PDA in the normal form of
Exercise 5.5(b) where the moves only push or pop single symbols. Let the parentheses be
[aox and ]upx, Where [x “means” on input a, stack symbol X is pushed, and matching
parenthesis ],,x “means” on input b, X may be popped (a or b may be ¢). Then the Dyck
language enforces the condition that the stack be handled consistently, i.e., if X is pushed,
then it will still be X when it is popped. Let the regular set R enforce the condition that
there be a sequence of states for which the push and pop moves are legal for inputs a and b,
respectively. Let h([,5x) = a and h(]x) = b.]

* 6.8 Show thatif Lis a CFL over a one-symbol alphabet, then L is regular. [Hint: Let n be
the pumping lemma constant for L and let L = 0*. Show that for every word of length n or
more, say 0™, there are p and q no greater than n such that 0°*“ is in L for all i > 0. Then
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show that L consists of perhaps some words of length less than n plus a finite number of
linear sets, i.e., sets of the form {07**|i > 0} for fixed p and g, ¢ < n.]

** 6.9 Prove that the set of primes in binary is not a CFL.
6.10 Show that the linear languages (see Exercise 4.20 for a definition) are closed under
a) union b) homomorphism c) intersection with a regular set

6.11 Prove the following pumping lemma for linear languages. If L is a linear language,
then there is a constant L such that if z in L is of length n or greater, then we may write
z = uvwxy, such that |uvxy| <n, |vx| > 1, and for all i > 0, uv'wx'y is in L.
6.12 Show that {a'b’c’d|i > 1 and j > 1} is not a linear language.

*6.13 A PDA is said to make a turn if it enters a sequence of ID’s

(4» Wi, }’1) }—' (qz, Wa, )’z) |—' (g3, w3, 73)

and |y, | is strictly greater than |y, | and |y;|. That is, a turn occurs when the length of the
stack “peaks.” A PDA M is said to be a k-turn PDA if for every word w in L(M), w is
accepted by a sequence of ID’s making no more than k turns. If a PDA is k-turn for some
finite k, it is said to be finite-turn. If L is accepted by a finite-turn PDA, L is metalinear.

a) Show that a language is linear if and only if it is accepted by a one-turn PDA.

b) Show that the linear languages are closed under inverse homomorphism.

c) Show that the metalinear languages are closed under union, concatenation, homomor-
phism, inverse homomorphism, and intersection with a regular set.

**6.14 Show that the set of strings with an equal number of ’s and b’s is a CFL that is not a
metalinear language.

6.15 Show that
a) the linear languages  ** b) the metalinear languages
are not closed under *.
6.16 Give an algorithm to decide for two sentential forms « and g of a CFG G, whether
o % p.
6.17 Use the CYK algorithm to determine whether
a) aaaaa b) aaaaaa
are in the grammar of Example 6.7.
6.18 Let G be a context-free grammar in CNF.

a) Give an algorithm to determine the number of distinct derivations of a string x.

b) Associate a cost with each production of G. Give an algorithm to produce a minimum-
cost parse of a string x. The cost of a parse is the sum of the costs of the productions
used.

[Hint: Modify the CYK algorithm of Section 6.3.]

Solutions to Selected Exercises

64 c)Let G=(V, T, P, S) be a CFG in CNF. To construct G such that
L(G) = CYCLE(L(G)) consider a derivation tree of a string x, x, in grammar G. Follow the
path from S to the leftmost symbol of x,. We wish to generate the path in reverse order
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(bottom to top) and output symbols on opposite sides of the path from which they orig-
inally appeared. To do this construct
=V u{d|disin V} U {So), T, P, S,),

where P contains

1) all productions of P,

2) € — AB and B— CA if P contains 4 - BC,

3) S—e )

4) So — aA if P contains 4 — a,

5) So— S.

To see that L(G) = CYCLE(L(G)) show by induction on the length of a derivation that
A% A, A, -+ A, if and only if for each i
/‘ii!‘"A.'n AnAAl o Aieye
Then
5*=A1 rAp= Ay Ais1adiyy o A,
iff
So=>a/ii§>aA,~+| te A,.gAl te Ai—l
=>adivy 0 Ag Ay Ay
A derivation tree of G is shown in Fig. 6.11(a) with a corresponding tree for G in Fig.
6.11(b).
6.5 a) Let L be the CFL {0'1°2*|i < k or j < k}. L is generated by the CFG
S—>AB|C, A—0A4lc, B—1B2|B2l C-0C2|C2|D, D-1D|e

MIN(L) = {0'1°2*| k = min(j, j)}. We claim MIN(L) is not a CFL. Suppose it were, and let
n be the pumping lemma constant. Consider z = 0"1"2" = uvwxy. If vx contains no 2’s, then
uwy is not in MIN(L). If vx has a 2, it cannot have a 0, since |vwx | < n. Thus up?wx?y has
at least n + 1 2’s, at least n I's and exactly n 0’s; it is thus not in MIN(L).

/\ / \.
/ /\ ,:/\
/\ \ (/\E
/ /\ D/\é \,
/ \ / N\

2 3 4 T
€

(a) (b)
Fig. 6.11 Tree transformation used for Exercise 6.4(c).
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The pumping lemma for context-free languages is from Bar-Hillel, Perles, and Shamir
[1961]; Ogden’s lemma, in its stronger version, is found in Ogden [1968]. Wise [1976] gives
a necessary and sufficient condition for a language to be context free. Parikh [1966] gives
necessary conditions in terms of the distribution of symbols in words of the language.
Pumping lemmas for other classes of languages are given in Boasson [1973] and Ogden
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Theorem 6.2, closure under substitution, and Theorem 6.5, closure under intersection
with a regular set, are from Bar-Hillel, Perles, and Shamir [1961]. Theorem 6.3 is from
Ginsburg and Rose [1963b]. Theorem 6.4 and its corollary, nonclosure under intersection
or complementation, are from Scheinberg [1960]. Theorem 6.6, the existence of an algo-
rithm to tell whether a CFL is finite, is also from Bar-Hillel, Perles, and Shamir [1961].
Floyd [1962b] shows how to apply closure properties to prove language constructs not to
be context free.

The CYK algorithm was originally discovered by J. Cocke, but its first publication was
due independently to Kasami [1965] and Younger [1967]. The most practical, general,
context-free recognition and parsing algorithm is by Earley [1970]. This algorithm is 0(n®)
in general, but takes only 0(n?) on any unambiguous CFG and is actually linear on a wide
variety of useful grammars. The algorithm of Valiant [1975a] is asymptotically the most
efficient, taking O(n?%) steps, while the algorithm of Graham, Harrison, and Ruzzo [1976]
takes O(n3/log n) steps. A related result, that membership for unambiguous CFG’s can be
tested in O(n?) time, is due to Kasami and Torii [1969] and Earley [1970].

Exercise 6.4(a), closure of CFL’s under quotient with a regular set, was shown by
Ginsburg and Spanier [1963]. Additional closure properties of CFL’s can be found in
Ginsburg and Rose [1963b, 1966). Exercise 6.7, the characterization of CFL’s by Dyck
languages, is from Chomsky [1962]. Stanley [1965] showed the stronger result that the
Dyck language used need depend only on the size of the terminal alphabet. The proof that
the primes in binary are not a CFL (Exercise 6.9) is from Hartmanis and Shank [1968].
Finite-turn PDA’s, mentioned in Exercise 6.13, were studied by Ginsburg and Spanier [1966].
Exercise 6.8, that CFL’s over a one-symbol alphabet are regular, was shown by Ginsburg
and Rice {1962].



CHAPTER

TURING MACHINES

In this chapter we introduce the Turing machine, a simple mathematical model of
a computer. Despite its simplicity, the Turing machine models the computing
capability of a general-purpose computer. The Turing machine is studied both for
the class of languages it defines (called the recursively enumerable sets) and the
class of integer functions it computes (called the partial recursive functions). A
variety of other models of computation are introduced and shown to be equiv-
alent to the Turing machine in computing power.

7.1 INTRODUCTION

The intuitive notion of an algorithm or effective procedure has arisen several
times. In Chapter 3 we exhibited an effective procedure to determine if the set
accepted by a finite automation was empty, finite, or infinite. One might naively
assume that for any class of languages with finite descriptions, there exists an
effective procedure for answering such questions. However, this is not the case.
For example, there is no algorithm to tell whether the complement of a CFL is
empty (although we can tell whether the CFL itself is empty). Note that we are not
asking for a procedure that answers the question for a specific context-free lan-
guage, but rather a single procedure that will correctly answer the question for all
CFL’s. It is clear that if we need only determine whether one specific CFL has an
empty complement, then an algorithm to answer the question exists. That is, there
is one algorithm that says “yes” and another that says “no,” independent of their
inputs. One of these must be correct. Of course, which of the two algorithms
answers the question correctly may not be obvious.

146
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At the turn of the century, the mathematician David Hilbert set out on a
program to find an algorithm for determining the truth or falsity of any mathemat-
ical proposition. In particular, he was looking for a procedure to determine if an
arbitrary formula in the first-order predicate calculus, applied to integers, was
true. Since the first-order predicate calculus is powerful enough to express the
statement that the language generated by a context-free grammar is X*, had
Hilbert been successful, our problem of deciding whether the complement of a
CFL is empty would be solved. However, in 1931, Kurt Godel published his
famous incompleteness theorem, which proved that no such effective procedure
could exist. He constructed a formula in the predicate calculus applied to integers,
whose very definition stated that it could neither be proved nor disproved within
this logical system. The formalization of this argument and the subsequent
clarification and formalization of our intuitive notion of an effective procedure is
one of the great intellectual achievements of this century.

Once the notion of an effective procedure was formalized, it was shown that
there was no effective procedure for computing many specific functions. Actually
the existence of such functions is easily seen from a counting argument. Consider
the class of functions mapping the nonnegative integers onto {0, 1}. These func-
tions can be put into one-to-one correspondence with the reals. However, if we
assume that effective procedures have finite descriptions, then the class of all
effective procedures can be put into one-to-one correspondence with the integers.
Since there is no one-to-one correspondence between the integers and the reals,
there must exist functions with no corresponding effective procedures to compute
them. There are simply too many functions, a noncountable number, and only a
countable number of procedures. Thus the existence of noncomputable functions
is not surprising. What is surprising is that some problems and functions with
genuine significance in mathematics, computer science, and other disciplines are
noncomputable.

Today the Turing machine has become the accepted formalization of an
effective procedure. Clearly one cannot prove that the Turing machine model is
equivalent to our intuitive notion of a computer, but there are compelling argu-
ments for this equivalence, which has become known as Church’s hypothesis. In
particular, the Turing machine is equivalent in computing power to the digital
computer as we know it today and also to all the most general mathematical
notions of computation.

72 THE TURING MACHINE MODEL

A formal model for an effective procedure should possess certain properties. First,
each procedure should be finitely describable. Second, the procedure should con-
sist of discrete steps, each of which can be carried out mechanically. Such a model
was introduced by Alan Turing in 1936. We present a variant of it here.
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The basic model, illustrated in Fig. 7.1, has a finite control, an input tape that
is divided into cells, and a tape head that scans one cell of the tape at a time. The
tape has a leftmost cell but is infinite to the right. Each cell of the tape may hold
exactly one of a finite number of tape symbols. Initially, the n leftmost cells, for
some finite n > 0, hold the input, which is a string of symbols chosen from a subset
of the tape symbols called the input symbols. The remaining infinity of cells each
hold the blank, which is a special tape symbol that is not an input symbol.

1 n

1

Finite
control

ay | ay |ccctoa [ g B B

Fig. 7.1 Basic Turing machine.

In one move the Turing machine, depending upon the symbol scanned by the
tape head and the state of the finite control,

1) changes state,

2) prints a symbol on the tape cell scanned, replacing what was written there,
and

3) moves its head left or right one cell.

Note that the difference between a Turing machine and a two-way finite
automaton lies in the former’s ability to change symbols on its tape.
Formally, a Turing machine (TM) is denoted

M = (Q9 Za r7 63 q(), B7 F))
where

Q is the finite set of states,

I is the finite set of allowable tape symbols,

B, a symbol of T, is the blank,

X, a subset of I" not including B, is the set of input symbols,

d is the next move function, a mapping from Q x I' to @ x I' x {L, R} (6 may,
however, be undefined for some arguments),

go In Q is the start state,

F < Q is the set of final states.

We denote an instantaneous description (ID) of the Turing machine M by
ayqa,. Here g, the current state of M, is in Q; a;a, is the string in I'* that is the
contents of the tape up to the rightmost nonblank symbol or the symbol to the left
of the head, whichever is rightmost. (Observe that the blank B may occur in a,a,.)
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We assume that Q and I are disjoint to avoid confusion. Finally, the tape head is
assumed to be scanning the leftmost symbol of «,, or if a, = ¢, the head is scan-
ning a blank.

We define a move of M as follows. Let X, X, --- X;_, 49X, - X, be an ID.
Suppose 8(q, X;) = (p, Y, L), where if i — 1 = n, then X; is taken to be B.Ifi = 1,
then there is no next ID, as the tape head is not allowed to fall off the left end of
the tape. If i > 1, then we write

X1 X, XiogX; XnI_M_X1X2 XX YXiyy o X, (10)

However, if any suffix of X;_, YX,,, --- X, is completely blank, that suffix is
deleted in (7.1).
Alternatively, suppose d(g, X;) = (p, Y, R). Then we write:

XX, Xi1gXi X, '”Xn,vanz X YpXin o X (7-2)

Note that in the case i — 1 = n, the string X; -+ X, is empty, and the right side of
(7.2) is longer than the left side.

If two ID’s are related by |5, we say that the second results from the first by
one move. If one ID results from another by some finite number of moves, includ-
ing zero moves, they are related by the symbol . We drop the subscript M from
b or B when no confusion results.

The language accepted by M, denoted L(M), is the set of those words in Z*
that cause M to enter a final state when placed, justified at the left, on the tape of
M, with M in state q,, and the tape head of M at the leftmost cell. Formally, the
language accepted by M = (Q, Z, T, 6, qo, B, F) is

w|w in Z* and gow F a, pa, for some p in F, and a, and a, in ['*}.
q 1P%2

Given a TM recognizing a language L, we assume without loss of generality
that the TM halts, i.e., has no next move, whenever the input is accepted.
However, for words not accepted, it is possible that the TM will never halt.

Example 7.1 The design of a TM M to accept the language L = {0"1"|n > 1} is
given below. Initially, the type of M contains 0"1" followed by an infinity of blanks.
Repeatedly, M replaces the leftmost 0 by X, moves right to the leftmost 1, replac-
ing it by Y, moves left to find the rightmost X, then moves one cell right to the
leftmost 0 and repeats the cycle. If, however, when searching for a 1, M finds a
blank instead, then M halts without accepting. If, after changinga 1toa Y, M
finds no more 0’s, then M checks that no more 1’s remain, accepting if there are
none.

Let 0 = {qo, q1> 925 43, ‘Lt}» = {0» 1}» '={0, 1, X, Y, B}, and F = {‘14}-
Informally, each state represents a statement or a group of statements in a
program. State q, is entered initially and also immediately prior to each replace-
ment of a leftmost 0 by an X. State q, is used to search right, skipping over 0’s and
Y’s until it finds the leftmost 1. If M finds a 1 it changes it to Y, entering state q,.
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State g, searches left for an X and enters state g, upon finding it, moving right, to
the leftmost 0, as it changes state. As M searches right in state q,, if a B or X is
encountered before a 1, then the input is rejected; either there are too many 0’s or
the input is not in 0*1*.

State g, has another role. If, after state g, finds the rightmost X, there is a Y
immediately to its right, then the 0’s are exhausted. From g,, scanning Y, state g3
is entered to scan over Y’s and check that no 1’s remain. If the Y’s are followed by
a B, state q, is entered and acceptance occurs; otherwise the string is rejected. The
function é is shown in Fig. 7.2. Figure 7.3 shows the computation of M on input
0011. For example, the first move is explained by the fact that d(go, 0) =
(g1, X, R); the last move is explained by the fact that 8(¢s, B) = (44, B, R). The
reader should simulate M on some rejected inputs such as 001101, 001, and 011.

Symbol
State 0 1 X Y B
9o (qh X’ R) - - (43’ Y’ R) -
q1 (ql’ 0’ R) (qu yv L) - (qh Y’ R) -
q2 (qu 0, L) - (QOv X, R) (qZ’ Y, L) -
qs — — - (g3, Y, R) (44, B, R)
94 - — - — -

Fig. 72 The function §.

400011 |— Xg,011 |- X0g,11 |— Xg,0Y1 |

g2 XOY1}— Xgo0Yl |- XXgq, Y1 |— XXYq,1 }—

XX YY |- Xq: XYY | XXgoYY |- XXYqsY |-
XXYYqs |- XXYYBq,

Fig. 7.3 A computation of M.

73 COMPUTABLE LANGUAGES AND FUNCTIONS

A language that is accepted by a Turing machine is said to be recursively enumer-
able (r.e.). The term “enumerable” derives from the fact that it is precisely these
languages whose strings can be enumerated (listed) by a Turing machine. “Recur-
sively” is a mathematical term predating the computer, and its meaning is similar
to what the computer scientist would call “recursion.” The class of r.e. languages is
very broad and properly includes the CFL’s.

The class of r.e. languages includes some languages for which we cannot
mechanically determine membership. If L(M) is such a language, then any Turing
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machine recognizing L(M) must fail to halt on some input not in L(M). If w is in
L(M), M eventually halts on input w. However, as long as M is still running on
some input, we can never tell whether M will eventually accept if we let it run long
enough, or whether M will run forever.

It is convenient to single out a subclass of the r.e. sets, called the recursive sets,
which are those languages accepted by at least one Turing machine that halts on
all inputs (note that halting may or may not be preceded by acceptance). We shall
see in Chapter 8 that the recursive sets are a proper subclass of the r.e. sets. Note
also that by the algorithm of Fig. 6.8, every CFL is a recursive set.

The Turing machine as a computer of integer functions

In addition to being a language acceptor, the Turing machine may be viewed as a
computer of functions from integers to integers. The traditional approach is to
represent integers in unary; the integer i > 0 is represented by the string 0. If a
function has k arguments, i, i, ..., i, then these integers are initially placed on
the tape separated by 1I’s, as 011021 --- 10%,

If the TM halts (whether or not in an accepting state) with a tape consisting of
0™ for some m, then we say that f (i, i,, ..., i) = m, where f is the function of k
arguments computed by this Turing machine. Note that one TM may compute a
function of one argument, a different function of two arguments, and so on. Also
note that if TM M computes function f of k arguments, then f need not have a
value for all different k-tuples of integers iy, ..., i.

If f(iy, ..., i) is defined for all i,, ..., i, then we say f is a total recursive
function. A function f (iy, ..., i) computed by a Turing machine is called a partial
recursive function. In a sense, the partial recursive functions are analogous to the
r.e. languages, since they are computed by Turing machines that may or may not
halt on a given input. The total recursive functions correspond to the recursive
languages, since they are computed by TM’s that always halt. All common arith-
metic functions on integers, such as multiplication, n!, [log, n] and 22" are total
recursive functions.

Example 7.2  Proper subtraction m - n is defined to be m — nfor m > n, and zero
for m < n. The TM

M = ({q07 ‘h, ey q6}y {07 l}y {0, 1, B}, 57 q()a B, Q)

defined below, started with 0™10" on its tape, halts with 0™*" on its tape. M
repeatedly replaces its leading O by blank, then searches right for a 1 followed by a
0 and changes the 0 to 1. Next, M moves left until it encounters a blank and then
repeats the cycle. The repetition ends if

i) Searching right for a 0, M encounters a blank. Then, the n 0’s in 010" have all
been changed to 1’s, and n+ 1 of the m 0’s have been changed to B. M
replaces the n + 1 1’s by a 0 and n B’s, leaving m — n 0’s on its tape.



152 TURING MACHINES

ii) Beginning the cycle, M cannot find a O to change to a blank, because the first
m O’s already have been changed. Then n > m, so m ~ n= 0. M replaces all
remaining 1’s and 0’s by B.

The function § is described below.

1) 6(go, 0) = (41, B, R)
Begin the cycle. Replace the leading O by B.

2) 4(q1, 0) = (41, 0, R)
6(‘117 l) = (qZ’ la R)
Search right, looking for the first 1.

3) 8(g2, 1) = (g2, L, R)
6(92, 0)= (g5, 1, L)
Search right past 1’s until encountering a 0. Change that O to 1.

4) 6(q, 0) = (43, 0, L)
6(q, 1) = (g3, 1, L)
d(q3, B) = (40, B, R)
Move left to a blank. Enter state g, to repeat the cycle.

5) 6(q2, B) = (44, B, L)
6(‘147 1) = (q4’ B’ L)
5(‘14’ 0) = (Q4, 07 L)
5(‘14’ B) = (qG’ 0’ R)
If in state g, a B is encountered before a 0, we have situation (i) described
above. Enter state q, and move left, changing all 1’s to B’s until encountering
a B. This B is changed back to a 0, state g4 is entered, and M halts.

6) 6(‘107 I) = (qS’ B» R)
5(‘]5’ 0) = (qS’ B’ R)
4(gs, 1) = (g5, B, R)
6(qs» B) = (46, B, R)
If in state g, a 1 is encountered instead of a 0, the first block of 0’s has been
exhausted, as in situation (ii) above. M enters state g5 to erase the rest of the
tape, then enters g¢ and halts.

A sample computation of M on input 0010 is:

400010 |— Bq,010 |— B0q,10 |— B014g,0 |—
B0g;11 | Bq;011 |— g5 BO11 |— Bg,011 }—
BBq,11 — BBlg,1 |— BBllq, |— BBlg,1 |—
BBq,1 +—Bg, |- BOgs
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On input 0100, M behaves as follows:
400100 }— Bq,100 |— B1q,00 |— Bg;110 }—

q3B110 |— Bgo110  |— BBq,10 |— BBBqs0 |—
BBBBqs |— BBBBBq

7.4 TECHNIQUES FOR TURING MACHINE CONSTRUCTION

Designing Turing machines by writing out a complete set of states and a next-
move function is a noticeably unrewarding task. In order to describe complicated
Turing machine constructions we need some “higher-level” conceptual tools. In
this section we shall discuss the principal ones.

Storage in the finite control

The finite control can be used to hold a finite amount of information. To do so, the
state is written as a pair of elements, one exercising control and the other storing a
symbol. It should be emphasized that this arrangement is for conceptual purposes
only. No modification in the definition of the Turing machine has been made.

Example 7.3 Consider a Turing machine M that looks at the first input symbol,
records it in its finite control, and checks that the symbol does not appear else-
where on its input. Note that M accepts a regular set, but M will serve for
demonstration purposes:

M =(Q,{0, 1}, {0, 1, B}, §, [40, B], B, F),

where Q is {go, ¢} % {0, 1, B}. That is, Q consists of the pairs [qo, 0], [go, 1],
[90> B], [41, O, [41, 1), and [q,, B]. The set F is {[q,, B]}. The intention is that the
first component of the state controls the action, while the second component
“remembers” a symbol.

We define 6 as follows.

1) a) 4([90, B, 0) = ([g:, 0]. 0, R), b) d([g0, B], 1) = ([qs 1], L, R).
Initially, g, is the control component of the state, and M moves right. The first
component of M’s state becomes q,, and the first symbol seen is stored in the
second component.

2) a) é([g4, 0], 1) = ([4:, O}, L, R), b) ([g,, 1], 0) = ([g,, 1], O, R).
If M has a 0 stored and sees a 1 or vice versa, then M continues to move to the

right.



154 TURING MACHINES

3) a) 4([q,, 0}, B) = ((9:» B}, O, L), b) 4({g1, 1}, B) = ([q:, B], 0, L).

M enters the final state [g,, B] if it reaches a blank symbol without having
first encountered a second copy of the leftmost symbol.

If M reaches a blank in state [q,, 0], or [¢,, 1], it accepts. For state [q,, 0] and
symbol 0 or for state [g,, 1] and symbol 1, § is not defined. Thus if M encounters
the tape symbol stored in its state, M halts without accepting.

In general, we can allow the finite control to have k components, all but one of
which store information.

Multiple tracks

We can imagine that the tape of the Turing machine is divided into k tracks, for
any finite k. This arrangement is shown in Fig. 7.4, with k = 3. The symbols on the
tape are considered k-tuples, one component for each track.

¢ 1 0 1 1 1 1 $ B B
B | B B B 1 0 1 B B B
B 1 0 0 1 0 1 B B B
Finite
control

Fig. 7.4 A three-track Turing machine.

Example 7.4 The tape in Fig. 7.4 belongs to a Turing machine that takes a
binary input greater than 2, written on the first track, and determines whether it is
a prime. The input is surrounded by ¢ and $ on the first track. Thus, the allowable
input symbols are [¢, B, B), [0, B, B], [1, B, B], and [$, B, B]. These symbols can
be identified with ¢, 0, 1, and $, respectively, when viewed as input symbols. The
blank symbol can be identified with [B, B, B].

To test if its input is a prime, the TM first writes the number two in binary on
the second track and copies the first track onto the third. Then the second track is
subtracted, as many times as possible, from the third track, effectively dividing the
third track by the second and leaving the remainder.

If the remainder is zero, the number on the first track is not a prime. If the
remainder is nonzero, the number on the second track is increased by one. If the
second track equals the first, the number on the first track is a prime, because it
cannot be divided by any number lying properly between one and itself. If the
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second is less than the first, the whole operation is repeated for the new number on
the second track.

In Fig. 7.4, the TM is testing to determine if 47 is a prime. The TM is dividing
by 5; already 5 has been subtracted twice, so 37 appears on the third track.

Checking off symbols

Checking off symbols is a useful trick for visualizing how a TM recognizes lan-
guages defined by repeated strings, such as

{ww|lwinZ*, {wcy|wandyinEZ*,w#y} or {ww®|winZ*}.

It is also useful when lengths of substrings must be compared, such as in the
languages
{db'li>=1} or {dbi|i#jorj#k}

We introduce an extra track on the tape that holds a blank or /. The \/
appears when the symbol below it has been considered by the TM in one of its
comparisons.

Example 7.5 Consider a Turing machine M = (Q, X, T, 4, qo, B, F), which recog-
nizes the language {wew|w in (a + b)*}. Let

0={gdl|9g=91. 92, ----9o and d=a, b, or B}.
The second component of the state is used to store an input symbol,
X ={[B,d]|d=a,b, or c}.

The input symbol [B, d] is identified with d. Remember that the two “tracks” are
just conceptual tools; that is, [B, d] is just another “name” for d:

r={X,d]|X=Bor,/ and d=a,b,c orB}
9=1[g:, B, and  F={lgs, B};

[B, B] is identified with B, the blank symbol. For d = a or b and e = a or b we
define § as follows.

1) 6([q1, B, [B, d)) = (l42, d}, [/ 4, R).
M checks the symbol scanned on the tape, stores the symbol in the finite
control, and moves right.

2) ([g2> d). [B, e]) = ({42 d]. [B, e}, R).
M continues to move right, over unchecked symbols, looking for c.

3) 6([‘12: d]’ [B’ C]) = ([(13, d]’ [B’ C], R)'

On finding ¢, M enters a state with first component g;.
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4) 8((gs. d}, [/, €)) = (45, ). [/, €}, R).

M moves right over checked symbols.

5) &(gs. 1. [B. d]) = ([4a. B). [/’ d], L).
M encounters an unchecked symbol. If the unchecked symbol matches the
symbol stored in the finite control, M checks it and begins moving left. If the
symbols disagree, M has no next move and so halts without accepting. M also
halts if in state g5 it reaches [B, B] before finding an unchecked symbol.

6) 6((4s. B). [/, d]) = ([4a, B}, [/, d]. L).

M moves left over checked symbols.

7) é([94> B}, [B, c]) = ([, B}, [B, c], L).
M encounters the symbol c.

8) o(lgs, B, [B, d]) = ((ge> B], [B, d], L).

If the symbol immediately to the left of ¢ is unchecked, M proceeds left to find
the rightmost checked symbol.

9) é([ge> Bl [B, d]) = ([g6, B, [B, d], L).
M proceeds left.

10) 6((g6. B), [/ d)) = (4. BL. [/. d], R).

M encounters a checked symbol and moves right to pick up another symbol
for comparison. The first component of state becomes q, again.

11) 8((4s. B). [v/. d)) = ([4». B). [/. d]. R).
M will be in state [q5, B] immediately after crossing ¢ moving left. (See rule 7.)
If a checked symbol appears immediately to the left of ¢, all symbols to the left
of ¢ have been checked. M must test whether all symbols to the right have
been checked. If so, they must have compared properly with the symbols to
the left of ¢, so M will accept.

12) 4([g5, B, [B, c]) = ([gs, B, [B, c], R).

M moves right over c.
13) 8((gs, B). [/> d)) = ([4s, B}, [/, d], R).

M moves to the right over checked symbols.
14) ({45, B). [B. B]) = ([45. B}, [/ B]. L),

If M finds [B, B], the blank, it halts and accepts. If M finds an unchecked
symbol when its first component of state is qg, it halts without accepting.

Shifting over

A Turing machine can make space on its tape by shifting all nonblank symbols a
finite number of cells to the right. To do so, the tape head makes an excursion to
the right, repeatedly storing the symbols read in its finite control and replacing



74 | TECHNIQUES FOR TURING MACHINE CONSTRUCTION 157

them with symbols read from cells to the left. The TM can then return to the
vacated cells and print symbols of its choosing. If space is available, it can push
blocks of symbols left in a similar manner.

Example 7.6 We construct part of a Turing machine, M = (Q, X, T, 6, qo, B, F),
which may occasionally have a need to shift nonblank symbols two cells to the
right. We suppose that M’s tape does not contain blanks between nonblanks, so
when it reaches a blank it knows to stop the shifting process. Let Q contain states
of the form [g, A,, A,] for g = q, or q,, and A4, and A, in I'. Let X be a special
symbol not used by M except in the shifting process. M starts the shifting process
in state [q,, B, B]. The relevant portions of the function § are as follows.

1) 6([q:, B, B}, A;)=([g1, B, A}, X, R) for A, inT —{B, X}.

M stores the first symbol read in the third component of its state. X is printed
on the cell scanned, and M moves to the right.

2) 6([g1» B, A1), A2) = ([q1, A1, A2}, X, R) for A, and 4, in T —{B, X}.

M shifts the symbol in the third component to the second component, stores
the symbol being read in the third component, prints an X, and moves right.

3) 5([‘11’ Aly Az]’ A3) = ([ql’ AZ’ Aa], Al’ R) for Al# AZ# and A3 in

I —{B, X}.
M now repeatedly reads a symbol A;, stores it in the third component of
state, shifts the symbol previously in the third component, 4,, to the second
component, deposits the previous second component, 4,, on the cell scanned,
and moves right. Thus a symbol will be deposited two cells to the right of its
original position.

4) 6([q,, A1, A1), B) = ([q,, A2, B], A}, R) for A, and A, in T —{B, X}.
When a blank is seen on the tape, the stored symbols are deposited on the
tape.

5) (las> Ay, B], B)= ([42, B, B], 4,, L).

After all symbols have been deposited, M sets the first component of state to
g, and moves left to find an X, which marks the rightmost vacated cell.

6) 5([q2> B, B}, A) = ([q2, B, B}, A, L) for AinT —{B, X}.

M moves left until an X is found. When X is found, M transfers to a state that
we have assumed exists in Q and resumes its other functions.

Subroutines

As with programs, a “modular” or “top-down” design is facilitated if we use
subroutines to define elementary processes. A Turing machine can simulate any
type of subroutine found in programming languages, including recursive
Procedures and any of the known parameter-passing mechanisms. We shall here



158 TURING MACHINES

describe only the use of parameterless, nonrecursive subroutines, but even these
are quite powerful tools.

The general idea is to write part of a TM program to serve as a subroutine; it
will have a designated initial state and a designated return state which temporarily
has no move and which will be used to effect a return to the calling routine. To
design a TM that “calls” the subroutine, a new set of states for the subroutine is
made, and a move from the return state is specified. The call is effected by entering
the initial state for the subroutine, and the return is effected by the move from the
return state.

Example 7.7 The design of a TM M to implement the total recursive function
“multiplication” is given below. M starts with 010" on its tape and ends with 0™
surrounded by blanks. The general idea is to place a 1 after 0™10” and then copy
the block of n 0’s onto the right end m times, each time erasing one of the m 0’s.
The result is 10"10™. Finally the prefix 10”1 is erased, leaving 0™". The heart of the
algorithm is a subroutine COPY, which begins in an ID 0™1¢,0"10‘ and eventually
enters an ID 0™1g50"10°*". COPY is defined in Fig. 7.5. In state q,, on seeing a 0,
M changes it to a 2 and enters state g,. In state g,, M moves right, to the next
blank, deposits the 0, and starts left in state g5. In state g5, M moves left to a 2. On
reaching a 2, state g, is entered and the process repeats until the 1 is encountered,
signaling that the copying process is complete. State g, is used to convert the 2’s
back to 0’s, and the subroutine halts in gs.

0 1 2 B
9 (92, 2, R) (94, 1, L)
q2 (92, 0, R) (92. 1, R) (93,0, L)
q3 (q37 07 L) (‘13, ly L) (qh 2, R)
qa (gs. 1, R) (94,0, L)

Fig. 7.5 4 for subroutine COPY.

To complete the program for multiplication, we add states to convert initial
ID g,0™10" to BO™ '14,0"1. That is, we need the rules

6(Q(), 0) = (q67 B’ R)7
6(‘16’ 0) = (q6’ 0, R)’
6(‘16’ l) = (ql’ 1’ R)

Additional states are needed to convert an ID B0™ 1g;0"10™ to
Bi*'0m~i~114,0"0™, which restarts COPY, and to check whether i = m, that is,
all m 0’s have been erased. In the case that i = m, the leading 10”1 is erased and the
computation halts in state q,,. These moves are shown in Fig. 7.6.
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0 1 2 B
qs (q7y 0) L)
q7 (gs, L, L)
qs (Q9, 0’ L) (qlo, B, R)
qo (Q9, 0, L) (qO, B, R)
qi0 (911, B, R)

q11 (4911, B, R) (912. B, R)

Fig. 7.6 Additional moves for TM performing multiplication.

Note that we could make more than one call to a subroutine if we rewrote the
subroutine using a new set of states for each call.

75 MODIFICATIONS OF TURING MACHINES

One reason for the acceptance of the Turing machine as a general model of a
computation is that the model with which we have been dealing is equivalent to
many modified versions that would seem off-hand to have increased computing
power. In this section we give informal proofs of some of these equivalence
theorems.

Two-way infinite tape

A Turing machine with a two-way infinite tape is denoted by M = (Q, X, T, 4, g,
B, F), as in the original model. As its name implies, the tape is infinite to the left as
well as to the right. We denote an ID of such a device as for the one-way infinite
TM. We imagine, however, that there is an infinity of blank cells both to the left
and right of the current nonblank portion of the tape.

The relation |5, which relates two ID’s if the ID on the right is obtained from
the one on the left by a single move, is defined as for the original model with the
exception that if 6(q, X) = (p, Y, L), then gXa | pBY« (in the original model, no
move could be made), and if 5(g, X) = (p, B, R), then gXa |— px (in the original,
the B would appear to the left of p).

The initial ID is g, w. While there was a left end to the tape in the original
model, there is no left end of the tape for the Turing machine to “fall off,” so it can
proceed left as far as it wishes. The relation l—;';—, as usual, relates two ID’s if the one
on the right can be obtained from the one on the left by some number of moves.

Theorem 7.1 L is recognized by a Turing machine with a two-way infinite tape if
and only if it is recognized by a TM with a one-way infinite tape.

Proof The proof that a TM with a two-way infinite tape can simulate a TM with
a one-way infinite tape is easy. The former marks the cell to the left of its initial
head position and then simulates the latter. If during the simulation the marked
cell is reached, the simulation terminates without acceptance.
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Conversely, let M, = (Q,, £,, I'5, 8,, g2, B, F,) be a TM with a two-way
infinite tape. We construct M, a Turing machine simulating M, and having a
tape that is infinite to the right only. M, will have two tracks, one to represent the
cells of M,’s tape to the right of, and including, the tape cell initially scanned, the
other to represent, in reverse order, the cells to the left of the initial cell.
The relationship between the tapes of M, and M, is shown in Fig. 7.7, with
the initial cell of M, numbered 0, the cells to the right 1, 2, ..., and the cells to
the left —1, —2,....

(b)
Fig. 7.7 (a) Tape of M,. (b) Tape of M.

The first cell of M,’s tape holds the symbol ¢ in the lower track, indicating
that it is the leftmost cell. The finite control of M, tells whether M, would be
scanning a symbol appearing on the upper or on the lower track of M,.

It should be fairly evident that M, can be constructed to simulate M ,, in the
sense that while M, is to the right of the initial position of its input head, M,
works on the upper track. While M, is to the left of its initial tape head position,
M, works on its lower track, moving in the direction opposite to the direction in
which M, moves. The input symbols of M, are symbols with a blank on the lower
track and an input symbol of M, on the upper track. Such a symbol can be
identified with the corresponding input symbol of M,. B is identified with [B, B].

We now give a formal construction of M, = (Q,, X, I'}, é,, q,, B, F,). The
states, Q,, of M, are all objects of the form [q, U] or [g, D], where g is in Q,, plus
the symbol q,. Note that the second component will indicate whether M, is
working on the upper (U for up) or lower (D for down) track. The tape symbols in
I", are all objects of the form [X, Y], where X and Y are in I',. In addition, Y may
be ¢, a symbol not in I',. X, consists of all symbols [a, B], where a is in Z,. F, is
{lg. U], [q. D]|q is in F,}. We define &, as follows.

1) For each a in X, U {B},

61(q1, [a Bl)= (g, UL [X. 4L, R) if  02(g2, a) = (¢ X, R).

If M, moves right on its first move, M, prints ¢ in the lower track to mark the
end of tape, sets its second component of state to U, and moves right. The first
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component of M ’s state holds the state of M,. On the upper track, M, prints
the symbol X that is printed by M,.

2) Foreachain X, U {B},

61(q1> [a B]) = (g, DL [X, ¢}, R)  if  6,(q;, a) = (g, X, L)

If M, moves left on its first move, M, records the next state of M, and the
symbol printed by M, as in (1) but sets the second component of its state to D
and moves right. Again, ¢ is printed in the lower track to mark the left end of
the tape.

3) For each [X, Y] in 'y, with Y # ¢, and 4 = L or R,
o1([g UL [X, Y))=([p, UL [Z, Y], A) il &5(q X)=(p. Z, A).

M, simulates M, on the upper track.
4) For each [X, Y]in 'y, with Y # ¢,

6i([g, D) [X, Y]) = ([p. D). [X, Z), A)  if  6,(q. Y)=(p, Z, A).

Here Ais Lif Ais R, and A is Rif Ais L. M, simulates M, on the lower track
of M,. The direction of head motion of M, is opposite to that of M,.

5) 6i(lg UL [X, ¢]) = 6,([a, D], [X, ¢])
=(p, C}[YV.¢LR) if d,(¢ X)=(p, Y, A)

Here C=Uif A=R,and C = Dif A = L. M, simulates a move of M, on the
cell initially scanned by M,. M, next works on the upper or lower track,
depending on the direction in which M, moves. M, will always move right in
this situation. O

Multitape Turing machines

A multitape Turing machine is shown in Fig. 7.8. It consists of a finite control with
k tape heads and k tapes; each tape is infinite in both directions. On a single move,
depending on the state of the finite control and the symbol scanned by each of the
tape heads, the machine can:

1) change state;

2) print a new symbol on each of the cells scanned by its tape heads;

3) move each of its tape heads, independently, one cell to the left or right, or keep
it stationary.

Initially, the input appears on the first tape, and the other tapes are blank. We
shall not define the device more formally, as the formalism is cumbersome and a
straightforward generalization of the notation for single-tape TM’s.

Theorem 7.2 If a language L is accepted by a multitape Turing machine, it is
accepted by a single-tape Turing machine.
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control
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Fig. 78 Multitape Turing machine.

Proof Let L be accepted by M,, a TM with k tapes. We can construct M,, a
one-tape TM with 2k tracks, two tracks for each of M,’s tapes. One track records
the contents of the corresponding tape of M, and the other is blank, except for a
marker in the cell that holds the symbol scanned by the corresponding head of
M . The arrangement is illustrated in Fig. 7.9. The finite control of M, stores the
state of M, along with a count of the number of head markers to the right of M ,’s
tape head.

Head 1 X

Tape 1 A, A, A,
Head 2 X

Tape 2 B, B, B,
Head 3 X

Tape 3 C, C, Cn

Fig. 7.9 Simulation of three tapes by one.

Each move of M, is simulated by a sweep from left to right and then from
right to left by the tape head of M,. Initially, M,’s head is at the leftmost cell
containing a head marker. To simulate a move of M,, M, sweeps right, visiting
each of the cells with head markers and recording the symbol scanned by each
head of M,. When M, crosses a head marker, it must update the count of head
markers to its right. When no more head markers are to the right, M, has seen the
symbols scanned by each of M,’s heads, so M, has enough information to deter-
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mine the move of M,. Now M, makes a pass left, until it reaches the leftmost head
marker. The count of markers to the right enables M, to tell when it has gone far
enough. As M, passes each head marker on the leftward pass, it updates the tape
symbol of M “scanned” by that head marker, and it moves the head marker one
symbol left or right to simulate the move of M,. Finally, M, changes the state of
M, recorded in M,’s control to complete the simulation of one move of M. If the
new state of M, is accepting, then M, accepts. O

Note that in the first simulation of this section—that of a two-way infinite
tape TM by a one-way infinite tape TM, the simulation was move for move. In the
present simulation, however, many moves of M, are needed to simulate one move
of M. In fact, since after k moves, the heads of M, can be 2k cells apart, it takes
about Y ¥_, 2i = 2k* moves of M, to simulate k moves of M. (Actually, 2k more
moves may be needed to simulate heads moving to the right.) This quadratic
slowdown that occurs when we go from a multitape TM to a single tape TM is
inherently necessary for certain languages. While we defer a proof to Chapter 12,
we shall here give an example of the efficiency of multitape TM’s.

Example 7.8 The language L= {ww®|w in (0 + 1)*} can be recognized on a
‘single-tape TM by moving the tape head back and forth on the input, checking
symbols from both ends, and comparing them. The process is similar to that of
Example 7.5.

To recognize L with a two-tape TM, the input is copied onto the second tape.
The input on one tape is compared with the reversal on the other tape by moving
the heads in opposite directions, and the length of the input checked to make sure
it is even.

Note that the number of moves used to recognize L by the one-tape machine
is approximately the square of the input length, while with a two-tape machine,
time proportional to the input length is sufficient.

Nondeterministic Turing machines

A nondeterministic Turing machine is a device with a finite control and a single,
one-way infinite tape. For a given state and tape symbol scanned by the tape
head, the machine has a finite number of choices for the next move. Each choice
consists of a new state, a tape symbol to print, and a direction of head motion.
Note that the nondeterministic TM is not permitted to make a move in which the
next state is selected from one choice, and the symbol printed and/or direction of
head motion are selected from other choices. The nondeterministic TM accepts its
input if any sequence of choices of moves leads to an accepting state.

As with the finite automaton, the addition of nondeterminism to the Turing
machine does not allow the device to accept new languages. In fact, the combina-
tion of nondeterminism with any of the extensions presented or to be presented,
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such as two-way infinite or multitape TM’s, does not add additional power. We
leave these results as exercises, and prove only the basic result regarding the
simulation of a nondeterministic TM by a deterministic one.

Theorem 7.3 If L is accepted by a nondeterministic Turing machine, M, then L
is accepted by some deterministic Turing machine, M,.

Proof For any state and tape symbol of M, there is a finite number of choices
for the next move. These can be numbered 1, 2, ... Let r be the maximum number
of choices for any state-tape symbol pair. Then any finite sequence of choices can
be represented by a sequence of the digits 1 through r. Not all such sequences may
represent choices of moves, since there may be fewer than r choices in some
situations.

M, will have three tapes. The first will hold the input. On the second, M , will
generate sequences of the digits 1 through r in a systematic manner. Specifically,
the sequences will be generated with the shortest appearing first. Sequences of
equal length are generated in numerical order.

For each sequence generated on tape 2, M, copies the input onto tape 3 and
then simulates M, on tape 3, using the sequence on tape 2 to dictate the moves of
M. If M, enters an accepting state, M, also accepts. If there is a sequence of
choices leading to acceptance, it will eventually be generated on tape 2. When
simulated, M, will accept. But if no sequence of choices of moves of M, leads to
acceptance, M, will not accept. O

Multidimensional Turing machines

Let us consider another modification of the Turing machine that adds no addi-
tional power—the multidimensional Turing machine. The device has the usual
finite control, but the tape consists of a k-dimensional array of cells infinite in all
2k directions, for some fixed k. Depending on the state and symbol scanned, the
device changes state, prints a new symbol, and moves its tape head in one of 2k
directions, either positively or negatively, along one of the k axes. Initially, the
input is along one axis, and the head is at the left end of the input.

At any time, only a finite number of rows in any dimension contain nonblank
symbols, and these rows each have only a finite number of nonblank symbols. For
example, consider the tape configuration of the two-dimensional TM shown in
Fig. 7.10(a). Draw a rectangle about the nonblank symbols, as also shown in Fig.
7.10(a). The rectangle can be represented row by row on a single tape, as shown in
Fig. 7.10(b). The «’s separate the rows. A second track may be used to indicate the
position of the two-dimensional TM’s tape head.

We shall prove that a one-dimensional TM can simulate a two-dimensional
TM, leaving the generalization to more than two dimensions as an exercise.

Theorem 7.4 If L is accepted by a two-dimensional TM M. then L is accepted
by a one-dimensional TM M.
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Fig. 7.10 Simulation of two dimensions by one. (a) Two-dimensional tape. (b) One-
dimensional simulation.

Proof M, represents the tape of M, as in Fig. 7.10(b). M, will also have a second
tape used for purposes we shall describe, and the tapes are two-way infinite.
Suppose that M, makes a move in which the head does not leave the rectangle
already represented by M,’s tape. If the move is horizontal, M, simply moves its
head marker one cell left or right after printing a new symbol and changing the
state of M, recorded in M ,’s control. If the move is vertical, T; uses its second tape
to count the number of cells between the tape head position and the * to its left.
Then M, moves to the  to the right, if the move is down, or the = to the left if the
move is up, and puts the tape head marker at the corresponding position in
the new block (region between #’s) by using the count on the second tape.

Now consider the situation when M,’s head moves off the rectangle repre-
sented by M. If the move is vertical, add a new block of blanks to the left or right,
using the second tape to count the current length of blocks. If the move is horizon-
tal, M, uses the “shifting over” technique to add a blank at the left or right end of
each block, as appropriate. Note that double *’s mark the ends of the region used
to hold blocks, so M, can tell when it has augmented all blocks. After creating
room to make the move, M, simulates the move of M, as described above. [J

Multihead Turing machines

A k-head Turing machine has some fixed number, k, of heads. The heads are
numbered 1 through k, and a move of the TM depends on the state and on the
symbol scanned by each head. In one move, the heads may each move indepen-
dently left, right, or remain stationary.

Theorem 7.5 1If L is accepted by some k-head TM M, it is accepted by a one-
head TM M,.

Proof The proof is similar to that of Theorem 7.2 for multitape TM’s. M, has
k + 1 tracks on its tape; the last holds the tape of M, and the ith holds a marker
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indicating the position of the ith tape head for 1 < i < k. The details are left for an
exercise. O

Off-line Turing machines

An off-line Turing machine is a multitape TM whose input tape is read-only.
Usually we surround the input by endmarkers, ¢ on the left and $ on the right. The
Turing machine is not allowed to move the input tape head off the region between
¢ and $. It should be obvious that the off-line TM is just a special case of the
multitape TM, and therefore is no more powerful than any of the models we have
considered. Conversely, an off-line TM can simulate any TM M by using one
more tape than M. The first thing the off-line TM does is copy its own input onto
the extra tape, and it then simulates M as if the extra tape were M’s input. The
need for off-line TM’s will become apparent in Chapter 12, when we consider
limiting the amount of storage space to less than the input length.

7.6 CHURCH’S HYPOTHESIS

The assumption that the intuitive notion of “computable function” can be
identified with the class of partial recursive functions is known as Church’s hypoth-
esis or the Church-Turing thesis. While we cannot hope to “prove” Church’s
hypothesis as long as the informal notion of “computable” remains an informal
notion, we can give evidence for its reasonableness. As long as our intuitive notion
of “computable” places no bound on the number of steps or the amount of
storage, it would seem that the partial recursive functions are intuitively compu-
table, although some would argue that a function is not “computable” unless we
can bound the computation in advance or at least establish whether or not the
computation eventually terminates.

What is less clear is whether the class of partial recursive functions includes all
“computable” functions. Logicians have presented many other formalisms such as
the A-calculus, Post systems, and general recursive functions. All have been shown
to define the same class of functions, i.e., the partial recursive functions. In addi-
tion, abstract computer models, such as the random access machine (RAM), also
give rise to the partial recursive functions.

The RAM consists of an infinite number of memory words, numbered 0,
1,..., each of which can hold any integer, and a finite number of arithmetic
registers capable of holding any integer. Integers may be decoded into the usual
sorts of computer instructions. We shall not define the RAM model more
formally, but it should be clear that if we choose a suitable set of instructions, the
RAM may simulate any existing computer. The proof that the Turing machine
formalism is as powerful as the RAM formalism is given below. Some other
formalisms are discussed in the exercises.
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Simulation of random access machines by Turing machines

Theorem 7.6 A Turing machine can simulate a RAM, provided that the elemen-
tary RAM instructions can themselves be simulated by a TM.

Proof We use a multitape TM M to perform the simulation. One tape of M
holds the words of the RAM that have been given values. The tape looks like

#0xvg # 1xvg # 10%0, # - #ixv; # -,

where v; is the contents, in binary, of the ith word. At all times, there will be some
finite number of words of the RAM that have been used, and M needs only to keep
a record of values up to the largest numbered word that has been used so far.

The RAM has some finite number of arithmetic registers. M uses one tape to
hold each register’s contents, one tape to hold the location counter, which contains
the number of the word from which the next instruction is to be taken, and one
tape as a memory address register on which the number of a memory word may be
placed.

Suppose that the first 10 bits of an instruction denote one of the standard
computer operations, such as LOAD, STORE, ADD, and so on, and that the
remaining bits denote the address of an operand. While we shall not discuss the
details of implementation for all standard computer instructions, an example
should make the techniques clear. Suppose the location counter tape of M holds
number i in binary. M searches its first tape from the left, looking for #ix. If a
blank is encountered before finding # i*, there is no instruction in word i, so the
RAM and M halt. If #ix is found, the bits following * up to the next # are
examined. Suppose the first 10 bits are the code for “ADD to register 2,” and the
remaining bits are some number j in binary. M adds 1 to i on the location counter
tape and copies j onto the memory address tape. Then M searches for # j* on the
first tape, again starting from the left (note that # 0+ marks the left end). If # j is
not found, we assume word j holds 0 and go on to the next instruction of the
RAM. If #j*v ; # is found, v; is added to the contents of register 2, which is stored
on its own tape. We then repeat the cycle with the next instruction.

Observe that although the RAM simulation used a multitape Turing ma-
chine, by Theorem 7.2 a single tape TM would suffice, although the simulation
would be more complicated. O

77 TURING MACHINES AS ENUMERATORS

We have viewed Turing machines as recognizers of languages and as computers of
functions on the nonnegative integers. There is a third useful view of Turing
machines, as generating devices. Consider a multitape TM M that uses one tape as
an output tape, on which a symbol, once written, can never be changed, and whose
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tape head never moves left. Suppose also that on the output tape, M writes strings
over some alphabet X, separated by a marker symbol #. We can define G(M), the
language generated by M, to be the set of w in * such that w is eventually printed
between a pair of #’s on the output tape.

Note that unless M runs forever, G(M) is finite. Also, we do not require that
words be generated in any particular order, or that any particular word be gen-
erated only once. If Lis G(M) for some TM M, then L is an r.e. set, and conversely.
The recursive sets also have a characterization in terms of generators; they are
exactly the languages whose words can be generated in order of increasing size.
These equivalences will be proved in turn.

Characterization of r.e. sets by generators
Lemma 7.1 If Lis G(M,) for some TM M, then L is an r.e. set.

Proof Construct TM M, with one more tape than M,. M, simulates M, using
all but M,’s input tape. Whenever M, prints # on its output tape, M, compares
its input with the word just generated. If they are the same, M, accepts; otherwise
M, continues to simulate M ,. Clearly M, accepts an input x if and only if x is in
G(M,). Thus L(M,) = G(M,). O

The converse of Lemma 7.1 is somewhat more difficult. Suppose M, is a
recognizer for some r.e. set L = Z*. Our first (and unsuccessful) attempt at design-
ing a generator for L might be to generate the words in £* in some order w,,
w,, ..., run M, on w;, and if M, accepts, generate w,. Then run M; on w,,
generating w, if M, accepts, and so on. This method works if M| is guaranteed to
halt on all inputs. However, as we shall see in Chapter 8, there are languages L
that are r.e. but not recursive. If such is the case, we must contend with the
possibility that M, never halts on some w;. Then M, never considers w;,,
W42, ---, and so cannot generate any of these words, even if M accepts them.

We must therefore avoid simulating M, indefinitely on any one word. To do
this we fix an order for enumerating words in Z*. Next we develop a method of
generating all pairs (i, j) of positive integers. The simulation proceeds by generat-
ing a pair (i, j) and then simulating M, on the ith word, for j steps.

We fix a canonical order for £* as follows. List words in order of size, with
words of the same size in “numerical order.” That is, let £ = {ao, ay, -.., @x-1}
and imagine that q; is the “digit” i in base k. Then the words of length n are the
numbers 0 through k" — 1 written in base k. The design of a TM to generate words
in canonical order is not hard, and we leave it as an exercise.

Example 7.9 If X = {0, 1}, the canonical order is ¢, 0, 1, 00, 01, 10, 11, 000,
001, ...
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Note that the seemingly simpler order in which we generate the shortest
representation of 0, 1,2, ... in base k will not work as we never generate words like
ag ag a,, which have “leading 0’s.”

Next consider generating pairs (i, j) such that each pair is generated after
some finite amount of time. This task is not so easy as it seems. The naive
approach, (1, 1), (1, 2), (1, 3), ... never generates any pairs with i > 1. Instead, we
shall generate pairs in order of the sum i + j, and among pairs of equal sum, in
order of increasing i. That is, we generate (1, 1), (1, 2), (2, 1), (1, 3), (2,2), (3, 1),
(1, 4), ... The pair (i, j)is the {[(i + j — 1)(i +j — 2)}/2 + i}th pair generated. Thus
this ordering has the desired property that there is a finite time at which any
particular pair (i, j) is generated.

A TM generating pairs (i, j) in this order in binary is easy to design, and we
leave its construction to the reader. We shall refer to such a TM as the pair
generator in the future. Incidentally, the ordering used by the pair generator
demonstrates that pairs of integers can be put into one-to-one correspondence
with the integers themselves, a seemingly paradoxical result that was discovered
by Georg Kantor when he showed that the rationals (which are really the ratios of
two integers) are equinumerous with the integers.

Theorem 7.7 A language is r.e. if and only if it is G(M ) for some TM M ,.

Proof With Lemma 7.1 we have only to show how an r.e. set L= L{M,) can be
generated by a TM M,. M, simulates the pair generator. When (i, j) is generated,
M, produces the ith word w; in canonical order and simulates M, on w; for j steps.
If M, accepts on the jth step (counting the initial ID as step 1), then M,
generates w;.

Surely M, generates no word not in L. If w is in L, let w be the ith word in
canonical order for the alphabet of L, and let M, accept w after exactly j moves. As
it takes only a finite amount of time for M, to generate any particular word in
canonical order or to simulate M, for any particular number of steps, we know
that M, will eventually produce the pair (i, j). At that stage, w will be generated by
M,. Thus G(M,) = L. O

Corollary If L is an r.e. set, then there is a generator for L that enumerates each
word in L exactly once.

Proof M, described above has that property, since it generates w; only when
considering the pair (i, j), where j is exactly the number of steps taken by M, to
accept w;. O

Characterization of recursive sets by generators

We shall now show that the recursive sets are precisely those sets whose words can
be generated in canonical order.
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Lemma 7.2 If Lis recursive, then there is a generator for L that prints the words
of L in canonical order and prints no other words.

Proof Let L=L(M,)< Z* where M, halts on every input. Construct M, to
generate L as follows. M, generates (on a scratch tape) the words in £*, one at a
time, in canonical order. After generating some word w, M, simulates M, on w. If
M, accepts w, M, generates w. Since M, is guaranteed to halt, we know that M,
will finish processing each word after a finite time and will therefore eventually
consider each particular word in Z*. Clearly M, generates L in canonical order.

a

The converse of Lemma 7.2, that if L can be generated in canonical order then
L is recursive, is also true. However, there is a subtlety of which we should be
aware. In Lemma 7.2 we could actually construct M, from M. However, given a
TM M generating L in canonical order, we know a halting TM recognizing L
exists, but there is no algorithm to exhibit that TM.

Suppose M, generates L in canonical order. The natural thing to do is to
construct a TM M, that on input w simulates M, until M, either generates w or a
word beyond w in canonical order. In the former case, M, accepts w, and in the
latter case, M, halts without accepting w. However, if L is finite, M, may never
halt after generating the last word in L, so M, may generate neither w nor any
word beyond. In this situation M, would not halt. This problem arises only when
L is finite, even though we know every finite set is accepted by a Turing machine
that halts on all inputs. Unfortunately, we cannot determine whether a TM gener-
ates a finite set or, if finite, which finite set it is. Thus we know that a halting
Turing machine accepting L, the language generated by M,, always exists, but
there is no algorithm to exhibit the Turing machine.

Theorem 7.8 L is recursive if and only if L is generated in canonical order.

Proof The “only if” part was established by Lemma 7.2. For the “if” part, when
L is infinite, M, described above is a halting Turing machine for L. Clearly, when
L is finite, there is a finite automaton accepting L, and thus L can be accepted by 2
TM that halts on all inputs. Note that in general we cannot exhibit a particular
halting TM that accepts L, but the theorem merely states that one such TM
exists. O

7.8 RESTRICTED TURING MACHINES EQUIVALENT
TO THE BASIC MODEL

In Section 7.5 we considered generalizations of the basic TM model. As we have
seen, these generalizations have no more computational power than the basic
model. We conclude this chapter by considering some models that at first appear
less powerful than the TM but indeed are just as powerful. For the most part,
these models will be variations of the pushdown automaton defined in Chapter 5.
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In passing, we note that a pushdown automaton is equivalent to a nondeter-
ministic TM with a read-only input on which the input head cannot move left,
plus a storage tape with a rather peculiar restriction on the tape head. Whenever
the storage tape head moves left, it must print a blank. Thus the storage tape to
the right of the head is always completely blank, and the storage tape is effectively
a stack, with the top at the right, rather than the left as in Chapter 5.

Multistack machines

A deterministic two-stack machine is a deterministic Turing machine with a read-
only input and two storage tapes. If a head moves left on either tape, a blank is
printed on that tape.

Lemma 7.3 An arbitrary single-tape Turing machine can be simulated by a
deterministic two-stack machine.

Proof The symbols to the left of the head of the TM being simulated can be
stored on one stack, while the symbols on the right of the head can be placed on
the other stack. On each stack, symbols closer to the TM’s head are placed closer
to the top of the stack than symbols farther from the TM’s head. O

Counter machines

We can prove a result stronger than Lemma 7.3. It concerns counter machines,
which are off-line Turing machines whose storage tapes are semi-infinite, and
whose tape alphabets contain only two symbols, Z and B (blank). Furthermore,
the symbol Z, which serves as a bottom of stack marker, appears initially on the
cell scanned by the tape head and may never appear on any other cell. An integer i
can be stored by moving the tape head i cells to the right of Z. A stored number
can be incremented or decremented by moving the tape head right or left. We can
test whether a number is zero by checking whether Z is scanned by the head, but
we cannot directly test whether two numbers are equal.

An example of a counter machine is shown in Fig. 7.11; ¢ and $ are custo-
marily used for end markers on the input. Here Z is the nonblank symbol on each
tape. An instantaneous description of a counter machine can be described by the
state, the input tape contents, the position of the input head, and the distance of
the storage heads from the symbol Z (shown here as d, and d,). We call these
distances the counts on the tapes. The counter machine, then, can really only store
a count on each tape and tell if that count is zero.

Lemma 74 A four-counter machine can simulate an arbitrary Turing ma-
chine.

Proof From Lemma 7.3, it suffices to show that two counter tapes can simulate
one stack. Let a stack have k — 1 tape symbols, Z,, Z,, ..., Z,_,. Then we can
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Fig. 7.11 Counter machine.

represent the stack Z; Z;, --- Z; uniquely by the count in base k
J=im ki g+ ki, o+ kT (7.3)

Note that not every integer represents a stack; in particular, those whose base-k
representation contains the digit O do not.

Suppose that the symbol Z, is pushed onto the top (right end) of the stack
Z,Z,, - Z; . The count associated with Z;, Z;, --- Z; Z, is jk + r. To get this new
count, the counter machine repeatedly moves the head of the first counter one cell
to the left and the head of the second, k cells to the right. When the head of the first
counter reaches the nonblank symbol, the second counter will hold the count jk. It
is a simple matter to add r to the count.

If, instead, the top symbol Z;_of the stack were popped, j should be replaced
by Lj/k}, the integer part of j/k. We repeatedly decrement the count on the first
counter by k and then add one to the second count. When the first count is zero,
the second count will be |j/k}

To complete the description of the simulation, we must show how the four-
counter machine can tell what symbol is at the top of each stack. If the count j is
stored on one counter, the four-counter machine can copy j to another counter,
computing j mod k in its finite control. Note that j mod k is i, if j is given by

(7.3). d

Theorem 7.9 A two-counter machine can simulate an arbitrary Turing ma-
chine.

Proof By Lemma 7.4, it is sufficient to show how to simulate four counters with
two. Let four counters have counts i, j, k, and /. One counter can represent these
four by the number n = 2'3'5*7%. Since 2, 3, 5, and 7 are primes, i, j, k, and £ can be
uniquely recovered from n.
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To increment i, j, k, or £ by 1, we multiply n by 2, 3, 5, or 7, respectively. To do
so, if we have another counter set to zero, we can move the head of this counter 2,
3, 5, or 7 cells to the right each time we move the head of the first counter one cell
to the left. When the first counter holds zero, the second will hold 2n, 3n, 5n, or 7n,
respectively. To decrement i, j, k, or £ by 1, n is, by a similar process, divided by 2,
3, 5, or 7, respectively.

We must also show how the two-counter machine can determine the next
move of the four-counter machine. The two-counter machine always scans the
same cell of the input tape as the four-counter machine does. The state of the
four-counter machine is stored in the finite control of the two-counter machine.
Thus, to determine the move of the four-counter machine, the two-counter ma-
chine has only to determine which, if any, of i, j, k, and ¢ are 0. By passing n from
one counter to the other, the finite control of the two-counter machine can deter-
mine if n is divisible by 2, 3, 5, 7, or any product of these. O

Limits on the number of states and symbols

Another way to restrict a TM is to limit the size of the tape alphabet or the
number of states. If the tape alphabet, number of tapes, and number of states are
all limjted, then there is only a finite number of different Turing machines, so the
restricted model is less powerful than the original.t If we do not restrict the tape
alphabet, then three states and one tape are sufficient to recognize any r.e. set; this
result is left as an exercise. We shall, however, prove a result about limited tape
alphabets.

Theorem 7.10 If L< (0 + 1)* and Lis r.e, then L is accepted by a one-tape TM
with tape alphabet {0, 1, B}.

Proof Let L= L(M,), where M, =(Q, {0, 1}, I, , qo, B, F). Suppose I" has
between 2~ ! + 1 and 2* symbols, so k bits are sufficient to encode any tape
symbol of M,. We may design M, with tape alphabet {0, 1, B} to simulate M,.
The tape of M, will consist of a sequence of codes for symbols of M,. The finite
control of M, remembers the state of M, and also remembers the position of M ,’s
tape head, modulo k, so M, can know when it is at the beginning of a coded tape
symbol of M,.

At the beginning of the simulation of a move of M, the head of M, is at the
left end of a binary-coded symbol of M,. M, scans the next k — 1 symbols to its
right, to determine the move of M;. Then M, replaces the symbols scanned to
reflect the move of M, positions its tape head at the left end of the code for the
next symbol scanned by M ,, and changes the state of M ,. If that state is accepting,

T However, there are such restricted Turing machines that are “universal” (see Section 8.3) in the sense
that given as input an encoding of a transition function for some TM M and an input w to M, the
Universal machine accepts if and only if M accepts w. For example, it is known that there is a universal
TM with one tape, 5 states, and 7 tape symbols.
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M, accepts; otherwise, M, is ready to simulate the next move of M,. A special
case occurs if M, finds its head positioned at a blank when it should be reading a
code for a tape symbol of M,. In this case, M, has just moved to a position it has
never before reached. M, must write the binary code for M,’s blank on the cell
scanned and the k — 1 cells to its right, after which it may simulate a move of M,
as before.

One important detail is left to be explained. M,’s input is a binary string w in
(0 + 1)* representing w itself, rather than a string of coded 0’s and 1’s representing
w. Therefore, before simulating M,, M, must replace w by its code. To do so, M,
uses the “shifting over™ trick, using B for the symbol X described in Section 7.4,
where “shifting over” was introduced. For each input symbol, starting with the
leftmost, the string to the right of the symbol is shifted k — 1 places right, and then
the symbol and the k — 1 B’s introduced are replaced by the k-bit binary code for
the symbol. O

We can apply the same binary coding technique even if the input alphabet is
not {0, 1}. We therefore state the following corollary and leave its proof as an
exercise.

Corollary If L is an r.e. set over any alphabet whatsoever, then L is accepted by
an off-line TM that has only one tape besides the input, and whose alphabet for
that tape is {0, 1, B}.

Theorem 7.11 Every Turing machine can be simulated by an ofi-line Turing
machine having one storage tape with two symbols, 0 (blank) and 1. The Turing
machine can print a 0 or 1 over a 0, but cannot print a 0 over a 1.

Proof We leave this to the reader. The “trick” is to create successive 1D’s of the
original Turing machine on the tape of the new one. Tape symbols are, of course,
encoded in binary. Each ID is copied over, making the changes necessary to
simulate a move of the old machine.

In addition to the binary encoding of the original symbol, the TM doing the
simulating needs cells to indicate the position of the head in the ID being copied,
and cells to indicate that the binary representation of a symbol has already been
copied. O

EXERCISES

7.1  Design Turing machines to recognize the following languages.
a) {0"1"0"|n > 1}.
b) {ww®|w is in (0 + 1)*}.
c) The set of strings with an equal number of 0’s and I’s.

7.2 Design Turing machines to compute the following functions.

a) [log, nl b) n! c) n?
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7.3  Show that if L is accepted by a k-tape, /-dimensional, nondeterministic TM with m
heads per tape, then L is accepted by a deterministic TM with one semi-infinite tape and
one tape head.

7.4 A recursive function is a function defined by a finite set of rules that for various
arguments specify the function in terms of variables, nonnegative integer constants, the
successor (add one) function, the function itself, or an expression built from these by
composition of functions. For example, Ackermann’s function is defined by the rules:
1) A0, y)=1
2) A(1,0)=2
3) A(x,0)=x+2forx>2
4) A(x + 1, y + 1) = A(A(x, y + 1), y)
a) Evaluate A(2, 1).
* b) What function of one variable is A(x, 2)?
* ¢) Evaluate A(4, 3).

*7.5 Give recursive definitions for
a)n+m b)n=m c) nm d) n!
** 7.6  Show that the class of recursive functions is identical to the class of partial recursive

functions.

7.7 A function is primitive recursive if it is a finite number of applications of composition
and primitive recursiont applied to constant 0, the successor function, or a projection
function Pi(x,, ..., x,) = x;.

a) Show that every primitive recursive function is a total recursive function.
**b) Show that Ackermann’s function is not primitive recursive.
**c) Show that adding the minimization operator, min (f(x)) defined as the least x such
that f(x) = 0, yields all partial recursive functions.

78 Design a Turing machine to enumerate {0"1"|n > 1}.

** 7.9 Show that every r.e. set is accepted by a TM with only two nonaccepting states and
one accepting state.

*7.10 Complete the proof of Theorem 7.1, that tapes symbols O (blank) and 1, with no 1
overprinted by 0, are sufficient for an off-line TM to accept any r.e. language.

711 Consider an off-line TM model that cannot write on any tape but has three pebbles
that can be placed on the auxiliary tape. Show that the model can accept any r.e. language.

T A primitive recursion is a definition of f(x,, ..., x,) by
f(xys ..., x,) =if x, = 0 then
g(xy ooy Xumq)
else
B(xys ooy Xy f (X s vy Xy gy X, — 1))

where g and h are primitive recursive functions.
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CHAPTER

UNDECIDABILITY

We now consider the classes of recursive and recursively enumerable languages.
The most interesting aspect of this study concerns languages whose strings are
interpreted as codings of instances of problems. Consider the problem of deter-
mining if an arbitrary Turing machine accepts the empty string. This problem may
be formulated as a language problem by encoding TM’s as strings of 0’s and I’s.
The set of all strings encoding TM's that accept the empty string is a language that
is recursively enumerable but not recursive. From this we conclude that there can
be no algorithm to decide which TM’s accept the empty string and which do not.

In this chapter we shall show that many questions about TM’s, as well as
some questions about context-free languages and other formalisms, have no algor-
ithms for their solution. In addition we introduce some fundamental concepts
from the theory of recursive functions, including the hierarchy of problems
induced by the consideration of Turing machines with “oracles.”

81 PROBLEMS

Informally we use the word problem to refer to a question such as: “Is a given
CFG ambiguous?” In the case of the ambiguity problem, above, an instance of the
problem is a particular CFG. In general, an instance of a problem is a list of
arguments, one argument for each parameter of the problem. By restricting our
attention to problems with yes-no answers and encoding instances of the problem
by strings over some finite alphabet, we can transform the question of whether
there exists an algorithm for solving a problem to whether or not a particular
language is recursive. While it may seem that we are throwing out a lot of impor-

177
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tant problems by looking only at yes-no problems, in fact such is not the case.
Many general problems have yes-no versions that are provably just as difficult as
the general problem.

Consider the ambiguity problem for CFG’s. Call the yes-no version AMB. A
more general version of the problem, called FIND, requires producing a word
with two or more parses if one exists and answering “no” otherwise. An algorithm
for FIND can be used to solve AMB. If FIND produces a word w, then answer
“yes”; if FIND answers “no,” then answer “no.” Conversely, given an algorithm
for AMB we can produce an algorithm for FIND. The algorithm first applies
AMB to the grammar G. If AMB answers “no” our algorithm answers “no.” If
AMB answers “yes,” the algorithm systematically begins to generate all words
over the terminal alphabet of G. As soon as a word w is generated, it is tested to see
if it has two or more parse trees. Note that the algorithm does not begin generat-
ing words unless G is ambiguous, so some w eventually will be found and printed.
Thus we indeed have an algorithm. The portion of the algorithm that tests w for
two or more parses is left as an exercise.

The process whereby we construct an algorithm for one problem (such as
FIND), using a supposed algorithm for another (AMB), is called a reduction (of
FIND to AMB). In general, when we reduce problem A to problem B we are
showing that B is at least as hard as 4. Thus in this case, as in many others, the
yes-no problem AMB is no easier than the more general version of the problem.
Later we shall show that there is no algorithm for AMB. By the reduction of AMB
to FIND we conclude there is no algorithm for FIND either, since the existence of
an algorithm for FIND implies the existence of an algorithm for AMB, a
contradiction.

One further instructive point concerns the coding of the grammar G. As all
Turing machines have a fixed alphabet, we cannot treat the 4-tuple notation
G=(V, T, P, S) as the encoding of G without modification. We can encode
4-tuples as binary strings as follows. Let the metasymbols in 4-tuples, that is, the
left and right parentheses, brackets, comma and —, be encoded by 1, 10, 100, ...,
103, respectively. Let the ith grammar symbol (in any chosen order) be encoded by
10°*5. In this encoding, we cannot tell the exact symbols used for either terminals
or nonterminals. Of course renaming nonterminals does not affect the language
generated, so their symbols are not important. Although we ordinarily view the
identities of the terminals as important, for this problem the actual symbols used
for the terminals is irrelevant, since renaming the terminals does not affect the
ambiguity or unambiguity of a grammar.

Decidable and undecidable problems

A problem whose language is recursive is said to be decidable. Otherwise, the
problem is undecidable. That is, a problem is undecidable if there is no algorithm
that takes as input an instance of the problem and determines whether the answer
to that instance is “yes” or “no.”
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An unintuitive consequence of the definition of “undecidable” is that prob-
lems with only a single instance are trivially decidable. Consider the following
problem based on Fermat’s conjecture. Is there no solution in positive integers to
the equation x' + y' = z' if i > 3? Note that x, y, z, and i are not parameters but
bound variables in the statement of the problem. There is one Turing machine
that accepts any input and one that rejects any input. One of these answers
Fermat’s conjecture correctly, even though we do not know which one. In fact
there may not even be a resolution to the conjecture using the axioms of arith-
metic. That is, Fermat’s conjecture may be true, yet there may be no arithmetic
proof of that fact. The possibility (though not the certainty) that this is the case
follows from Godel’'s incompleteness theorem, which states that any consistent
formal system powerful enough to encompass number theory must have state-
ments that are true but not provable within the system.

It should not disturb the reader that a conundrum like Fermat’s conjecture is
“decidable.” The theory of undecidability is concerned with the existence or non-
existence of algorithms for solving problems with an infinity of instances.

82 PROPERTIES OF RECURSIVE AND RECURSIVELY
ENUMERABLE LANGUAGES

A number of theorems in this chapter are proved by reducing one problem to
another. These reductions involve combining several Turing machines to form a
composite machine. The state of the composite TM has a component for each
individual component machine. Similarly the composite machine has separate
tapes for each individual machine. The details of the composite machine are
usually tedious and provide no insight. Thus we choose to informally describe the
constructions.

Given an algorithm (TM that always halts), we can allow the composite TM
to perform one action if the algorithm accepts and another if it does not accept.
We could not do this if we were given an arbitrary TM rather than an algorithm,
since if the TM did not accept, it might run forever, and the composite machine
would never initiate the next task. In pictures, an arrow into a box labeled “start”
indicates a start signal. Boxes with no “start” signal are assumed to begin operat-
ing when the composite machine does. Algorithms have two outputs, “yes” and
“no,” which can be used as start signals or as a response by the composite ma-
chine. Arbitrary TM’s have only a “yes” output, which can be used for the same
purposes.

We now turn to some basic closure properties of the classes of recursive and
r.e. sets.

Theorem 8.1 The*complement of a recursive language is recursive.

f’roof Let L be a recursive language and M a Turing machine that halts on all
Inputs and accepts L. Construct M’ from M so that if M enters a final state on
Input w, then M’ halts without accepting. If M halts without accepting, M’ enters a
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M —>Yes \><:Yes
w
F—>No —| No

Fig.8.1 Construction showing that recursive languages are closed under complementation.

final state. Since one of these two events occurs, M’ is an algorithm. Clearly L(M’)
is the complement of L and thus the complement of L is a recursive language.
Figure 8.1 pictures the construction of M’ from M. O

Theorem 8.2 The union of two recursive languages is recursive. The union of two
recursively enumerable languages is recursively enumerable.

Proof Let L, and L, be recursive languages accepted by algorithms M, and M ,.
We construct M, which first simulates M,. If M, accepts, then M accepts. If M,
rejects, then M simulates M, and accepts if and only if M, accepts. Since both M,
and M, are algorithms, M is guaranteed to halt. Clearly M accepts L, u L,.
For recursively enumerable languages the above construction does not work,
since M, may not halt. Instead M can simultaneously simulate M, and M, on
separate tapes. If either accepts, then M accepts. Figure 8.2 shows the two con-
structions of this theorem. |

Yes . Yes— yes
Yes /;YCS /”1 / /

'] No » No ’ Yes
M, /

(a) (b)

Fig. 82 Construction for union.

Theorem 8.3 If a language L and its complement L are both recursively enumer-
able, then L (and hence L) is recursive.

Proof Let M, and M, accept L and L respectively. Construct M as in Fig. 8.3 to
simulate simultaneously M, and M,. M accepts w if M, accepts w and rejects w if
M, accepts w. Since w is in either L or L, we know that exactly one of M, or M,
will accept. Thus M will always say either “yes” or “no,” but will never say both.
Note that there is no a priori limit on how long it may take before M, or M,
accepts, but it is certain that one or the other will do so. Since M is an algorithm
that accepts L, it follows that L is recursive. O
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Fig. 8.3 Construction for Theorem 8.3.

Theorems 8.1 and 8.3 have an important consequence. Let L and L be a pair of
complementary languages. Then either

1) both L and L are recursive,
2) neither L nor L is re., or
3) one of L and L is r.e. but not recursive; the other is not r.e.

An important technique for showing a problem undecidable is to show by
diagonalization that the complement of the language for that problem is not r.e.
Thus case (2) or (3) above must apply. This technique is essential in proving our
first problem undecidable. After that, various forms of reductions may be
employed to show other problems undecidable.

83 UNIVERSAL TURING MACHINES AND AN
UNDECIDABLE PROBLEM

We shall now use diagonalization to show a particular problem to be undecidable.
The problem is: “Does Turing machine M accept input w?” Here, both M and w
are parameters of the problem. In formalizing the problem as a language we shall
restrict w to be over alphabet {0, 1} and M to have tape alphabet {0, 1, B}. As the
restricted problem is undecidable, the more general problem is surely undecidable
as well. We choose to work with the more restricted version to simplify the
encoding of problem instances as strings.

Turing machine codes

To begin, we encode Turing machines with restricted alphabets as strings over
{0, 1}. Let

M =(Q, {0, 1}, {0, 1, B}, §, 4. B, {42})

be a Turing machine with input alphabet {0, 1} and the blank as the only addi-
tional tape symbol. We further assume that Q = {q,, ¢a, ..., 4.} is the set of states,
and that g, is the only final state. Theorem 7.10 assures us that if L < (0 + 1)* is
accepted by any TM, then it is accepted by one with alphabet {0, 1, B}. Also, there
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is no need for more than one final state in any TM, since once it accepts it may as
well halt.

It is convenient to call symbols 0, 1, and B by the synonyms X,, X,, X3,
respectively. We also give directions L and R the synonyms D, and D,, respec-
tively. Then a generic move 8(g;, X ;) = (qi, X/, D,,) is encoded by the binary string

011071010/ 10™. @.1)
A binary code for Turing machine M is
111 code, 11 code, 11 --- 11 code, 111, (8.2)

where each code; is a string of the form (8.1), and each move of M is encoded by
one of the code;’s. The moves need not be in any particular order, so each TM
actually has many codes. Any such code for M will be denoted {M ).

Every binary string can be interpreted as the code for at most one TM ; many
binary strings are not the code of any TM. To see that decoding is unique, note
that no string of the form (8.1) has two 1's in a row, so the code;’s can be found
directly. If a string fails to begin and end with exactly three 1’s, has three 1’s other
than at the end, or has two pair of I’s with other than five blocks of 0’s in between,
then the string represents no TM.

The pair M and w is represented by a string of the form (8.2) followed by w.
Any such string will be denoted {M, w).

Example 8.1 Let M = ({q,, ¢, 95), {0, 1}, {0, 1, B}, , q,, B, {q,}) have moves:
(g1, 1) = (93, O, R),
(g3, 0) = (41, L, R),
(g3, 1) = (42, 0, R),
6(g3, B) = (g3, 1, L).
Thus one string denoted by {M, 1011) is
111010010001010011000101010010011
000100100101001100010001000100101111011

Note that many different strings are also codes for the pair {M, 1011), and any of
these may be referred to by the notation (M, 1011).

A non-r.e. language

Suppose we have a list of (0 + 1)* in canonical order (see Section 7.7), where w; is
the ith word, and M; is the TM whose code, as in (8.2) is the integer j written in
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Diagonal

Fig. 8.4 Hypothetical table indicating acceptance of words by TM’s.

binary. Imagine an infinite table that tells for all i and j whether w; is in L(M).
Figure 8.4 suggests such a table;t 0 means w; is not in L(M;) and 1 means it is.
We construct a language L, by using the diagonal entries of the table to
determine membership in L. To guarantee that no TM accepts L, we insist that
w; is in L, if and only if the (i, i) entry is 0, that is, if M; does not accept w;. Suppose
that some TM M accepted L,. Then we are faced with the following contradic-
tion. If w; is in L,, then the (j, j) entry is 0, implying that w; is not in L{M;) and
contradicting L; = I{M;). On the other hand, if w; is not in L, then the (j, j) entry
is 1, implying that w; is in L{M ), which again contradicts L, = L(M). As w; is
either in or not in L,, we conclude that our assumption, L, = (M), is false. Thus,
no TM in the list accepts L,, and by Theorem 7.10, no TM whatsoever accepts L,.
We have thus proved

Lemma 8.1 L, is not re.

The universal language

Define L,, the “universal language,” to be {{M, w)|M accepts w}. We call L,
“universal” since the question of whether any particular string w in (0 + 1)* is
accepted by any particular Turing machine M is equivalent to the question of
whether {M’, w) is in L,, where M’ is the TM with tape alphabet {0, 1, B} equiv-
alent to M constructed as in Theorem 7.10.

Theorem 8.4 L, is recursively enumerable.

Proof We shall exhibit a three-tape TM M, accepting L,. The first tape of M, is
the input tape, and the input head on that tape is used to look up moves of the TM
M when given code {M, w) as input. Note that the moves of M are found between
the first two blocks of three 1’s. The second tape of M, will simulate the tape of M.

1 Actually as all low-numbered Turing machines accept the empty set, the correct portion of the table
shown has all 0’s.
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The alphabet of M is {0, 1, B}, so each symbol of M’s tape can be held in one tape
cell of M ,’s second tape. Observe that if we did not restrict the alphabet of M, we
would have to use many cells of M,’s tape to simulate one of M’s cells, but the
simulation could be carried out with a little more work. The third tape holds the
state of M, with g; represented by 0’. The behavior of M, is as follows:

1) Check the format of tape 1 to see that it has a prefix of the form (8.2) and that
there are no two codes that begin with 0°101 for the same i and j. Also check
that if 0°10710¥1010™ is a code, then 1 <j <3, 1<¢<3,and 1 <m<2.
Tape 3 can be used as a scratch tape to facilitate the comparison of codes.

2) Initialize tape 2 to contain w, the portion of the input beyond the second
block of three 1’s. Initialize tape 3 to hold a single 0, representing q,. All three
tape heads are positioned on the leftmost symbols. These symbols may be
marked so the heads can find their way back.

3) If tape 3 holds 00, the code for the final state, halt and accept.

4) Let X; be the symbol currently scanned by tape head 2 and let 0' be the
current contents of tape 3. Scan tape 1 from the left end to the second 111,
looking for a substring beginning 110°10/1. If no such string is found, halt and
reject; M has no next move and has not accepted. If such a code is found, let it
be 0°1010*10°10™. Then put 0* on tape 3, print X, on the tape cell scanned by
head 2 and move that head in direction D,,. Note that we have checked in (1)
that 1 </ <3and 1 <m <2. Go to step (3).

It is straightforward to check that M, accepts (M, w) if and only if M accepts
w. It is also true that if M runs forever on w, M, will run forever on {M, w), and if
M halts on w without accepting, M, does the same on {M, w). (]

The existence of M, is sufficient to prove Theorem 8.4. However, by
Theorems 7.2 and 7.10, we can find a TM with one semi-infinite tape and alphabet
{0, 1, B} accepting L,. We call this particular TM M,, the universal Turing ma-
chine, since it does the work of any TM with input alphabet {0, 1}.

By Lemma 8.1, the diagonal language L, is not r.e., and hence not recursive.
Thus by Theorem 8.1, L, is not recursive. Note that L, = {w;| M, accepts w;}. We
can prove the universal language L, = {{M, w)| M accepts w} not to be recursive
by reducing L, to L, Thus L,is an example of a language that is r.e. but not
recursive. In fact, L, is another example of such a language.

Theorem 8.5 L, is not recursive.

Proof Suppose A were an algorithm recognizing L,,. Then we could recognize L,
as follows. Given string w in (0 + 1)*, determine by an easy calculation the value
of i such that w= w;. Integer i in binary is the code for some TM M,. Feed
{M;,w;) toalgorithm A and accept w if and only if M; accepts w;. The construction
is shown in Fig. 8.5. It is easy to check that the constructed algorithm accepts w if
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<M, w> Yes .
Convert Hypothetical » »Yes
AforL, No > No

Constructed algorithm for L ;

Fig. 8.5 Reduction of L, to L,.

and only if w = w; and w; is in L{M,). Thus we have an algorithm for L, Since no
such algorithm exists, we know our assumption, that algorithm A for L, exists, is
false. Hence L, is r.e. but not recursive. O

8.4 RICE’S THEOREM AND SOME MORE
UNDECIDABLE PROBLEMS

We now have an example of an r.e. language that is not recursive. The associated
problem “Does M accept w?” is undecidable, and we can use this fact to show that
other problems are undecidable. In this section we shall give several examples of
undecidable problems concerning r.e. sets. In the next three sections we shall
discuss some undecidable problems taken from outside the realm of TM’s.

Example 8.2 Consider the problem: “Is L(M) # (7" Let (M ) denote a code for
M as in (8.2). Then define

L.={M)|LM)+ @} and L ={M)|LM)=g).

Note that L, and L,, are complements of one another, since every binary string
denotes some TM; those with a bad format denote the TM with no moves. All
these strings are in L,. We claim that L, is r.e. but not recursive and that L, is not
re.

We show that L, is r.e. by constructing a TM M to recognize codes of TM’s
that accept nonempty sets. Given input {M;), M nondeterministically guesses a
string x accepted by M, and verifies that M; does indeed accept x by simulating M;
on input x. This step can also be carried out deterministically if we use the pair
generator described in Section 7.7. For pair (j, k) simulate M; on the jth binary
string (in canonical order) for k steps. If M; accepts, then M accepts {M;).

Now we must show that L, is not recursive. Suppose it were. Then we could
construct an algorithm for L,, violating Theorem 8.5. Let A be a hypothetical
algorithm accepting L,. There is an algorithm B that, given {M, w), constructs a
TM M’ that accepts & if M does not accept w and accepts (0 + 1)* if M accepts w.
The plan of M’ is shown in Fig. 8.6. M’ ignores its input x and instead simulates M
on input w, accepting if M accepts.

Note that M’ is not B. Rather, B is like a compiler that takes (M, w) as
“source program” and produces M’ as “object program.” We have described what
B must do, but not how it does it. The construction of B is simple. It takes (M, w)
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/Yes ——»Yes
w—p M

X — M

Fig. 86 The TM M’.

and isolates w. Say w = a, a, - - a, is of length n. B creates n + 3 states q,, q,, ...,
gn+3 With moves

8(91> X) = (42, $, R) for any X (print marker),
8(qi» X) = (qi+1, a;—y, R) for any X and 2 <i < n+ 1 (print w),
0(qn+2> X) = (gu+2. B, R) for X + B (erase tape),

é(qn+2’ B) = (qn+3’ Ba L),
0(gn+3> X) = (qu+3> X, L) for X # $ (find marker).

Having produced the code for these moves, B then adds n + 3 to the indices of the
states of M and includes the move

0(qn+3>3) = (Gu+ 4> 3, R) /% start up M x/

and all the moves of M in its generated TM. The resulting TM has an extra tape
symbol $, but by Theorem 7.10 we may construct M’ with tape alphabet {0, 1, B},
and we may surely make g, the accepting state. This step completes the algorithm
B, and its output is the desired M’ of Fig. 8.6.

Now suppose algorithm A accepting L, exists. Then we construct an algor-
ithm C for L, as in Fig. 8.7. 1f M accepts w, then L(M’) # (¥;so A says “no” and C
says “yes.” If M does not accept w, then L{M') = (J, A says “yes,” and C says “no.”
As C does not exist by Theorem 8.5, A cannot exist. Thus, L, is not recursive. If L,,
were recursive, L, would be also by Theorem 8.1. Thus L,, is r.e. but not recursive.
If L, were r.e., then L, and L,, would be recursive by Theorem 8.3. Thus L, is not
re.

Example 8.3 Consider the language
L, = {{M)|L(M) is recursive}

and
L,, = {{M)|L(M) is not recursive}.

Note that L, is not {{M)|M halts on all inputs}, although it includes the latter
language. A TM M could accept a recursive language even though M itself might
loop forever on some words not in I{M); some other TM equivalent to M must
always halt, however. We claim neither L, nor L,, is r.e.

Suppose L, were r.e. Then we could construct a TM for L, which we know
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Yes Yes
— ~
<M, w NP SN - ><
\No/ No

C

Ty

Fig. 8.7 Algorithm constructed for L, assuming that algorithm A for L, exists.

does not exist. Let M, be a TM accepting L,. We may construct an algorithm A
that takes (M, w) as input and produces as output a TM M’ such that

& if M does not accept w,
L, if M accepts w.

L(M) =
Note that L, is not recursive, so M’ accepts a recursive language if and only if M
does not accept w. The plan of M’ is shown in Fig. 8.8. As in the previous example,
we have described the output of A. We leave the construction of A to the reader.

w Iy Yes Start " > Yes
l———‘. u
kY /”'

Fig. 88 The TM M.

Given 4 and M, we could construct a TM accepting L,, shown in Fig. 89,
which behaves as follows. On input (M, w) the TM uses A to produce M’, uses
M, to determine if the set accepted by M’ is recursive, and accepts if and only if
L(M’) is recursive. But L(M’) is recursive if and only if L{M’) = (&, which means
M does not accept w. Thus the TM of Fig. 8.9 accepts (M, w) if and only if
(M, w)isin L,

Now let us turnto L,,. Suppose we havea TM M, accepting L,,.. Then we may
use M,, and an algorithm B, to be constructed by the reader, to accept L, B takes
{M, w) as input and produces as output a TM M’ such that

, * if M accepts w,
LM’y = L, if M does not accept w.

/'Yes—-—————b Yes

<M, w> A M

Fig. 89 Hypothetical TM for L,.
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Yes—T—» Y,
w—{ M / ) /' ®
Yes

x » U /

M

Yes ——»Yes
’
<M, w> P SR Pl

nr

(a) (b)
Fig. 8.10 Constructions used in proof that L, is not r.e. (a) M". (b) TM for L,.

Thus M’ accepts a recursive language if and only if M accepts w. M’, which B must
produce, is shown in Fig. 8.10(a), and a TM to accept L, given Band M,,, is shown
in Fig. 8.10(b). The TM of Fig. 8.10(b) accepts {M, w) if and only if L(M’) is not
recursive, or equivalently, if and only if M does not accept w. That is, the TM
accepts (M, w) if and only if (M, w) is in L, Since we have already shown that
no such TM exists, the assumption that M,, exists is false. We conclude that L,, is
not r.e.

Rice’s Theorem for recursive index sets

The above examples show that we cannot decide if the set accepted by a Turing
machine is empty or recursive. The technique of proof can also be used to show
that we cannot decide if the set accepted is finite, infinite, regular, context free, has
an even number of strings, or satisfies many other predicates. What then can we
decide about the set accepted by a TM 7 Only the trivial predicates, such as “Does
the TM accept an r.e. set?,” which are either true for all TM’s or false for all TM’s.

In what follows we shall discuss languages that represent properties of r.e.
languages. That is, the languages are sets of TM codes such that membership of
(M) in the language depends only on L(M), not on M itself. Later we shall
consider languages of TM codes that depend on the TM itself, such as “M has 27
states,” which may be satisfied for some but not all of the TM’s accepting a given
language.

Let . be a set of r.e. languages, each a subset of (0 + 1)*. ¥ is said to be a
property of the r.e. languages. A set L has property & if L is an element of &. For
example, the property of being infinite is {L| L is infinite}. ¥ is a trivial property if
& is empty or & consists of all r.e. languages. Let L, be the set {{M)|L(M) is
in &}.

Theorem 8.6 (Rice’s Theorem) Any nontrivial property & of the r.e. languages is
undecidable.

Proof Without loss of generality assume that ¥ is not in & (otherwise consider
#). Since ¥ is nontrivial, there exists L with property %. Let M, be a TM
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accepting L. Suppose & were decidable. Then there exists an algorithm M,
accepting L,. We use M; and M, to construct an algorithm for L, as follows.
First construct an algorithm A that takes (M, w) as input and produces {M’) as
output, where L{M’) is in % if and only if M accepts w ((M, w) is in L,).

The design of M’ is shown in Fig. 8.11. First M’ ignores its input and simulates
M on w. If M does not accept w, then M’ does not accept x. If M accepts w, then M’
simulates M, on x, accepting x if and only if M, accepts x. Thus M’ either accepts
& or L depending on whether M accepts w.

Yes Start Yes_

»- »Yes
vy T M,

,—N . ”
X

Fig. 8.11 M’ used in Rice’s theorem.

We may use the hypothetical M to determine if L{M') is in &. Since L(M') is
in & if and only if (M, w) is in L,, we have an algorithm for recognizing L,, a
contradiction. Thus % must be undecidable. Note how this proof generalizes
Example 8.2. O

Theorem 8.6 has a great variety of consequences, some of which are sum-
marized in the following coroliary.

Corollary The following properties of r.e. sets are not decidable:
a) emptiness,

b) finiteness,

c) regularity,

d) context-freedom.

Rice’s Theorem for recursively enumerable index sets

The condition under which a set L is r.e. is far more complicated. We shall show
that L is r.e. if and only if & satisfies the following three conditions.

I)IfLisin & and L < L., for some re. L, then L is in & (the containment
property).

2) If L is an infinite language in &, then there is a finite subset of L in &.

3) The set of finite languages in & is enumerable, in the sense that there is a

Turing machine that generates the (possibly) infinite string
code,#code,# ..., where code; is a code for the ith finite language in & (in



190 UNDECIDABILITY

any order). The code for the finite language {w,, w,,..., w,} is just w,,
Was eeey W,

We prove this characterization with a series of lemmas.
Lemma 8.2 If ¥ does not have the containment property, then Ly is not r.e.

Proof We generalize the proof that L, isnotr.e.Let L, bein &, L, < L,, and let
L, not be in &. [For the case where & was the nonrecursive sets, we chose L, = L,
and L, = (0 + 1)*.] Construct algorithm A that takes as input (M, w) and pro-
duces as output TM M’ with the behavior shown in Fig. 8.12, where M, and M,
accept L, and L,, respectively. If M accepts w, then M, is started, and M’ accepts
x whenever x is in either L, or L,. If M does not accept w, then M , never starts, so
M’ accepts x if and only if xisin L,. As L, € L,,

JL, if M accepts w,

LM)=
(M) |L, if M does not accept w.

Thus L(M’) is in & if and only if M does not accept w.

> M, /YCSA;'»‘Y&S

Y/
. es

sl Yes Start o, /'

I - M

Fig. 812 The TM M'.

We again leave it to the reader to design the “compiler” A that takes (M, w)
as input and connects them with the fixed Turing machines M, and M, to con-
struct the M’ shown in Fig. 8.12. Having constructed 4, we can use a TM My
for L, to accept L,, as shown in Fig. 8.13. This TM accepts (M, w) if and only
if M" accepts a language in &, or equivalently, if and only if M does not accept w.
As such a TM does not exist, we know M, cannot exist, so Ly is not re. [

We now turn to the second property of recursively enumerable index sets.

Yes———— > Yes
<M. w A M Mg /

Fig. 8.13 Hypothetical TM to accept L,.



84 | RICE’S THEOREM AND SOME MORE UNDECIDABLE PROBLEMS 191

Lemma 83 If & has an infinite language L such that no finite subset of L is in
&, then Ly is not r.e.

Proof Suppose Ly were r.e. We shall show that L, would be r.e. as follows.
Let M, be a TM accepting L. Construct algorithm A to take a pair (M, w) as
input and produce as output a TM M’ that accepts L if w is not in L(M) and
accepts some finite subset of L otherwise. As shown in Fig. 8.14, M’ simulates M,
on its input x. If M, accepts x, then M’ simulates M on w for |x| moves. If M
fails to accept w after |x| moves, then M’ accepts x. We leave the design of
algorithm A as an exercise.

Start, simulate for |x| moves
1

Yes N /
x > M, w—up M

Not “yes”
after |x| moves

| w»Yes

M

Fig. 8.14 Construction of M'.

If wis in L(M), then M accepts w after some number of moves, say j. Then
L(M’)={x|x is in L and |x| < j}, which is a finite subset of L. If w is not in
L(M), then L(M') = L. Hence, if M does not accept w, L(M’) is in ¥, and if M
accepts w, L(M’), being a finite subset of L, is not in & by the hypothesis of the
lemma. An argument that is by now standard proves that if L, is r.e,, so is L,.
Since the latter is not r.e., we conclude the former is not either. O

Finally, consider the third property of r.e. index sets.

Lemma 84 If L is r.e., then the list of binary codes for the finite sets in .& is
enumerable.

Proof We use the pair generator described in Section 7.7. When (i, j) is gen-
erated, we treat i as the binary code of a finite set, assuming 0 is the code for
comma, 10 the code for zero, and 11 the code for one. We may in a straightforward
manner construct a TM M® (essentially a finite automaton) that accepts exactly
the words in the finite language represented by i. We then simulate the enumer-
ator for L for j steps. If it has printed M®, we print the code for the finite set
represented by i, that is, the binary representation of i itself, followed by a de-
limiter symbol #. In any event, after the simulation we return control to the pair
generator, which generates the pair following (i, j). O

Theorem 8.7 L, is r.e. if and only if

1)IfLisin & and L < L, for some r.e. L, then L is in &.
2) If L is an infinite set in &, then there is some finite subset L of L that is in &.
3) The set of finite languages in & is enumerable.
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Proof The “only if” part is Lemmas 8.2, 8.3, and 8.4. For the “if” part, suppose
(1), (2), and (3) hold. We construct a TM M, that recognizes (M) if and only if
L(M) is in & as follows. M, generates pairs (i, j) using the pair generator. In
response to (i, j), M, simulates M,, which is an enumerator of the finite sets in
&, for i steps. We know M, exists by condition (3). Let L, be the last set com-
pletely printed out by M, . [If there is no set completely printed, generate the next
(1,7) pair.] Then simulate M for j steps on each word in L,. If M accepts all words
in L,, then M, accepts (M. If not, M, generates the next (i, j}-pair.

We use conditions (1) and (2) to show that L(M,) = L. Suppose L is in
Ly, and let M be any TM with L(M)= L. By condition (2), there is a finite
L<cLin & (take L= L if L is finite). Let L be generated after i steps of M,,
and let j be the maximum number of steps taken by M to accept a word in L
(if L=, let j=1). Then when M, generates (i, j), if not sooner, M, will
accept <M.

Conversely, suppose M, accepts (M. Then there is some (i, j) such that
within j steps M accepts every word in some finite language L such that M,
generates [’ within its first i steps. Then L is in &, and L = L(M). By condition
(1), L(M) isin &, s0o (M) is in L,. We conclude that L(M,)= L. a

Theorem 8.7 has a great variety of consequences. We summarize some of them
as corollaries and leave others as exercises.

Corollary 1 The following properties of r.e. sets are not r.e.
a)L=¢.

b) L=X*.

c¢) L is recursive.

d) L is not recursive.

e) L is a singleton (has exactly one member).

f) L is a regular set.

g) L-L #+ .
Proof In each case condition (1) is violated, except for (b), where (2) is violated,
and (g), where (3) is violated. O

Corollary 2 The following properties of r.e. sets are r.e.
a) L+ .
b) L contains at least 10 members.
¢) wis in L for some fixed word w.

d Ln L, # Q.
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Problems about Turing machines

Does Theorem 8.6 say that everything about Turing machines is undecidable?
The answer is no. That theorem has to do only with properties of the language
accepted, not properties of the Turing machine itself. For example, the question
“Does a given Turing machine have an even number of states?” is clearly deci-
dable. When dealing with properties of Turing machines themselves, we must use
our ingenuity. We give two examples.

Example 8.4 It is undecidable if a Turing machine with alphabet {0, 1, B} ever
prints three consecutive 1’s cn its tape. For each Turing machine M; we construct
M, which on blank tape simulates M; on blank tape. However, M; uses 01 to
encode a 0 and 10 to encode a 1. If M;’s tape has a 0 in cell j, M; has 01 in cells
2j — 1 and 2j. If M; changes a symbol, M; changes the corresponding 1 to 0, then
the paired 0 to 1. One can easily design M; so that M, never has three consecutive
I’s on its tape. Now further modify M; so that if M; accepts, M; prints three
consecutive 1’s and halts. Thus M; prints three consecutive 1’s if and only if M;
accepts €. By Theorem 8.6, it is undecidable whether a TM accepts ¢, since the
predicate “¢ is in L” is not trivial. Thus the question of whether an arbitrary
Turing machine ever prints three consecutive 1’s is undecidable.

Example 8.5 It is decidable whether a single-tape Turing machine started on
blank tape scans any cell four or more times. If the Turing machine never scans
any cell four or more times, than every crossing sequence (sequence of states in
which the boundary between cells is crossed, assuming states change before the
head moves) is of length at most three. But there is a finite number of distinct
crossing sequences of length three or less. Thus either the Turing machine stays
within a fixed bounded number of tape cells, in which case finite automaton
techniques answer the question, or some crossing sequence repeats. But if some
crossing sequence repeats, then the TM moves right with some easily detectable
pattern, and the question is again decidable.

85 UNDECIDABILITY OF
POST’S CORRESPONDENCE PROBLEM

Undecidable problems arise in a variety of areas. In the next three sections we
explore some of the more interesting problems in language theory and develop
techniques for proving particular problems undecidable. We begin with Post’s
Correspondence Problem, it being a valuable tool in establishing other problems
to be undecidable.

An instance of Post’s Correspondence Problem (PCP) consists of two lists,
A=w,,...,w,and B = x,, ..., x;, of strings over some alphabet X. This instance
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of PCP has a solution if there is any sequence of integers iy, iy, ..., i,, Withm > 1,
such that

wil’ Wiz, ey Wl.m = xh, x,~2, ceny xim.

The sequence iy, ..., i, is a solution to this instance of PCP.

Example 8.6 Let Z = {0, 1}. Let A and B be lists of three strings each, as defined
in Fig. 8.15. In this case PCP has a solution. Let m =4,i, =2,i, = 1,i; = 1,and
i, = 3. Then

WoW,wyws = X, X, X, X3 = 101111110.

List A List B

i w; X
1 1 111

10111 10
3 10 0

Fig. 8.15 An instance of PCP.

Example 8.7 Let £ = {0, 1}. Let 4 and B be lists of three strings as shown in Fig.
8.16.

List A List B

i w; Xi

1 10 101
011 11

3 101 011

Fig. 8.16 Another PCP instance.

Suppose that this instance of PCP has a solution iy, i,, ..., i,. Clearly, i, = 1,
since no string beginning with w, =011 can equal a string beginning with
x, = 11; no string beginning with w; = 101 can equal a string beginning with
x3 =011.

We write the string from list A above the corresponding string from B. So far
we have

10

101
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The next selection from 4 must begin with a 1. Thus i, = 1 or i, = 3. But
i, = 1 will not do, since no string beginning with w, w, = 1010 can equal a string
beginning with x, x, = 101101. With i, = 3, we have

10101
101011

Since the string from list B again exceeds the string from list 4 by the single
symbol 1, a similar argument shows that i; = i, = --- = 3. Thus there is only one
sequence of choices that generates compatible strings, and for this sequence string
B is always one character longer. Thus this instance of PCP has no solution.

A modified version of PCP

We show that PCP is undecidable by showing that if it were decidable, we would
have an algorithm for L,. First, we show that, if PCP were decidable, a modified
version of PCP would also be decidable.
The Modified Post’s Correspondence Problem (MPCP) is the following:
Given lists A and B, of k strings each from X*, say

A=wy, Wy, .., Wy and B =x,, x5, ..., X,
does there exist a sequence of integers, iy, i,, ..., i,, such that
Wy W’ilVVi2 b W," = x,x“x,-z M x,-’?

The difference between the MPCP and PCP is that in the MPCP, a solution is
required to start with the first string on each list.

Lemma 8.5 If PCP were decidable, then MPCP would be decidable. That is,
MPCP reduces to PCP.

Proof Let
A=w,w,y, .o, w, and B=xy, X5, ..., X

be an instance of the MPCP. We convert this instance of MPCP to an instance of
PCP that has a solution if and only if our MPCP instance has a solution. If PCP
were decidable, we would then be able to solve the MPCP, proving the lemma.

Let T be the smallest alphabet containing all the symbols in lists 4 and B, and
let ¢ and $ not be in . Let y; be obtained from w; by inserting the symbol ¢ after
each character of w; and let z; be obtained from x; by inserting the symbol ¢ ahead
of each character of x;. Create new words

YO=¢J’1’ 2o = 2y,

V1 =3, Zg+1 = ¢$‘
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Let C=yg, y15 ---» Yus1 and D = zq, z,, ..., z;, ;- For example, the lists C and D
constructed from the lists A and B of Example 8.6 are shown in Fig. 8.17.

List 4 List B List C List D
i w; Xi i Yi Zi
1 1 111 0 ¢1¢ $1¢1¢1 PCP
MPCP 2 10111 10 1 1¢ ¢1¢1<]:1
3 10 0 2 1¢0¢1¢1¢1¢ ¢140
3 10 40
4 ) és

Fig. 8.17 Corresponding instances of MPCP and PCP.

In general, the lists C and D represent an instance of PCP. We claim that this
instance of PCP has a solution if and only if the instance of MPCP represented by
lists A and B has a solution. To see this, note that if 1, i}, i,, ..., i, is a solution to
MPCP with lists 4 and B, then

0, iy, iy ..oy iy k+ 1

is a solution to PCP with lists C and D. Likewise, if i,, i,, ..., i, is a solution to
PCP with lists C and D, then i, = 0 and i, = k + 1, since y, and z, are the only
words with the same index that begin with the same symbol, and y,,, and z,,,
are the only words with the same index that end with the same symbol. Let j be the
smallest integer such that i; = k + 1. Then iy, i,, ..., i; is also a solution, since the
symbol $ occurs only as the last symbol of y,,, and z, ,, and, for no /, where
1</ <jisi,=k+ 1.Clearly 1, i,, i3, ..., i;_, is a solution to MPCP for lists A
and B.

If there is an algorithm to decide PCP, we can construct an algorithm to
decide MPCP by converting any instance of MPCP to PCP as above. O

Undecidability of PCP
Theorem 8.8 PCP is undecidable.

Proof With Lemma 8.5, it is sufficient to show that if MPCP were decidable,
then it would be decidable whether a TM accepts a given word. That is, we reduce
L, to MPCP, which by Lemma 8.5 reduces to PCP. For each M and w we
construct an instance of MPCP that has a solution if and only if M accepts w. We
do this by constructing an instance of MPCP that, if it has a solution, has one that
starts with #q, wia, q, B, % - #a, g, B, ¥, where strings between successive #’S
are successive ID’s in a computation of M with input w, and ¢, is a final state.



8.5 | UNDECIDABILITY OF POST’S CORRESPONDENCE PROBLEM

Formally, the pairs of strings forming lists 4 and B of the instance of MPCP
are given below. Since, except for the first pair, which must be used first, the order
of the pairs is irrelevant to the existence of a solution, the pairs will be given
without indexing numbers. We assume there are no moves from a final state.

The first pair is:
List A List B
#* FqowH

The remaining pairs are grouped as follows:
Group 1

List A List B
X X foreach X inT".
#* #

Group I1. Foreachgin Q — F,pin Q,and X, Y,and Zin I":
List A4 List B

qX Yp if 6(¢g, X) = (p, Y, R)
ZgX pZY if 6(g, X)=(p, Y, L)
q# Yp# if 6(¢, B)= (p, Y, R)

Zq# pZY# if 6(g, B)=(p, ¥, L)
Group I11. For each gin F,and X and Y in I":
List A List B

XqY q
Xq q
qY q

Group 1V
List 4 List B

q¥F ¥ # for each g in F.

Let us say that (x, y) is a partial solution to MPCP with lists A and Bif xis a
prefix of y, and x and y are the concatenation of corresponding strings of lists A4

and B respectively. If xz = y, then call z the remainder of (x, y).

Suppose that from ID g, w there is a valid sequence of k more ID’s. We claim

that there is a partial solution
(x, y) = (qowHa, g, B3 -+ #ap_ 1 gy Brm 1 ¥,

#qowHa, g, fr¥ - Fauqufit).

Moreover, this is the only partial solution whose larger string is as long as |y|.
The above statement is easy to prove by induction k. It is trivial for k =0,

since the pair (#, #go w#) must be chosen first.
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Suppose that the statement is true for some k and that g, is not in F. We can
easily show that it is true for k + 1. The remainder of the pair (x, y) is
z = oy, g B The next pairs must be chosen so that their strings from list A form
z. No matter what symbols appear to the right and left of g, there is at most one
pair in Group II that will enable the partial solution to be continued past g,. This
pair represents, in a natural way, the move of M from ID a, g, B;. The other
symbols of z force choices from Group I. No other choices will enable z to be
composed of elements in list A4.

We can thus obtain a new partial solution, (y, ya+qqi+1 Be+13) It is
straightforward to see that o , ; g+ ; B+ 1 1S the one ID that M can reach on one
move from o, g, B, Also, there is no other partial solution whose length of the
second string equals | yot 4 Gus 1 Bes 13 |-

In addition, if g, is in F, it is easy to find pairs from Groups I and III which,
when preceded by the partial solution (x, y) and followed by the pair in Group 1V,
provide a solution to MPCP with lists 4 and B.

Thus if M, started in ID g, w, reaches an accepting state, the instance of
MPCP with lists 4 and B has a solution. If M does not reach an accepting state,
no pairs from groups III or IV may be used. Therefore, there may be partial
solutions, but the string from B must exceed the string from A in length, so no
solution is possible.

We-conclude that the instance of MPCP has a solution if and only if M with
input w halts in an accepting state. Since the above construction can be carried out
for arbitrary M and w, it follows that if there were an algorithm to solve MPCP,
then there would be an algorithm to recognize L, contradicting Theorem 8.5.

O

Example 8.8 Let
M = ({g1, g5, g5} {0, 1, B}, {0, 1}, 6, g1, B, {g5}),
and let ¢ be defined by:
qi (q:, 0) o(gi, 1) (q:, B)

ql (an ly R) (42, O, L) (42, 1’ L)
a: | (4,0,L) | (9:,0.R) | (92,0, R)

q3 - — -

Let w = 01. We construct an instance of MPCP with lists A and B. The first
pair is # for list A4 and #q,013 for list B. The remaining pairs are:
Group 1
List A List B
0 0
1 1
# #
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Group 11
List 4 List B
9,0 1g, from &(g,, 0) = (45 1, R)
Oqll q200 } _
1g,1 a0 fomdlgy 1) =g, 0, L)
0g, # qzm#} B
lql# q;ll# from 5(q1’ B) = (KIz» 1’ L)T
OqZO q300 _
1¢,0 4510 from 5(q, 0) = (g3, 0, L)
q,1 0g, from (g, 1) = (g;, 0, R)
‘PR 0g, % from 6(g,, B) = (¢, 0, R)
Group 111
List A List B
0450 qs3
0g51 qs
1450 qs
1g51 a3
0g5 qs
1, qs
450 q3
gs1 q3
Group 1V

List A List B
qs## #
Note that M accepts input w = 01 by the sequence of ID’s:
q,01, 19,1, 10q,, 19,01, g;101.

Let us see if there is a solution to the MPCP we have constructed. The first pair
gives a partial solution (3, #¢,013). Inspection of the pairs indicates that the
only way to get a longer partial solution is to use the pair (q,0, 1¢,) next. The
resulting partial solution is (#4q,0, #¢,01%1q,). The remainder is now l#1q,.
The next three pairs chosen must be (1, 1), (¥, #), and (1, 1). The partial solution
becomes (#4q,01%1, #4,0141g,1%1). The remainder is now g,1#1. Continuing
the argument, we see that the only partial solution, the length of whose second
string is 14, is (x, x0q,#1), where x = #4,01%1g, 13 1.

Here, we seemingly have a choice, because the next pair used could be (0, 0)
or (0g,#, g,013). In the former case we have (x0, x0Oq, #10) as a partial solution.
But this partial solution is a “dead end.” No pair can be added to it to make
another partial solution, so, surely, it cannot lead to a solution.

t Since B is never printed, we can omit pairs where B is to the right of the state. Group III pairs also
omit those with B on one or both sides of the state.
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In a similar manner, we continue to be forced by our desire to reach a solution
to choose one particular pair to continue each partial solutlon Finally, we reach
the partial solution (y, y1#4,10), where

y = #4,014 19,13 10q, # 14,0.

Since g, is a final state, we can now use pairs in Groups I, III, and IV to find a
solution to the instance of MPCP. The choice of pairs is

(lr 1)’ (#’ #)r (CI31, q3)’ (0’ 0)’ (1’ 1)’ (#’ #)’ (q30’ ‘13),

(1’ l)’ (#r #)’ (Q31, QB)’ (#’ #)’ (q3##’ #)'

Thus, the shortest word that can be composed of corresponding strings from lists
A and B, starting with pair 1 is

#q,0131q,1%10q, # 19,013 g5 1013 q;014 g5 13k g, #F #.

An application of PCP

Post’s correspondence problem can be used to show that a wide variety of prob-
lems are undecidable. We give only one application here: the undecidability of
ambiguity for context-free grammars. The reader should consult the exercises at
the end of the chapter for additional applications.

Theorem 8.9 It is undecidable whether an arbitrary CFG is ambiguous.
Proof Let
A=w,wy, .o, w, and B=1x,, X3, ..., X,

be two lists of words over a finite alphabet X. Let a,, a,, ..., a, be new symbols.
Let

Ly={w,w, " w, a;,|m=>1}

iz im

a;, a;

o
and

Ly = {x;,x;, " x;,a;,4; - ap, lm > 1}

Im-1 .
Let G be the CFG
({Sa Sb Sz}a Z o {ala ERER) an}’ Py S),

where P contains the productions S - S,, S — Sgand for 1 <i<n,S, - w; S,
S, wia;, Sg— x;Sga;, and Sz — x;a;. The grammar G generates the language
L, v L.

If the instance (4, B) of PCP has a solution, say iy, iy, ..., iy, then there is 2
word x; x;, ‘- x; a;a; _,-- a; in L, that equals the word w;w;, "~
w; a; a; a;, in L. This word has a leftmost derivation beginning S — S4»

Im-1

and another beginning S — S5. Hence in this case G is ambiguous.
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Conversely, suppose G is ambiguous. Since the a’s dictate the productions
used, it is easy to show that any word derived from S, has only one leftmost
derivation from S ,. Similarly, no word derived from Sy has more than one left-
most derivation from Sg. Thus it must be that some word has leftmost deviations
from both S, and Sp. If this word is ya; a; _, - a;,, where y is in Z*, then i,,
i3, ..., iy is @ solution to PCP.

Thus G is ambiguous if and only if the instance (4, B) of PCP has a solution.
We have thus reduced PCP to the ambiguity problem for CFG’s. That is, if there
were an algorithm for the latter problem, we could construct an algorithm for
PCP, which by Theorem 8.8 does not exist. Thus the ambiguity problem for
CFG’s is undecidable. O

8.6 VALID AND INVALID COMPUTATIONS OF TM’S:
A TOOL FOR PROVING CFL PROBLEMS UNDECIDABLE

While PCP can be reduced easily to most of the known undecidable problems
about CFL’s, there is a more direct method that is instructive. We shall in this
section show direct reductions of the membership problem for TM’s to various
problems about CFL’s. To do so we need to introduce the notions of valid and
invalid Turing machine computations.

A valid computation of a Turing machine M = (Q, X, T, 6, qo, B, F), for the
purposes of this section, is a string w, #¥wX#w,#wf# --- such that:

1) each w; is an ID of M, a string in '*QI'* not ending with B,
2) w, is an initial ID, one of the form g, x for x in T*,

3) w, is a final ID, that is, one in I'*FT'*, and

4) wilrwiyy for 1 <i<n

We assume without loss of generality that Q and I are disjoint, and # is in neither
QnorTI.

The set of invalid computations of a Turing machine is the complement of the
set of valid computations with respect to the alphabet I' U Q U {3#].

The notions of valid and invalid computations are useful in proving many
properties of CFL’s to be undecidable. The reason is that the set of invalid compu-
tations is a CFL, and the set of valid computations is the intersection of two
CFL’s.

Lemma 8.6 The set of valid computations of a Turing machine M is the intersec-
tion of two CFL’s, L, and L,, and grammars for these CFL’s can be effectively
constructed from M.

Proof Let M =(Q,%,T, 9, go, B, F) be a TM. Both CFL’s L, and L, will consist
of strings of the form x,#x,% --- #x,,%. We use L, to enforce the condition that
X; F— (x;4 ) for odd i and L, to enforce the condition xf |— x;,, for even i. L,
also enforces the condition that x, is an initial ID. That x,, is a final ID or its
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reverse is enforced by L, or L, depending on whether m is odd or even, respec-
tively. Then L, n L, is the set of valid computations of M.

To begin, let L, be {y#z® |y |5 z}. It is easy to construct a PDA P to accept
L;. P reads y, the input up to the #, checking in its finite control that y is of the
form I'*QI'*. In the process, P places on its stack the ID z such that y |5 z, where
y is the input before the #. That is, when the input to P is a symbol of I', P pushes
that symbol onto the stack. If the input is a state g in Q, P stores g in the finite
control and reads the next input symbol, say X (if the next symbol is #, take X to
be B). If 5(g, X)= (p, Y, R), then P pushes Yp onto the stack. If é(q, X)=
(p, Y, L), let Z be on top of the stack. Then P replaces Z by pZY (but if the input
last read was #, and Y = B, just replace Z by pZ, or by p if Z is also B). After
reading the #, P compares each input symbol with the top stack symbol. If they
differ, P has no next move and so dies. If they are equal, P pops the top stack
symbol. When the stack is emptied, P accepts.

Now, let L, = (L#)*({¢} v I'’*FT*%). By Theorems 5.4 and 6.1, there is an
algorithm to construct a CFG for L,. In a similar way, we can construct a PDA
for L, = {y"#z|y b5 z}. The construction of G, for

L, = qoZ*#(L,#)*({¢} v T*FI'*3)

is then easy, and by Theorem 6.1 there is an algorithm to construct a CFG G, for
L,. Now L, n L, is the set of valid computations of M. That is, if x, #x,% -~
#x,# isin L, N L,, then L, requires that x; j (x;, 1) for odd i; L, requires that
x, is initial, and x{ | x;, , for even i. That the last ID has an accepting state is
enforced by L, for m odd and by L, for m even. O

Theorem 8.10 It is undecidable for arbitrary CFG’s G, and G, whether L{G,) N
L(G,) is empty.

Proof By Lemma 8.6 we can construct from M grammars G, and G, such that
L(G,) n L(G,) is the set of valid computations of M. If there is an algorithm 4 to
tell whether the intersection of the languages of two CFG’s is empty, we can
construct an algorithm B to tell whether (M) = ¢ for arbitrary TM M. Simply
design B to construct G, and G, from M as in Lemma 8.6, then apply Algorithm 4
to tell whether L(G,) n L(G,) is empty. If the intersection is empty, then there are
no valid computations of M, so L(M)= (. If the intersection is not empty,
L(M) # . That is, the problem of emptiness for r.e. sets reduces to the problem
of intersection for CFG’s.

Algorithm B cannot exist, however, since L(M)= ¢ is undecidable by
Theorem 8.6. Therefore A does not exist, so it is undecidable whether the intersec-
tion of two CFL’s is empty. d

Although two context-free languages are required to represent the valid com-
putations of a Turing machine, the set of invalid computations is itselfa CFL. The
reason is that we no longer need to guarantee simultaneously for each i that
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w; |— wi4 ;. We need only guess where an error occurs. That is, we must verify for
one i that w; |—w;,, is false.

Lemma 8.7 The set of invalid computations of a Turing machine M = (Q, X, T,
d, go, B, F)is a CFL.

Proof If a string w is an invalid computation, then one of the following condi-
tions holds.

1) w is not of the form x,#x,% --- #x, %, where each x; is an ID of M.
2) x, is not initial; that is, x, is not in gy X*.

3) x,, is not final; that is, x,, is not in ['*F[*.

4) x; i (xi+ 1)} is false for some odd i.

5) x® b5 x4, is false for some even i.

The set of strings satisfying (1), (2), and (3) is regular, and an FA accepting it is
easily constructed. The sets of strings satisfying (4) and (5) are each CFL’s. We
prove this contention for (4); a similar argument prevails for (5). A PDA P for (4)
nondeterministically selects some x; that is preceded by an even number of #’s
and while reading x; stores on its stack the ID z such that x; |— z, with the right
end of z at the top of the stack. After finding # on the input, P compares z with the
following x;, . If z # x,, , then P scans its remaining input and accepts.

The set of invalid computations is the union of two CFL’s and a regular set.
By Theorem 6.1 it is a CFL, and a grammar for this language can be constructed
effectively. O

Theorem 8.11 It is undecidable for any arbitrary CFG G whether L(G) = Z*.

Proof Given an arbitrary TM M, we can effectively construct a CFG G with
terminal alphabet X, such that L(G) = Z* if and only if L(M) = (. That is, by
Lemma 8.7 we may construct a CFG G that generates the invalid computations of
M. Thus if for arbitrary G, L(G) = £* were decidable, then we could decide for
arbitrary M whether L(M) = (¥, a contradiction. O

Other consequences of characterization of computations by CFL’s
Many other results follow from Theorem 8.11.

Theorem 8.12 Let G, and G, be arbitrary CFG’s and R an arbitrary regular set.
The following problems are undecidable.

1) L(G,) = L(G,). 2) L(G,) = L(G,).
3) L(G,) = R. 4) R < L(G,).

Proof Fix G, to be a grammar generating X*, where X is the terminal alphabet of
G,. Then (1) and (2) are equivalent to L{G,) = £* Fix R = £* and (3) and (4) are
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equivalent to L(G,) = £*. Thus the undecidable problem of whether a CFL is **
reduces to (1) through (4), and each of these problems is undecidable as well.
O

Note that by Theorems 5.3 and 5.4, one can convert effectively between
PDA’s and CFG’s, so Theorems 8.10, 8.11, and 8.12 remain true if CFL’s are
represented by PDA’s instead of CFG’s. Also, the regular set R in Theorem 8.12
can be represented by a DFA, NFA, or regular expression as we choose.

One should observe also that the question L(G) < R is decidable. The reason
is that L(G) < R if and only if L(G) n R = . But L(G) n Risa CFL, and hence
its emptiness is decidable.

There are some additional properties of context-free languages that we can
show to be undecidable by observing that if a TM has valid computations on an
infinite set of inputs, its set of valid computations is not, in general, a CFL.
However, we first modify each Turing machine M in a trivial way by adding two
extra states whose sole purpose is to ensure that M makes at least two moves in
every computation. This can be done without otherwise modifying the computa-
tion performed by M. The purpose of the modification is to force each valid
computation to contain at least three ID’s and thus ensure that the set of valid
computations is a CFL if and only if M accepts a finite set.

Lemma 88 Let M be a Turing machine that makes at least three moves on every
input. The set of valid computations of M is a CFL if and only if the set accepted
by M is a finite set.

Proof 1If the set accepted by M is finite, the set of valid computations of M is
finite and hence a CFL. Assume the set accepted by M is infinite and the set L of
valid computations is a CFL. Since M accepts an infinite set, there exists a valid
computation

w WS HEw, -

where the w’s are ID’s, and |w, | is greater than the constant n in Ogden’s lemma.
Mark the symbols of w, as distinguished. Then we can “pump” w, without pump-
ing both w, and w,, thus getting an invalid computation that must be in L. We
conclude that the valid computations do not form a CFL. O

Theorem 8.13 It is undecidable for arbitrary CFG’s G, and G, whether
1) L(G,) is a CFL; 2) L(G,) n L(G,) is a CFL.

Proof
1) Given an arbitrary Turing machine M, modify M without changing the set
accepted, so that M makes at least two moves on every input. Construct CFG
G generating the invalid computations. I{G) is a CFL if and only if M accepts
a finite set.

2) Proceed as in (1), but construct CFG’s G, and G, such that L(G,) n L(G,) i
the set of valid computations of M. O
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8.7 GREIBACH’S THEOREM

There is a striking similarity among the proofs of undecidability in language
theory. This suggests that there is an analog of Rice’s theorem for classes of
languages such as the CFL’s, and indeed there is.

Let us focus our attention on a class of languages €, such as the CFL’s, and on
a particular system (such as CFG’s or PDA’s) for interpreting finite-length strings
as names of languages. Consider a class € of languages with the property that,
given names (e.g., grammars) of languages L, and L, in % and a name (e.g., a finite
automaton) for a regular set R, we can effectively construct names for RL,, L, R,
and L, u L,. Then we say that the class ¥ is effectively closed under concatena-
tion with regular sets and union. Assume furthermore that L = £* is undecidable
for the class ¥, as is the case for the CFL’s. The next theorem shows that a wide
variety of problems are undecidable for the class %.

Theorem 8.14 (Greibach’s Theorem) Let € be a class of languages that is effec-
tively closed under concatenation with regular sets and union, and for which
“=X*” is undecidable for any sufficiently large fixed X. Let P be any nontrivial
propertyt that is true for all regular sets and that is preserved under /a, where a
is a single symbol. (That is, if L has the property P, so does L/a = {w|wa is in L}.)
Then P is undecidable for ¥.

Proof Let L, < X* be a member of ¥ for which P(L,) is false where Z* is suffici-
ently large so that “=X*” is undecidable. For any L < £* in ¥ construct
L, = Ly#¥Z* U Z*#L. L, is in %, since ¥ is effectively closed under concatenation
with regular sets and under union. Now if L = X*, then L, = Z*#X* whichisa
regular set, and hence P(L,) is true. If L # X*, then there exists w not in L. Hence
L, /#w = L,. Since P is preserved under quotient with a single symbol, it is
preserved under quotient with the string #w, by induction on |w|. Thus P(L,)
must be false, or else P(L,) would be true, contrary to our assumption. Therefore
P(L,) is true if and only if L = £*. Thus “=X*" for % reduces to property P for 4,
and hence P is undecidable for €. O

Applications of Greibach’s theorem

Theorem 8.14 can be used to show, for example, that it is undecidable if the
language generated by a CFG is regular. Note that this question is different from
asking if the language generated is equal to some particular regular set R, as was
asked in Theorem 8.12.

Theorem 8.15 Let G be an arbitrary CFG. It is undecidable whether L(G) is
regular.

Proof The CFL’s are effectively closed under concatenation with regular sets and
under union. Let P be the property that L is regular. P is nontrivial for the CFL’s,

t Technically, a property is just a subset of €. We say “L has property P” or “P(L)” to mean L is a
member of P.
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is true for all the regular sets, and is preserved under quotient with a single symbol
by Theorem 3.6. Note that the regular sets are effectively closed under quotient
with another regular set, although Theorem 3.6 does not claim this (see the
discussion following that theorem). Thus by Theorem 8.14, P is undecidable for
CFLs. O

Theorem 8.15 allows us to show that a property is undecidable by showing
that the property is preserved under quotient with a single symbol. This latter task
is often relatively easy as, for example, in proving that inherent ambiguity is
undecidable.

Lemma 8.9 Let P be the property that a CFL is not inherently ambiguous. Then
P is preserved under quotient with a single symbol.

Proof Let G=(V, T, P, S) be an unambiguous CFG. Let
G,=(V u {[4/a]|Aisin V}, T, P, [S/a)),

where P, contains

1) all productions of P,

2) [A/a] >« if A>aais in P,

3) [A4/a] » «[B/a] if A— aBf is in P, and 2 c.
We claim that L(G,) = L(G)/a and that G, is unambiguous. To see this, first show
by an easy induction that

1) [S/a)%> a if and only if S %> «a, and

2) [S/a] 2> a[A/a] if and only if S %> aA.
That L(G,) = L(G)/a follows immediately. Assume G, is ambiguous. Then there
must be two leftmost derivations

1) [S/a] 2> B%>a % x and

2) [S/a] 2>y %> a % x where B # y.
But then in G we have two leftmost derivations of the string xa, a contradiction.

Thus G, must be unambiguous. We conclude that unambiguity is preserved under
quotient with a single symbol. O

Theorem 8.16 Inherent ambiguity for CFL’s is undecidable.

Proof By Theorem 4.7, P is nontrivial. By Lemma 8.9 it is preserved under
quotient with a single symbol. It is easy to show that P is true for all regular sets.
That is, every regular set has an unambiguous CFG. (The reader may look ahead
to Theorem 9.2 for a construction of an unambiguous CFG from an arbitrary
DFA.) Thus by Theorem 8.14, inherent ambiguity for CFL’s is undecidable.
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8.8 INTRODUCTION TO RECURSIVE FUNCTION THEORY

We mentioned in Section 7.3 that each Turing machine can be thought of as
computing a function from integers to integers, as well as being a language recog-
nizer. For every Turing machine M and every k, there is a function f (i,, i5, ---,
i,) that takes k integers as arguments and produces an integer answer or is
undefined for those arguments. If M started with 0°t10°21 --- 0% on its tape halts
with 0/ on its tape, then we say f% (i, ..., i,) = j. If M does not halt with a tape
consisting of a block of 0’s with all other cells blank, then f¥ (iy, ..., i) is
undefined. Note that the same Turing machine can be thought of as a language
recognizer, a computer of a function with one argument, a computer of a different
function of two arguments, and so on.

If i is an integer code for a TM M, as described in Section 8.3, and k is
understood, then we shall often write f; in place of /.

Recall that a function computed by a Turing machine is called a (partial)
recursive function. If it happens to be defined for all values of its arguments, then it
is also called a total recursive function.

The constructions on Turing machines given earlier in this chapter and the
previous one can be expressed as total recursive functions of a single variable.
That is, an algorithm A that takes as input the binary code for a TM M and
produces as output the binary code for another TM M’ can be viewed as a
function g of one variable. In particular, let i be the integer representing M and j
be the integer representing M'. Then g(i) = j. Technically, the TM B that com-
putes g is not A, but rather one that converts its unary input to binary, simulates A
and then converts its output to unary.

The S,,,-theorem

Our first theorem, called the S, -theorem, says that given a partial recursive func-
tion g(x, y) of two variables, there is an algorithm one can use to construct from a
TM for g and a value for x, another TM which with input y computes g(x, y).

Theorem 8.17 Let g(x, y) be a partial recursive function. Then there is a total
recursive function ¢ of one variable, such thatf,,(y) = g(x, y) for all x and y. That
is, if a(x) is treated as the integer representing some TM M, then f)(y) =
g(x, y).

Proof Let M compute g. Let A be a TM that given input x, written in unary,
constructs a TM M, that when given input y, shifts it right and writes 0*1 to its
left; M, then returns its head to the left end and simulates M. The output of 4 is
the unary representation of an integer {M . that represents M. Then A computes
a total recursive function g, and f,,)(y) = g(x, y). In proof, note that for each x,
o(x) is an integer representing M, above, and for each x, M, is designed to
produce g(x, y) when given input y. Since f,,, is the function computed by M, the
equality f,,(y) = g(x, y) follows. [
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The recursion theorem

The second theorem, called the recursion theorem, states that every total recursive
function ¢ mapping indices (integers denoting Turing machines) of partial recur-
sive functions into indices of partial recursive functions has a fixed point x, such
that £, () = f,o(y) for all y. In other words, if we modify all Turing machines in
some manner, there is always some Turing machine M, for which the modified
Turing machine M, computes the same function as the unmodified Turing
machine. At first this sounds impossible, since we can modify each Turing ma-
chine to add 1 to the originally computed function. One is tempted to say that
f(y) + 1 # f(y). But note that if f(y) is everywhere undefined, then f(y) + 1 does
equal f(y) for all y.

Theorem 8.18 For any total recursive function o there exists an x, such that
Seo(X) = fozey(x) for all x.

Proof For each integer i construct a TM that on input x computes (i) and then
simulates, by means of a universal TM, the f;(i/)th TM on x. Let g(i) be index of the
TM so constructed. Thus for all i and x,

Jor®) = fria(x) (8.3)
Observe that g(i) is a total function even if fi(i) is not defined. Let j be an index of

the function ag. That is, j is an integer code for a TM that, given input i, computes
g(i) and then applies ¢ to g(i). Then for x, = g(j) we have

JeolX) = fon(%)
=frw*) by (83)
=foeun(x)  since f; is the function ag

= faxol(X)-

Thus x, is a fixed point of the mapping . That is, TM x, and TM a(x,) compute
the same function. O

Applications of the recursion and S,,, theorems

Example 89 Let M, M,, ... be any enumeration of all Turing machines. We do
not require that this enumeration be the “standard” one introduced in Section 8.3,
but only that whatever representation is used for a TM, we can by an algorithm
convert from that representation to the 7-tuple notation introduced in Section 7.2,
and vice versa. Then we can use the recursion theorem to show that for some i, M;
and M,;,, both compute the same function.

Let (i) be the total recursive function defined as follows. Enumerate TM’s
M, M,, ... until one with integer code i as in (8.2) is found. Note that the states of
the TM must be considered in all possible orders to see if i is a code for this TM,



89 | ORACLE COMPUTATIONS 209

since in the notation introduced in Section 8.3, the order in which the moves for
the various states is written affects the code. Having found that M; has code i,
enumerate one more TM, M;, ,, and let 4(i) be the code for M;, . Then the
recursion theorem applied to this ¢ says there is some x, for which M, and
M, ., define the same function of one variable.

Example 8.10 Given a formal system F, such as set theory, we can exhibit a
Turing machine M such that there is no proof in F that M started on any
particular input halts, and no proof that it does not halt. Construct M, a TM
computing a two-input function g(i, j), such that

1 if there is a proof in F that fi(j) is
o J not defined; that is, there is a proof
96, j) = ‘ that the ith TM does not halt when given input j;

undefined otherwise.

M enumerates proofs in F in some order, printing 1 if a proof that the ith TM does
not halt on input j is found. Further, we may construct M so that if g(i, j) = 1, then
M halts, and M does not halt otherwise. By the S,,,-theorem there exists ¢ such
that

Jow(J) = gli, j)-
By the recursion theorem, we may effectively construct an integer i, such that
f;o(j) =f;r(io)(j) = g(i07 j)'
But g(iy,j) = 1, and is therefore defined, if and only if there is a proof in F that f; (j)
is undefined. Thus if F is consistent (i.e., there cannot be proofs of a statement and

its negation), there can be no proof in F that the ioth TM either halts or does not
halt on any particular input j.

89 ORACLE COMPUTATIONS

One is tempted to ask what would happen if the emptiness problem, or some other
undecidable problem, were decidable? Could we then compute everything? To
answer the question we must be careful. If we start out by assuming that the
emptiness problem is decidable, we have a contradictory set of assumptions and
may conclude anything. We avoid this problem by defining a Turing machine with
oracle.

Let A be a language, A < X*. A Turing machine with oracle A is a single-tape
Turing machine with three special states g., q,, and g,. The state g. is used to ask
whether a string is in the set 4. When the Turing machine enters state g. it
requests an answer to the question: “Is the string of nonblank symbols to the right
of the tape head in A?” The answer is supplied by having the state of the Turing
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machine change on the next move to one of the two states g, or g,, depending on
whether the answer is yes or no.f The computation continues normally until the
next time ¢, is entered, when the “oracle” answers another question.

Observe that if A is a recursive set, then the oracle can be simulated by
another Turing machine, and the set accepted by the TM with oracle A is recur-
sively enumerable. On the other hand, if 4 is not a recursive set and an oracle is
available to supply the correct answer, then the TM with oracle 4 may accept a set
that is not recursively enumerable. We denote the Turing machine M with oracle
A by M*. A set Lis recursively enumerable with respect to Aif L = L(M*) for some
TM M. A set L is recursive with respect to A if L= L{M*) for some TM M“ that
always halts. Two oracle sets are equivalent if each is recursive in the other.

A hierarchy of undecidable problems

We can now rephrase the question at the beginning of the section as “What sets
can be recognized given an oracle for the emptiness problem?” Clearly not all sets
can be r.e. with respect to the emptiness problem, since there is an uncountable
number of sets and only a countable number of TM’s. Consider the oracle set
S, = {{M)|{M) = &}, which is not an r.e. set (recall that (M) is the binary
code for TM M). Now consider TM’s with oracle S,. These machines have a
halting problem that is not recursive in S,. By defining an oracle for the emptiness
problems for TM’s with oracle S, and so on, we can develop an infinite hierarchy
of undecidable problems. More specifically, define

Sivr = {{M)| (M) = &5}

S:+1 Is an oracle for solving the emptiness problem for computations with respect
to S;. We can now classify some undecidable problems (but not all such problems)
by showing their equivalence to a set S; for some particular i.

Theorem 8.19 The membership problem for TM’s without oracles is equivalent
to S;.

Proof Construct M3 that, given (M, w) on its input, constructs the code for a
TM M’ that accepts ¥ if w is not in L(M) and accepts (0 + 1)* otherwise. The
construction of M’ was given in Example 8.2. M5! then enters state g, with the
code for M’ to the right of its head and accepts if and only if g, is entered. Thus
the membership problem for TM’s without oracle is recursive in S;.
Conversely, we can show there is a Turing machine with the membership
problem as oracle, that recognizes S,. (Strictly speaking, the oracle is L,.) To show
S, is recursive in L, construct a TM M, that, given {M ), constructs a new TM M’
operating as follows: M’ ignores its input; instead, M' uses the pair generator to
generate all pairs (i, j). When (i, j) is generated, M’ simulates M for i steps on the

t Note that the TM can remember its prior state by writing that state on its tape just before
entering q,.
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jth input word to M, words being numbered in the usual ordering. If M accepts,
M’ accepts its own input. If L(M) = &, then L(M') = &. If L(M) + &, then M’
accepts all its own inputs, ¢ in particular. Thus M%* may query its oracle whether
M’ accepts ¢, that is, whether (M, ¢) is in L. If so, M, rejects M. Otherwise M,
accepts M. Thus S, is recursive in L,. Od

Next consider the problem whether L(M) = X*, where X is the input alphabet
for TM M. In a sense, this problem is “harder” than membership or emptiness,
because, as we shall see, the “=X*” problem is equivalent to S,, while emptiness
and membership are equivalent to S,. While this difference means nothing in
practical terms since all these problems are undecidable, the results on compara-
tive degree of difficulty suggest that when we consider restricted versions of the
problems, the “=X*” problem really is harder than membership or emptiness. For
context-free grammars, the emptiness and membership problems are decidable,
while by Theorem 8.11 the problem whether L(G)= X* is undecidable. For
another example, consider regular expressions. The emptiness and membership
problems are each decidable efficiently, in time polynomial in the length of the
expression, while the problem whether a given regular expression r is equivalent to
X* has been proved almost certainly to require time exponential in the length
of r.t

Theorem 8.20 The problem whether L(M) = X* is equivalent to §,.

Proof We construct a TM M3 that takes an arbitrary TM M and constructs
from it M1, a TM with oracle S, that behaves as follows. M5! enumerates words
x, and for each x uses oracle S, to tell whether M accepts x. The technique
whereby S, can be used to answer the membership question was covered in
Theorem 8.19. M5! accepts its own input if any x is not accepted by M. Thus

Ly = |2 L =2,

|=* otherwise.

M$? with input M constructs M5!} then asks its own oracle, S,, whether
L(M®') = . If so, M3? accepts M, and M3? rejects otherwise. Thus M32 accepts
(M) Liv) = 24,

Now we must show that S, is recursive in the “=X*" problem. That is, let L,
be the set of codes for ordinary Turing machines that accept all strings over their
input alphabet. Then there is a TM M4* that accepts S,.

Before constructing M%*, we first define a valid computation of a TM M*!
using oracle S,. A valid computation is a sequence of ID’s, just as for ordinary
Turing machines. However, if one ID has state g., and the next ID has state g,
then M5! has queried the oracle whether some TM N accepts ( and received the

t Technically, the problem is “complete in polynomial space”; see Chapter 13. )
1t Note that S, is not part of M. Actually M3? constructs the state transitions of oracle machine M,
which will work correctly given S, as oracle.
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answer “no.” To demonstrate that this answer is correct, we insert a valid compu-
tation of ordinary TM N, showing that N accepts some particular input. If the
next state is g,, however, we insert no computation of N.

Now, let us describe how M4*behaves on input M5!. M4~ creates an ordinary
TM M’ that accepts all the invalid computations of M5!, To check that a string is
not a valid computation, M’ checks if the format is invalid (as in Lemma 8.7), or if
one ID of M5! does not follow on one move from the previous ID of M5! in the
sequence, or if a computation of an ordinary TM N inserted between 1D’s of M5!
with states g, and ¢, is not valid.

The only difficult part to check is when one ID of M5! has state q., and the
next ID has state g,. Then M’ must determine if “yes” is not the correct answer, so
these two ID’s do not follow in sequence. Let N be the TM about which the query
is made. M’ uses the pair generator and, when (i, j) is generated, simulates N for i
steps on the jth input. If N accepts, M’ determines that L(N) # (J, so “yes” is the
wrong answer. Thus the computation is not a valid one, and M’ accepts this
computation.

Now M’ accepts all strings over its input alphabet if and only if L(M>') = (¥,
that is, M5! has no valid computations. M%* may query its oracle whether M’
accepts £*. The code for MS! is in S, if and only if L(M') = X* Thus S, is
recursive in L. O

Turing reducibility

We have, throughout this chapter, dealt with a notion called “reducibility,” in
which we reduced language L, to L, by finding an algorithm that mapped strings
in L, to strings in L, and strings not in L, to strings not in L,. This notion of
reducibility is often called many-one reducibility, and while it was all we needed, it
is not the most general notion. A more general technique is called Turing reducibil-
ity, and consists simply of showing that L, is recursive in L,.

If L, is many-one reducible to L,, then surely L, is Turing-reducible to L,.In
proof, suppose f is a function computable by a TM that always halts, such that
f{x)isin L, if and only if x is in L,. Then consider the oracle TM M"2that, given
input x, computes f(x) and then enters state g, with f(x) to the right of its head.
M"2 accepts if and only if it then enters q,. Surely L(M"?) = L,, so L, Turing-
reduces to L,. The converse is false, and a proof is suggested in the exercises.

If L, Turing-reduces to L,, and L, is undecidable, then so is L,. For if L, were
recursive, then the oracle TM M*2such that L{M"?) = L, can be simulated by an
ordinary TM that always halts. Thus one could use a Turing reduction to show
that L, is undecidable, given that L, was undecidable, even in circumstances
where a many-one reduction of L, to L, did not exist, or was hard to find.

The notion of many-one reducibility has its virtues, however. If L, is many-
one reducible to L,, and L, is not r.e., we can conclude L, is not re. Yet this
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conclusion cannot be drawn for Turing reducibility. For example, L, is a non-r.e.
language that Turing-reduces to the r.e. language L,. We can recognize L, given L,
as an oracle, by asking whether (M, w) is in L, and accepting if and only if the
answer is no.

We see that the more difficult form of reducibility (many-one) enables us to
draw conclusions we cannot draw with the easier form of reducibility (Turing). In
Chapter 13, where we study bounded reducibility, we shall see additional
examples of how more difficult forms of reductions yield conclusions not achiev-
able by easier forms.

EXERCISES

8.1 Suppose the tape alphabets of all Turing machines are selected from some infinite set
of symbols a,, a,, ... Show how each TM may be encoded as a binary string.

82  Which of the following properties of r.e. sets are themselves r.e.?

a) L contains at least two strings.
b) L is infinite.
c) Lis a context-free language.
d) L=IX
S 83 Show that it is undecidable whether a TM halts on all inputs.

84 A Post Tag System is a finite set P of pairs («, B) chosen from some finite alphabet,
and a start string y. We say that aé = 3 if («, B) is a pair. Define %> to be the reflexive,
transitive closure of =, as for grammars. Show that for given tag system (P, y) and string &
it is undecidable whether y % §. [Hint: For each TM M let y be the initial ID of M with
blank tape, followed by a marker #, and select the pairs so that any ID must become the
next ID after a sequence of applications of the rules, unless that ID has an accepting state,
in which case the ID can eventually become ¢. Then ask if y % ¢]

8.5 Show that there is no algorithm which given a TM M defining a partial recursive
function f of one variable, produces a TM M’ that defines a different function of one
variable.

**86 For ordinary Turing machines M, show that

a) the problem of determining whether L(M) is finite is equivalent to S,;

b) the problem of determining whether L(M) is a regular set is equivalent to S;.
8.7 Show that the following problems about programs in a real programming language
are undecidable.

a) Whether a given program can loop forever on some input.
b) Whether a given program ever produces an ovtput.
c) Whether two programs produce the same output on all inputs.
8.8 Use Theorem 8.14 to show that the following properties of CFL’s are undecidable.

a) Lis a linear language.
b) Lis a CFL.
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*S 8.9  Show that Theorem 8.14 applies to the linear languages. [Hint: Consult Theorem 9.2
for a proof that every regular set has a linear grammar. The hard part is showing that
“=2Z*” is undecidable for linear languages.

*8.10 Show that the following properties of linear languages are undecidable. You may use
the fact that every regular set is a linear language.

a) L is a regular set.

b) Lis a linear language.

c) Lisa CFL.

d) L has no unambiguous linear CFG.
*8.11 Show that for CFL L, it is undecidable whether L = IX.
*8.12

a) Show that if L, many-one reduces to L,, and L, is (i) recursive in L; or (i) r.e. in Ls,
then L, is recursive or r.e. in L;, respectively.

b) Show that L, Turing-reduces to S,.

c) Show that L, does not many-one reduce to S,. [Hint: Use part (a).]

8.13 We say that L, “truth-table” reduces to L, if:

1) There are k algorithms mapping any string x over the alphabet of L, to strings over the
alphabet L,. Let gi(x) be the result of applying the ith algorithm to x.

2) There is a Boolean function f(y,, ..., y,) such that if y; is true when g;(x) is in L,, and y;
is false otherwise, then f(y,, ..., y;) is true if and only if x is in L,.

For example, let L, be the set of strings with equal numbers of 0’s and 1's, and let L, be the
set of strings with no fewer 0’s than I's. Let g,(x) = x and g,(x) be formed from x by
replacing 0’s by 1's and vice versa. Let f (y,, y2) = y; A y,. Thenf(y,, y,)is true if and only
if g1(x) and g,(x) both have no fewer 0’s than I’s; that is, x has an equal number of 0’s and
I’'s. Thus L, truth-table reduces to L,.

a) Show that if L, truth-table reduces to L,, then L, Turing-reduces to L,.
b) Show that if L, many-one reduces to L,, then L, truth-table reduces to L,.
c) Show that L, truth-table reduces to S,.

8.14 Consider a multitape TM with oracle which, when it queries its oracle, refers to the
entire contents of a designated tape, say the last. Show that this model is equivalent to the
oracle TM as defined in Section 8.9.

8.15 Show that PCP is decidable for words over a one-symbol alphabet.
8.16 Show that PCP is equivalent to S,.

*8.17 Show that PCP is undecidable if strings are restricted to have length one or two.
What if strings are restricted to have length exactly two?

*8.18 Let o be a total recursive function mapping indices of partial recursive functions to
indices of partial recursive functions. Give an algorithm to enumerate an infinite set of fixed
points of ¢; that is, infinitely many i’s such that fi(y) = f,(y) for all y.

*8.19 Does there exist an effective enumeration of Turing machines M,, M ,, ... such that
no three consecutive TM’s compute the same function?
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Solutions to Selected Exercises

83 Let M =(Q,Z,T,9, qo, B, F) be a TM. We construct another TM M’, such that M’
halts on x if and only if M accepts x. We shall thus have shown that the question whether a
TM halts on all inputs reduces to the question whether a TM accepts all inputs, which we
know is undecidable. Incidentally, we shall also show by this construction that a question
such as “Does a TM halt on a given input?” or “Does a TM halt on some input?” is also
undecidable.

M’ is designed to behave as follows. First, it shifts its input one position right, placing a
left end marker $ on the leftmost cell. M’ then simulates M. If §(g, X) is undefined, and
either (i) ¢ is nonaccepting and X is any symbol in I' U {8} [note that (g, $) is surely
undefined], or (ii) q is accepting and X is $, then M’ scanning X in state g moves right and
enters state p,. In state p,, scanning any symbol, M’ moves left and enters state p,; in that
state, M’ moves right and enters p, again. Thus M’ loops forever if M either halts in a
nonaccepting state or falls off the left end of the tape in any state. If M enters an accepting
state, not scanning $, then M’ halts. Thus M’ halts if and only if M accepts its input, as
desired.

8.9 We must first show that the linear languages are closed under union and concatena-
tion with regular sets. We look ahead to Theorem 9.2 for a proof that every regular set is
generated by CFG all of whose productions are of the forms A - Bw and A —w for
nonterminals 4 and B and string of terminals w. Any such grammar is surely linear. The
proof that linear languages are closed under union is just like Theorem 6.1. For concatena-
tion with a regular set, let G, = (Vy, Ty, P, S,) be a linear grammar and G, = (V;, T, P,
S,) be a grammar with all productions of the forms A — Bw and A — w. Assume V, and V,
are disjoint. Let

G=ViuVy, Ty T,PS,),

where P consists of

i) all productions 4 — Bw of P,,
it) production A — S, w whenever A — w is a production of P,, and
iii) all productions of P,.

Then L(G) is easily seen to be L(G,)L(G;), since all derivations in G are of the form
S, Z=‘> Six g» yx, where S, (% xand S, :;‘:‘ y. Since regular sets and linear languages are closed
under reversal, concatenation on the left by a regular set follows similarly.

Now we must show that “=X*” is undecidable for linear languages. The proof closely
parallels Lemma 8.7 and Theorem 8.11, the analogous results for general CFG’s. The
important difference is that we must redefine the form of valid computations so the set of
invalid computations is a linear CFG. Let us define a valid computation of TM M to be a
string

witwy ¥ o Fw, Fw,EEwWREWR #  EwlEw], (8.4)

where each w; is an ID, w; |57 wiyy for 1 <i <n, w, is an initial ID and w, is a final ID.
Then it is not hard to construct a linear grammar for strings not of the form (8.4), parallel-
ing the ideas of Lemma 8.7. Then the analog of Theorem 8.11 shows that “=X*" is
undecidable for linear grammars.
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THE CHOMSKY HIERARCHY

Of the three major classes of languages we have studied—the regular sets, the
context-free languages, and the recursively enumerable languages—we have gram-
matically characterized only the CFL’s. In this chapter we shall give grammatical
definitions of the regular sets and the r.e. languages. We shall also introduce a new
class of languages, lying between the CFL’s and the r.e. languages, giving both
machine and grammatical characterizations for this new class. The four classes of
languages are often called the Chomsky hierarchy, after Noam Chomsky, who
defined these classes as potential models of natural languages.

9.1 REGULAR GRAMMARS

If all productions of a CFG are of the form 4 - wB or A — w, where 4 and B are
variables and w is a (possibly empty) string of terminals, then we say the grammar
is right-linear. If all productions are of the form 4 — Bw or A - w, we call it
left-linear. A right- or left-linear grammar is called a regular grammar.

Example 9.1 The language 0(10)* is generated by the right-linear grammar

S—-04
(9.1)
A— 104 ]¢
and by the left-linear grammar
S —S10|0 (9:2)

217
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Equivalence of regular grammars and finite automata

The regular grammars characterize the regular sets, in the sense that a language is
regular if and only if it has a left-linear grammar and if and only if it has a
right-linear grammar. These results are proved in the next two theorems.

Theorem 9.1 If L has a regular grammar, then L is a regular set.

Proof First, suppose L = L(G) for some right-linear grammar G = (V, T, P, S).
We construct an NFA with e-moves, M = (Q, T, 6, [S], {[¢]}) that simulates deriva-
tions in G.

Q consists of the symbols [«] such that o is S or a (not necessarily proper)
suffix of some right-hand side of a production in P.

We define § by:

1) If A is a variable, then 6([A4], €) = {[¢]| 4 — « is a production}.
2) Ifaisin T and a in T* U T*V, then 6([ac], a) = {[o]}.

Then an easy induction on the length of a derivation or move sequence shows
that 8([S], w) contains [«] if and only if S 2> xA => xyo, where A — ya is a produc-
tion and xy = w, or if « = S and w = . As [¢] is the unique final state, M accepts
wif and only if S %> x4 = w. But since every derivation of a terminal string has at
least one step, we see that M accepts w if and only if G generates w. Hence every
right-linear grammar generates a regular set.

Now let G=(V, T, P, S) be a left-linear grammar. Let G' = (V, T, P, S),
where P’ consists of the productions of G with right sides reversed, that is,

P={A->a|A->a®isin P}.

If we reverse the productions of a left-linear grammar we get a right-linear gram-
mar, and vice versa. Thus G’ is a right-linear grammar, and it is easy to show that
L(G’) = L{G)®. By the preceding paragraph, L(G') is a regular set. But the regular
sets are closed under reversal (Exercise 3.4g), so L(G')® = L(G) is also a regular set.
Thus every right- or left-linear grammar defines a regular set. O

Example 92 The NFA constructed by Theorem 9.1 from grammar (9.1) is
shown in Fig. 9.1.

Fig. 9.1 NFA accepting 0(10)*.
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Now consider grammar (9.2). If we reverse its productions we get
§—-015|0

The construction of Theorem 9.1 for this grammar yields the NFA of Fig. 9.2(a). If
we reverse the edges of that NFA and exchange initial and final states, we get
another NFA for 0(10)*.

Fig. 9.2 Construction of an NFA for 0(10)* from a left-linear grammar.

Theorem 9.2 If Lis a regular set, then L is generated by some left-linear grammar
and by some right-linear grammar.

Proof Let L= L{M)for DFA M = (Q, Z, 4, qo, F). First suppose that g, is not a

final state. Then L = L(G) for right-linear grammar G = (Q, X, P, q,), where P
consists of production p— aq whenever (p, a) = q and also p— a whenever
d(p, a) is a final state. Then clearly &(p, w) = q if and only if p2>wgq. If wa is
accepted by M, let 6(go, w) = p, implying g, 2> wp. Also, é(p, a) is final,so p - ais
a production. Thus g, % wa. Conversely, let q,%>x. Then x = wa, and
9o %> wp => wa for some state (variable) p. Then 8(go, w) = p, and (p, a) is final.
Thus x is in L{M). Hence L(M) = L(G) = L.

Now let g, be in F, so ¢ is in L. We note that the grammar G defined above
generates L — {¢}. We may modify G by adding a new start symbol S with produc-
tions S — g, | e. The resulting grammar is still right-linear and generates L.

To produce a left-linear grammar for L, start with an NFA for If and then
reverse the right sides of all productions of the resulting right-linear grammar.

O
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Example 9.3 In Fig. 9.3 we see a DFA for 0(10)*.
The right-linear grammar from this DFA is

A—-0B|1D|0
B—0D|1C
C—0B|1D|0
D—-O0D|1D
As D is useless we may eliminate it, obtaining grammar
A—0B|0
B—- 1C
C—0B|0

Fig. 93 DFA for 0(10)*.

9.2 UNRESTRICTED GRAMMARS

The largest family of grammars in the Chomsky hierarchy permits productions of
the form o — B, where a and f are arbitrary strings of grammar symbols, with
o # ¢. These grammars are known as semi-Thue, type 0, phrase structure or unre-
stricted grammars. We shall continue to use the 4-tuple notation G = (V, T, P, S)
for unrestricted grammars. We say yad => yBé whenever a — f is a production. As
before, 2> stands for the reflexive and transitive closure of the relation =:

L(G) = {w|w is in T* and S %> w},

exactly as for context-free grammars.

Example 9.4 A grammar generating {a'|i is a positive power of 2} is given below.

1) S—» ACaB 5) aD —» Da
2) Ca— aaC 6) AD - AC
3) CB- DB 7) aE — Ea

4) CB>E 8) AE - ¢
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A and B serve as left and right endmarkers for sentential forms; C is a marker that
moves through the string of a’s between 4 and B, doubling their number by
production (2). When C hits the right endmarker B, it becomes a D or E by
production (3) or (4). If a D is chosen, that D migrates left by production (5) until
the left endmarker A is reached. At that point the D becomes a C again
by production (6), and the process starts over. If an E is chosen, the right endmar-
ker is consumed. The E migrates left by production (7) and consumes the left
endmarker, leaving a string of 2° a’s for some i > 0. We can prove by induction on
the number of steps in the derivation that if production (4) is never used, then any
sentential form is either

i) S,

ii) of the form Aa’Ca’B, where i + 2j is a positive power of 2, or

iii) of the form Aa'Da’B, where i + j is a positive power of 2.
When we use production (4) we are left with a sentential form Ad’E, where i is a
positive power of 2. Then the only possible steps in a derivation are i applications

of (7) to yield AEd’ followed by one application of (8), producing sentence o,
where i is a positive power of 2.

Equivalence of type 0 grammars and Turing machines

We shall prove in the next two theorems that unrestricted grammars characterize
the r.e. languages. The first theorem states that every type-0 language generates an
r.e. set. An easy proof would be to give an algorithm for enumerating all strings
generated by a type-0 grammar. Instead we construct a Turing machine recog-
nizer for sentences generated by a type-0 grammar, since this construction will be
useful later for a similar proof about context-sensitive grammars (the remaining
class in the Chomsky hierarchy).

Theorem 9.3 If L is L(G) for unrestricted grammar G = (V, T, P, S), then Lisan
r.e. language.

Proof Let us construct a nondeterministic two-tape Turing machine M to recog-
nize L. M’s first tape is the input, on which a string w will be placed. The second
tape is used to hold a sentential form a of G. M initializes a to S. Then M
repeatedly does the following:

1) Nondeterministically select a position i in a, so that any i between 1 and |« |
can be chosen. That is, start at the left, and repeatedly choose to move right or
select the present position.

2) Nondeterministically select a production f—y of G.

3) If B appears beginning in position i of a, replace g by y there, using the
“shifting-over” technique of Section 7.4, perhaps shifting left if |y| < |B].



222 THE CHOMSKY HIERARCHY

4) Compare the resulting sentential form with w on tape 1. If they match, accept;
w is a sentence of G. If not, go back to Step (1).

It is easy to show that all and only the sentential forms of G appear on tape 2
when Step (4) is executed after some sequence of choices. Thus L(M) = L(G) = L,
so Lisre.

Theorem 9.4 If L is an r.e. language, then L = L(G) for some unrestricted gram-
mar G.

Proof Let L be accepted by Turing machine M = (Q, £, T, 8, g,, B, F). Construct
a grammar G that “nondeterministically” generates two copies of a representation
of some word in Z* and then simulates the action of M on one copy. If M accepts
the word, then G converts the second copy to a terminal string. If M does not
accept, the derivation never results in a terminal string.

Formally, let

G=(V,Z, P, A4)), where V=(Z v {g)xT)u{4,, 4;, A3}
and the productions in P are:
1) Ay~ g0 4,
2) A, —|a, a]A, for each a in Z.
3) A, 4,
4) A, - [¢, B4,
5) A3 —¢
6) gla, X]— [a, Y]p foreachain X U {¢} and each qin Q and X and Y in I, such
that 6(q, X) = (p, Y, R).

7) [b, Z]g[a, X]— p[b, Z][a, Y] for each X, Y, and ZinT,aand bin T U {¢,
and q in Q, such that (g, X) = (p, Y, L).

8) [a, X]q — qaq, q[a, X] > qaq, and g— e foreachainZ U {¢}, X in T, and q
in F.
Using rules 1 and 2, we have

A, = ‘IO[ah al][az, az] [am an]A27

where q; is in  for each i. Suppose that M accepts the string a, a, -** a,. Then for
some m, M uses no more than m cells to the right of its input. Using rule 3, then
rule 4 m times, and finally rule 5, we have

Al 5‘10[“1’ al][ai) a2] [am an][é’ B]m
From this point on, only rules 6 and 7 can be used until an accepting state is
generated. Note that the first components of variables in (Z U {}) x I are never
changed. We can show by induction on the number of moves made by M that if

qoalal'“an,'%XIXZ“’Xr—qur'”Xs’ (9'3)
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then

golay, ailla, az] -+ [a,, ][, B]" 7
[a1, Xi)laz, Xo] -+ [a,- 1 X, - 1Jdlars X1 [t ms Xnambs (9.4)

where ay, a;, ...,a,are in X, @,y =Gpi2="""=Cuim=6 X1, X2, .- Xptm
areinT,and X;,, = X1, =""=X,4mn=B.

The inductive hypothesis is trivially true for zero moves, since r = 1and s = n.
Suppose it is true for k — 1 moves and let

qoa,a, - a, lk_n_;l—xlxz X, 19X, X Vi Yy Yo pY, o X,
By the inductive hypothesis,
qo[al’ al] T [am an][es B]m(é;> [al, Xl] e [a -1 Xr— l]q[ara Xr] e [an+m, Xn+m]a

where the a’s and X’s satisfy the conditions of (9.4).
If t = r + 1, then the kth move of M is to the right, s0 5(q, X,) = (p, ¥, R). By
rule (6), gfa,, X,] - [a,, ¥,]p is a production of G. Thus

golay, a,] -+~ [a,, a,)[e, B mé—‘—’
[ay, Yi] -+ [a-1. YimsJpla X1 [@usms Vo) (95)

where Y; = B for i > u.

If t = r — 1, then the kth move of M is to the left, and we prove (9.5) using rule
(7) and the observations that r > 1 and (g, X,) = (p, Y,, L).

By rule (8), if p is in F then

[als Yl] [a:-h Y;_l]p[a,, Yx] [an+m’ Yn+m]£>al a; " Q.

We have thus shown that if w is in L(M), then 4, 2>w, so w is in L(G).

For the converse, that w in L(G) implies w in L(M), an induction similar to the
above shows that (9.4) implies (9.3). We leave this part as an exercise. Then we
note that there is no way to remove the state of M from sentential forms of G
without using rule (8). Thus G cannot derive a terminal string without simulating
an accepting computation of M. By rule (8), the string derived must be the first
components of the variables in (£ U {¢}) x I, which are never changed as moves
of M are simulated. O

9.3 CONTEXT-SENSITIVE LANGUAGES

Suppose we place the restriction on productions a — f of a phrase structure
grammar that § be at least as long as «. Then we call the resulting grammar
context-sensitive and its language a context-sensitive language (CSG and CSL
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respectively). The term “context-sensitive” comes from a normal form for these
grammars, where each production is of the form o Ax, — a,fo,, With B # e.
Productions of the latter form look almost like context-free productions, but they
permit replacement of variable A by string § only in the “context” a;, — a,. We
leave this normal form as an exercise.

Almost any language one can think of is context-sensitive; the only known
proofs that certain languages are not CSL’s are ultimately based on diagonaliza-
tion. These include L, of Chapter 8 and the languages to which we may reduce L,,
for example, the languages proved undecidable in Chapter 8. We shall prove in
Section 9.4 that there are recursive languages that are non-CSL’s, and in Chapter
12 we shall refine this statement somewhat. In both cases the proofs proceed by
diagonalization.

Example 9.5 Consider again the grammar of Example 9.4. There are two pro-
ductions that violate the definition of a context-sensitive grammar. These are
CB— E and AE > . We can create a CSG for the language {a*'|i > 1} by realiz-
ing that 4, B, C, D, and E are nothing but markers, which eventually disappear.
Instead of using separate symbols for the markers, we can incorporate these
markers into the a’s by creating “composite” variables like [CaB], which is a single
symbol appearing in place of the string CaB.

The complete set of composite symbols we need to mimic the grammar of
Example 9.4 is [ACaB], [Aa], [ACa], [ADa), [AEa], [Ca], [Da], [Ea], [aCB], [CaB],
[aDB], [aE], [DaB}, and [aB]. The productions of our context-sensitive grammars,
which we group according to the production from Example 9.4 that they mimic,
are:

1) S —[ACaB] 5) Ez[Da]}—» [[Da]a]
2 ala = aalCa aDB] — [DaB
) {ga%[aB] —>[aa[]CaB] [4a][Da] - [4Da]a

[ACa]a — [Aa]a[Ca] a[DaB] - [Da][aB]
[ACa][aB] - [Aa]a[CaB] [4a][DaB] - [ADa][aB]
[ACaB] - [Aa][aCB] 6) [ADa] - [ACa]
[CaB] - a[aCB] 7) a[Ea] — [Ea]a

3) [aCB] - [aDB] [aE] - [Eq]

4) [aCB] - [aE] [4a][Ea] - [4Ea]a

8) [AEa]l —a

It is straightforward to show that S %>« in the grammar of Example 9.4 ifand
only if S > « in the present CSG, where «’ is formed from a by grouping with an a
all markers (4 through E) appearing between it and the a to its left and also
grouping with the first @ any markers to its left and with the last g any markers to
its right. For example, if @ = AaaCaB, then o is [Aa]a[CaB].
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Linear bounded automata

Now we introduce a machine characterization of the CSL’s. A linear bounded
automaton (LBA) is a nondeterministic Turing machine satisfying the following
two conditions.

1) Its input alphabet includes two special symbols ¢ and $, the left and right
endmarkers, respectively.

2) The LBA has no moves left from ¢ or right from $, nor may it print another
symbol over ¢ or $.

The linear bounded automaton is simply a Turing machine which, instead of
having potentially infinite tape on which to compute, is restricted to the portion of
the tape containing the input x plus the two tape squares holding the endmarkers.
We shall see in Chapter 12 that restricting the Turing machine to an amount
of tape that, on each input, is bounded by some linear function of the length of the
input would result in the identical computational ability as restricting the Turing
machine to the portion of the tape containing the input—hence the name “linear
bounded automaton.”

An LBA will be denoted M = (Q, %, T, 3, go, ¢, $, F), where Q, %, T, 8, go and F
are as for a nondeterministic TM; ¢ and $ are symbols in X, the left and right
endmarkers. L(M), the language accepted by M, is

wlwis in (£ — {¢, $})* and go¢w3 [ agff for some g in F}.
M

Note that the endmarkers are on the input tape initially but are not considered
part of the word to be accepted or rejected. Since an LBA cannot move off the
input, there is no need to suppose that there is blank tape to the right of the $.

Equivalence of LBA’s and CSG’s

We now show that except for the fact that an LBA can accept ¢ while a CSG
cannot generate ¢, the LBA’s accept exactly the CSL’s.

Theorem 9.5 If Lis a CSL, then L is accepted by some LBA.

Proof The proof is almost the same as that for Theorem 9.3. The only difference
is that while the TM of Theorem 9.3 generated sentential forms of an unrestricted
grammar on a second tape, the LBA uses a second track of its input tape. Pre-
sented with ¢w$ on its tape, the LBA starts by writing the symbol S on a second
track below the leftmost symbol of w. If w = ¢, the LBA instead halts without
accepting. Next the LBA repeatedly guesses a production and a position in the
sentential form written on the second track. It applies the production, shifting the
portion of the sentential form to the right whenever the sentential form expands.
If, however, the new sentential form is longer than w, the LBA halts without
acceptance. Thus the LBA will accept w if there is a derivation S 2 w such that no
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intermediate sentential form is longer than w. But since the right side of any
production in a CSG is as long or longer than the left side, there could not be a
derivation S 2> a 2> w, where a is longer than w. Thus the LBA accepts all and only
the words generated by the CSG. O

Theorem 9.6 If L= L(M) for LBAM = (Q,Z%,T, 4, g0, ¢, S, F), then L— {¢}isa
CSL.

Proof The proof parallels the construction of an unrestricted grammar from a
TM in Theorem 9.4. The differences are that the endmarkers on the LBA tape
must be incorporated into adjacent tape symbols, and the state must likewise be
incorporated into the symbol scanned by the tape head. The reason for this is that
if the CSG simulated the LBA using separate symbols for the endmarkers, or state,
it could not erase these symbols afterward, since that would necessitate shortening
a sentential form, and the right side of every CSG production is at least as long as
the left side. The generation of a sequence of pairs, the first component of which
forms the terminal string a, a, ‘- a, and the second of which forms the LBA tape
is accomplished by the productions

Ay~ a, q0¢a]A2, A, - [a, ‘Io¢a$],
A, - [a, al4,, A, —[a, a3},

forallain T —{§, $}.

The LBA-simulating rules are similar to rules 6 and 7 in Theorem 9.4 and are
left as an exercise.

If q is final, then we have production

[a. 2gf] - a

for all @ in £ — {¢, $} and all possible « and f (that is, a and/or § could include ¢, 3,
and one tape symbol). Note that the number of productions defined is finite. We
also allow deletion of the second component of a variable if it is adjacent to a
terminal, by

[a, 2]b — ab,
bla, o] — ba

for any a and b in X — {¢, $} and all possible «’s.

The productions shown explicitly are clearly context-sensitive. The LBA-
simulating productions can easily be made length preserving, so the resulting
grammar is a CSG. A proof that any word w but ¢ is accepted by M if and only if it
is generated by the grammar parallels Theorem 9.4, and we omit it. Note that
there is no way for the grammar to set up the LBA input ¢$ or simulate M on that
input. Thus ¢ is not generated by the grammar whether or not it is in L(M). O
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94 RELATIONS BETWEEN CLASSES OF LANGUAGES

The four classes of languages—r.e. sets, CSL’s, CFL’s, and regular sets—are often
referred to as languages of types 0, 1, 2, and 3, respectively. We can show that
except for the matter of the empty string, the type-i languages properly include the
type-(i + 1) languages for i = 0, 1, and 2. We first need to show that every CSL is
recursive, and in fact, there are recursive languages that are not CSL’s.

CSL’s and recursive sets
Theorem 9.7 Every CSL is recursive.

Proof Givena CSG G = (V, T, P, S) and a word w in X* of length n, we can test
whether w is in L(G) as follows. Construct a graph whose vertices are the strings in
(V v T)* of length n or less. Put an arc from « to B if a = f. Then paths in the
graph correspond to derivations in G, and wis in L(G) if and only if there is a path
from the vertex for S to the vertex for w. Use any of a number of path-finding
algorithms (see Aho, Hopcroft, and Ullman [1974]) to decide whether such a path
exists. O

Example 9.6 Consider the CSG of Example 9.5 and input w = aa. One way to
test for paths in the graph is to start with string S, and at the ith step find the
strings of length n or less having a path from S of length i or less. If we have the set
for i — 1, say #, then the set for i is & U {f|a=> B for someain & and |B| < n}.
In our example we get the following sets:

i=0: {S}

i=1: {S,[ACaB]}

i=2: {8, [ACaB], [Aa][aCB]}

i=3: {8, [ACaB], [4a][aCB], [Aa][aDB], [Aa][aE]}

Il
=)

: {S, [ACaB], [Aa)[aCBY), [Aa][aDB], [Aa][aE],
[Aa][DaB], [Aa][Ea}, [ADa][aB], [4Ea]a,
[ACad][aB], aa}

Since for i = 6 we discover that aa is reachable from S we need go no further.
In general, since the number of sentential forms of length n or less is finite for any
fixed grammar and fixed n, we know we shall eventually come to a point where no
new sentential forms are added. Since the set for i depends only on the set for
i — 1, we shall never add any new strings, so if we have not yet produced w, we
never will. In that case w is not in the language.
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To prove that the CSL’s are a proper subset of the recursive languages we
prove something more general. In particular, we show that any class of languages
that can be effectively enumerated, by listing one or more Turing machines that
halt on all inputs, for each member of the class, is a proper subclass of the
recursive languages.

Lemma 9.1 Let M,;, M,, ... be an enumeration of some set of Turing machines
that halt on all inputs. Then there is some recursive language that is not L(M;) for
any i.

Proof Let L be the subset of (0 + 1)* such that wis in Lif and only if M; does not
accept w, where i is the integer whose binary representation is w. L is recursive,
since given w we can generate M, and test whether or not w is in L(M;). But no TM
on the list accepts L. Suppose L were (M), and let x be the binary representation
of j. If x is in L, then x is not in L(M ), and if x is not in L, then x is in L(M ;). Thus
L+ L(M;) as supposed. Hence L is a recursive language that is not L{M}) for
any j.

Theorem 9.8 There is a recursive language that is not context-sensitive.

Proof By Lemma 9.1 we need only show that we can enumerate halting TM’s for
the CSL’s over alphabet {0, 1}. Let the 4-tuple representation for CSG’s with
terminal alphabet {0, 1} be given some binary coding. For example, we could let 0,
1, comma, -, {, }, (, and ) be denoted by 10, 100, ..., 108, respectively, and let the
ith variable be denoted by 10°*®. Let M ; be the Turing machine implementing the
algorithm of Theorem 9.7 that recognizes the language of the CSG with binary
code j. Clearly M; always halts whether its input is accepted or not. The theorem
then follows immediately from Lemma 9.1. O

The hierarchy theorem

Theorem 9.9 (a) The regular sets are properly contained in the context-free lan-
guages. (b) The CFL’s not containing the empty string are properly contained in
the context-sensitive languages. (c) The CSL’s are properly contained in the r.¢.
sets.

Proof Part (a) follows from the fact that every regular grammar is a CFG, and
{0"1"|n > 1} is an example of a CFL that is not regular. Part (b) is proved by
noting that every CFG in Chomsky normal form is a CSG. {a*'|i > 1} is a CSL
that is easily shown not to be a CFL by the pumping lemma. For part (c) every
CSG is surely an unrestricted grammar. Proper containment follows from
Theorem 9.8. 0
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EXERCISES

9.1 Construct left-linear and right-linear grammars for the languages

a) (0 + 1)*00(0 + 1)*

b) 0*(1(0 + 1))*

c) (((01 + 10)*11)*00)*
9.2 Show the following normal form for right-linear grammars and the analogous result
for left-linear grammars: If L is a regular set, then L — {¢} is generated by a grammar in
which all productions are of the form 4 — aB or A — a for terminal a and variables A
and B.

9.3 A context-free grammar is said to be simple if it is in Greibach normal form, and for
every variable A and terminal g, there is at most one string « such that A —aa is a
production. A language is simple if it has a simple grammar. For example, L = {0"1"|n > 1}
has the simple grammar:

S—04

A—0AB|1
B-1

Note that the more natural GNF grammar for L,
S —0SB|0B
B-1

is not simple because there are two S-productions whose right sides begin with 0. Prove
that every regular set not containing ¢ is a simple language. [Hint: Use a DFA representa-
tion for the regular set.]

*94 A CFG is said to be self-embedding if there is some useful variable A such that
A% wAx, and neither w nor x is €. Prove that a CFL is regular if and only if it has a CFG
that is not self-embedding. [Hint: It is easy to show that no regular grammar is self-
embedding. For the “if” portion, show that a non-self-embedding grammar may be put in
Greibach normal form without making it self-embedding. Then show that for every non-
self-embedding GNF grammar, there is a constant k such that no left-sentential form has
more than k variables. Finally, show from the above that the non-self-embedding GNF
grammar can be converted to a regular grammar.]

*9.5  Give unrestricted grammars for

a) {ww|wis in (0 + 1)*} b) {0?]i > 1}

c) {0°|i is not a prime} d) {012'|i > 1}
9.6  Give context-sensitive grammars for the languages of Exercise 9.5, excluding ¢ in (a).
9.7 A CSL is said to be deterministic if it is accepted by some deterministic LBA. Show
that the complement of a deterministic CSL is also a deterministic CSL. [Hint: Show that
for every deterministic LBA there is an equivalent LBA that halts on every input.] It is,
incidentally, open whether every CSL is a deterministic CSL, and whether the CSL’s are
closed under complementation. Obviously a positive answer to the former question would
imply a positive answer to the latter.
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*98

a) Show that every context-free language is accepted by a deterministic LBA.

b) Show that the Boolean closure of the CFL’s is contained within the class of sets
accepted by deterministic LBA’s.

c) Show that the containment in (b) is proper. [Hint: Consider languages over a one-
symbol alphabet.]

*99  Show that every CSL is generated by a grammar in which all productions are of the
form aAf — aypB, where A is a variable, a, B, and y are strings of grammar symbols, and

yFE

*S9.10 Show that the CSL’s are closed under the following operations:

a) union b) concatenation
c) intersection d) substitution
e) inverse homomorphism f) positive closure (recall L' = | J;=, L)

*9.11 Show that the r.e. sets are closed under the following operations:

a) through e) same as Exercise 9.10.
f) Kleene closure.

9.12

a) Show that all the undecidable properties of CFL’s mentioned in Sections 8.5, 8.6, and
8.7 are undecidable for CSL’s, with the exception that “= X*” is trivially decidable
because no CSL contains ¢.

b) Show that “= Z*” is undecidable for CSL’s.

$9.13 Show that it is undecidable whether a given CSL is empty.
*$9.14 Show that every r.e. set is h(L), where h is a homomorphism and L a CSL.

Solutions to Selected Exercises

9.10 The proofs are similar to the proofs of Theorems 6.1, 6.2, and 6.3 for CFLs.
However, there is one problem with which we have to deal. Consider the concatenation
construction. Suppose

G, =W T, P, Sl) and Gy =(V2, Tz, P, S3)

are CSG’s generating L, and L,, respectively. In Theorem 6.1 for CFG’s, we constructed
grammar

Go=(VivVau{Ss, i U Ty PyuPyu{Ss— S5}, Sa)

to generate L, L,. This construction is correct for CFG’s, provided ¥; and V; are disjoint.
For CSG’s, however, we could have a production « — f in P, or P, that was applicable in a
sentential form of G,, say yJ, where S, ::l y and st_;» 3, in such a position that a straddles
the boundary between y and 6. We might thus derive a string not in L, L,.

Assuming V; n V, = @ doesn’t help, since a could consist of terminals only, and of
course we cannot assume that T, n T, = &J. What we need is a normal form for CSG’s that
allows only variables on the left sides of productions. Such a lemma is easy to prove. Let
G=(V, T, P, S) be a CSG. Construct G’ = (V', T, P’, S), where V' consists of V' plus the
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variables A, for each a in T. P’ consists of productions A, — a for each g, and production
o' — B for each a — f in P, where o is a with each occurrence of a terminal a replaced by
A,, and § is similarly related to B.

Now, if we assume that G, and G, have disjoint sets of variables and are in the above
normal form, the constructions of Theorem 6.1 for union and concatenation carry over to
CSL’s.

Positive closure presents another problem. If, in analogy with Theorem 6.1, we
construct

Gs=(V; U {Ss}, T}, Py U {S5— 5185|541}, Ss),

we have not avoided the problem of the potential for applying a production « — f in such a
way that it straddles the strings derived from two or more instances of S,. What we can do is
create grammar G', which is G, with each variable A4 replaced by a new symbol A’. Then we
construct the grammar Gs = (Vs, T,, Ps, Ss), where Vs consists of the variables of G, and
G, plus the symbols S5 and S5; P5 consists of the productions of G, and Gj, plus

55"515'5|Sx
55— 5155]$)

As no CSL contains ¢, we can never have symbols derived from two instances of S, or two
instances of S} adjacent, and we may be sure that each production of Gs is applied to a
string derived from one instance of S; or Sj.

Inverse homomorphism, intersection, and substitution are best handled by machine-
based proofs. Let L be a CSL accepted by LBA M and h a homomorphism. Suppose that
|h(a)] < k for any a. Then we may construct LBA M’ for h™!(L) as follows. M’ takes its
input x and computes h(x), storing k symbols per cell. There is sufficient space, since
[h(x)| <k|x]|. Then M’ simulates M on h(x), accepting if M accepts.

For intersection, let L, and L, be CSL’s accepted by LBA’s M, and M,. Construct
LBA M that treats its input as if it were written on two tracks. That is, we identify input
symbol a with [a, a]. On the first track, M simulates M. If some sequence of choices of
move by M, causes it to accept, M 5 begins to simulate M, on the second track, accepting if
M, accepts. Thus M, accepts L, n L,.

For subsfitution into CSL L < X of CSL’s L, for symbols a in Z, construct an LBA that
works as follows. Given input a, a, -*- a,, nondeterministically guess which positions end
strings in some L,, and mark them. If we guess that a;a;., *** a; is in some particular L,,
simulate the LBA for L, on that substring. If @;a;,, -*- a; is in L,, replace it by a. If all our
guesses are correct, take the resulting string in £* and simulate an LBA for L on it,
accepting a, a, ‘- a, if that LBA accepts.

9.13 It is easy to design an LBA to accept the valid computations of a given Turing
machine. Thus the emptiness problem for Turing machines is reducible to the question
whether a given CSL is empty.

9.14 Let L, be an r.e. set and ¢ a symbol not in the alphabet of L;. Let M, be a TM
accepting L, and define

L, = {wc'| M, accepts w by a sequence of moves in which the head never

moves more than i positions to the right of w}.
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Then L, is accepted by an LBA that simulates M, treating c as the blank and halting if it
ever goes beyond the sequence of ¢’s on its input. We have only to show that L, = h(L,) for
some homomorphism h. Let h(a) = a for all symbols in the alphabet of L, and h(c) = e.

Combining Exercise 9.14 with Theorem 9.9, we observe that the CSL’s are not closed
under homomorphism. This may seem paradoxical, since Exercise 9.10 claimed the CSL’s
were closed under substitution. However, homomorphism is not a special case of substitu-
tion by a CSL, as a CSL may not contain e. In particular, for h defined above, h(c) = ¢ is not
a CSL. The CSL’s are, however, closed under homomorphisms that do not map any symbol
to €.

BIBLIOGRAPHIC NOTES

The Chomsky hierarchy was defined in Chomsky [1956, 1959]. Chomsky and Miller [1958]
showed the equivalence of regular grammars and regular sets. Kuroda [1964] showed the
equivalence of LBA’s and CSG’s. Previously, Myhill [1960] had defined deterministic
LBA’s, and Landweber [1963] showed that the deterministic LBA languages are contained
in the CSL’s. Chomsky [1959] showed that the r.e. sets are equivalent to the languages
generated by type-0 grammars. Fischer [1969] gives some interesting characterizations of
the CSL’s. Hibbard [1974] discusses a restriction on CSG’s that yields the context-free
languages. Additional closure properties of CSL’s are studied in Ginsburg and Griebach
[1966b] and Wegbreit [1969]. Basic decision properties of CSL’s are given in Landweber
[1964].



CHAPTER

DETERMINISTIC
CONTEXT-FREE
LANGUAGES

We now have machine models that define each class of languages in the Chomsky
hierarchy. At the extreme ends of the hierarchy, the machines—finite automata
and Turing machines—exhibit no difference in accepting ability between their
deterministic and nondeterministic models. For the linear-bounded automaton, it
is unknown whether the deterministic and nondeterministic varieties accept the
same class of languages. However, for pushdown automata, we do know that the
deterministic PDA’s accept a family of languages, the deterministic context-free
languages (DCFL’s), lying properly between the regular sets and the context-free
languages.

It turns out that the syntax of many programming languages can be described
by means of DCFL’s. Moreover, modern compiler writing systems usually require
that the syntax of the language for which they are to produce a compiler be
described by a context-free grammar of restricted form. These restricted forms
almost invariably generate only DCFL’s. We shall meet what is probably the most
important of these restricted forms—the LR-grammars. The LR-grammars have
the property that they generate exactly the DCFL’s.

If a compiler writing system is to be used, it is generally necessary that the
language designer choose a syntax for his language that makes it a DCFL. Thus it
is useful to be able to determine whether a proposed language is in fact a DCFL. If
it is, one can often prove it so by producing a DPDA or LR-grammar defining the
language. But if the language Lis not a DCFL, how are we to prove it? If Lis not a
CFL at all, we could use the pumping lemma, perhaps. However, L will often be a
CFL but not a DCFL. There is no known pumping lemma specifically for
DCFLs, so we must fall back on closure properties. Fortunately, the DCFL’s are
closed under a number of operations, such as complementation, that do not

233
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preserve CFL’s in general. Thus, if L is a CFL but its complement is not, then Lis
not a DCFL.

Sections 10.1 through 10.4 develop various closure properties of DCFL’s.
Section 10.5 briefly covers decision properties. Sections 10.6 and 10.7 treat
LR-grammars.

10.1 NORMAL FORMS FOR DPDA’s
Recall that PDA M = (Q, %, T, 6, qo, Zo, F) is deterministic if:

1) whenever (g, a, X) is nonempty for some a in X, then (g, ¢, X) is empty, and

2) for each g in Q, a in £ U {¢} and X in T, &(g, a, X) contains at most one
element.

Rule (1) prevents a choice between using the next input or making an e-move.
Rule (2) prevents a choice on the same input. For deterministic PDA’s we shall
hereafter write d(q, a, X) = (p, y) rather than 8(q, a, X) = {(p, 7)}-

Like PDA’s in general, we can put DPDA’s in a normal form where the only
stack operations are to erase the top symbol or to push one symbol. This form will
be proved in the next two lemmas. The first lemma shows that the DPDA need
never push more than one symbol per move, since it can push a string of symbols
one at a time, using e-moves. The second lemma shows that DPDA’s need never
change the top stack symbol. Changes are avoided by storing the top stack symbol
in the finite control and recording changes to it there. The reader who grasps these
ideas should skip to the start of the next section.

Lemma 10.1 Every DCFL is L(M) fora DPDA M = (Q, %, T, , qo, Z,, F) such
that if §(q, a, X) = (p, y), then |y]| < 2.

Proof 1fd(q, a, X)=(r,y)and |y| >2,lety=7Y, Y, - Y,, where n > 3. Create
new nonaccepting states p,, p,, --., Pn— 2, and redefine

3(g, a, X) = (1, Yo 1)
Then define

opi & Yui) = (Piv 1> Yamio1 Yamd)
for 1 <i<n-—3andé(p,_,,¢ Y5) = (r, Y; Y5). Thus, in state g, on input g, with X
on top of the stack, the revised DPDA still replaces X with Y, Y, --- ¥, = y and
enters state r, but it now takes n — 1 moves to do so. 0O

Lemma 10.2 Every DCFL is I{M) for a DPDA M = (Q, %, T, 8, q¢, Z,, F) such
that if 6(¢, a, X) = (p, y), then y is either ¢ (a pop), X (no stack move), or of the
form YX (a push) for some stack symbol Y.

Proof Assume L= L(M’), where M’ = (Q', %, I", &, g5, X, F’) satisfies Lemma
10.1. We construct M to simulate M’ while keeping the top stack symbol of M’ in
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M’s control. Formally, let
0=0 xT, q0 = [qo, X0}, F=F xI" and r=r vz,
where Z, is a new symbol not in I'". Define § by:

i) If (g, a, X) = (p, ¢€), then for all Y, &([g, X], a, Y) = ([p, Y), €). If M’ pops its
stack, M pops its stack, picking up the symbol popped for its control.

ii) If 8'(g, a, X) = (p, Y), then for all Z, 5([q, X], a, Z)=([p, Y], Z). f M’
changes its top stack symbol, M records the change in its own control but
does not alter its stack.

iii) If 0'(q, a, X) = (p, YZ), then for all W, 8([g, X], a, W) = ([p, Y], ZW). If the
stack of M’ grows, M pushes a symbol onto its stack.

It is easy to show by induction on the number of moves made that

(‘Ié)’ w, XO) lhll_' (q’ 6 XX, Xn)
if and only if

([40, Xo), w, Z,) lﬁ (9. X1) 6 X2 X5 -+ X, Zy).
Thus L(M) = L(M"). O

10.2 CLOSURE OF DCFL’s UNDER COMPLEMENTATION

To show that the complement of a DCFL is also a DCFL we would like to use the
approach employed in Theorem 3.2 to show closure of the regular sets under
complementation. That is, given a DPDA M we would like to interchange final
and nonfinal states and then be able to claim that the resulting DPDA accepts the
complement of L(M).

There are two difficulties that complicate the above approach. The first
difficulty is that the original DPDA might never move beyond some point on an
input string, because on reading input w either it reaches an ID in which no move
is possible or it makes an infinity of moves on ¢-input and never uses another
input symbol. In either case, the DPDA does not accept any input with w as a
prefix, and thus a DPDA accepting the complement should accept every string
with prefix w. However, if we simply changed final and nonfinal states, the result-
ing DPDA still would not move beyond w and therefore would not accept strings
with prefix w.

The second difficulty is due to the fact that after seeing a sentence x, the
DPDA may make several moves on e-input. The DPDA may be in final states
after some of these moves and in nonfinal states after others. In this case, inter-
changing the final and nonfinal states results in the DPDA still accepting x.
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Forcing DPDA’s to scan their input

To remove the first difficulty, we prove a lemma stating that, given a DPDA M, we
can always find an equivalent DPDA M’ that will never enter an ID from which it
will not eventually use another input symbol.

Lemma 10.3 Let M be a DPDA. There exists an equivalent DPDA M’ such that
on every input, M’ scans the entire input.

Proof We can assume without loss of generality that for every accessible ID and
input symbol, M has a next move. Otherwise, one can add an endmarker on the
stack to prevent M from erasing the stack entirely and thereby halting, without
scanning, the entire input. In addition, one can add a “dead state,” d so that for
any combination of state, input symbol, and stack symbol for which M has no
next move, either using the input symbol or an e-input, a transfer to state d occurs.
On any input symbol, the only transition from state d is to state d, and no change
of the stack occurs. Of course, d is not an accepting state.

Now, if for every ID and input symbol, M has a next move, then the only way
in which M might never reach the end of its input is if in some ID, M makes an
infinity of moves on ¢ input. If in state g with Z on top of the stack, M makes an
infinity of e-moves without erasing the symbol Z, then let M instead enter the dead
state d. This change cannot affect the language accepted unless M entered
an accepting state at some time during the infinite sequence of e-moves. However,
in this case, we introduce a new final state f, letting (g, ¢, Z) = (f, Z) and
S, & Z)=(d, Z).

Formally, we propose the following construction. Let M = (Q, £, T, 8, o, Zo,
F). Define

M = (Q v {46» d’f}’ 2’ rv {XO}’ 5/’ qé)’ XO? Fu {f})’
where:
1) &'(g5, €& Xo) = (9o, ZoX,)- X, marks the bottom of the stack.

2) If for some gin Q,ain X and Z in T, §(q, a, Z) and &(g, ¢, Z) are both empty,
then

(g, a, Z) = (d, 2).
Also for allgin Q and a in X,
¥(g, a, Xo) = (d, Xo)-
Enter the dead state if no move is possible.
3) 8(d,a,Z)=(d,Z)forallain T and Z in T U {X,}.

4) If for g and Z and all i there exist g; and y; for which (g, €, Z) -~ (g, & 7;), then
d'(g, € Z) = (d, Z) provided no g; is final and &(q, ¢, Z) = (f; Z) whenever
one or more of the gs is final. (Note we have not claimed that we can
determine whether &'(g, ¢, Z) should be (d, Z) or (f; Z). However, there are
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only a finite number of such decisions to be made. For each possible set of
choices there exists a DPDA. One of these DPDA’s will be the desired one.
We shall subsequently show that the construction is effective.)

5) 8(f, 6 Z)=(d, Z) for all Z in T U {X,).
6) Forany gin Q,ain Z U {¢}, and Z in I, if (g, a, Z) has not been defined by
rule (2) or (4), then &'(q, a, Z) = d(q, a, Z).

The argument preceding the formal construction should convince us that
L(M’) = L{M). To prove that M’ uses all its input, suppose that for some proper
prefix x of xy,

(90, Xy, Xo) By (@ v» Z,1Z, -~ Z, X,,),

and from ID (g,y, Z, Z, --- Z, X,), no symbol of y is ever consumed. By rule (2} it
is not possible that M’ halts. By rule (4), it is not possible that M’ makes an infinite
sequence of e-moves without erasing Z,. Therefore M, must eventually erase Z,.
Similarly M ; must erase Z,, ..., Z, and eventually enter an ID (¢’, y, X,). By rule
(2) (4, v, Xo) s (d, ¥, Xo), where y = ay’ and a is in Z. Thus M’ did not fail to
read past x as supposed, and M’ satisfies the conditions of the lemma. O

Let us now observe that the construction in rule (4) of Lemma 10.3 can be
made effective. Assume without loss of generality that M is in normal form. We
shall compute more information than is actually needed. In particular, we deter-
mine for each g and p in Q and Z in I, whether

1) (@ & 2) By (b, 6 2),
2) (¢ 6 2)kar (b, 6 ©),
3) (g, & Z) ki (p, € y) for some y in T'*.

For each g and Z we can determine from (3) whether M ever enters a state that
consumes the next symbol of y without erasing Z.1 If not, then from (2) we can
determine if M erases Z. If neither event occurs, then either M’ must enter the
dead state by rule (2), or rule (4) applies and again (3) tells us whether &'(q, ¢, Z)
is (d, Z) or (f; Z).

Construct Boolean-valued tables T,, T,, and T; such that fori = 1,2, and 3,
T(q, Z, p) is true if and only if statement (i) is true for g, Z, and p. The tables are
initially all false and are filled inductively. The basis is to set T3(q, Z, p) = true if
(g, ¢, Z) = (p, YZ), to set T\(q, Z, p) = Ts(q, Z, p) = true if 8(g, €, Z) = (p, Z),
and to set Ty(q, Z, p) = true if 8(q, ¢, Z) = (p, ¢). The inductive inferences are:

1) Whenever (g, ¢, Z) = (r, YZ), then
a) if Ty(r, Y, s) and T,(s, Z, p) are true, set T,(q, Z, p) = true;
b) if T(r, Y, s) and Ty(s, Z, p) are true, set T (g, Z, p) = true;

t Note that by the construction of Lemma 10.2, the state p alone determines whether a non-¢ input
move is to be made.
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c) if Ty(r, Y, s)and Ti(s, Z, p) are true, or Ty(r, Y, s) and Ti(s, Y, p) are true,
set Ty(g, Z, p) = true;
d) if Ty(r, Y, p) is true, set Ty(qg, Z, p) = true.

2) Whenever 6(q, €, Z) = (r, Z) then
a) if Ty(r, Z, p) is true, set Ty(q, Z, p) = true;
b) if Ty(r, Z, p) is true, set Ty(q, Z, p) = true;
c) if Ty(r, Z, p) is true, set Ty(q, Z, p) = true.

We leave as an exercise an efficient algorithm for filling in the true entries in
the tables and proving that the only true entries are the ones that follow from the
basis and rules (1) and (2) above.

Closure under complementation

We are now ready to prove that the DCFL’s are closed under complementation.
To do so we must deal with the second problem mentioned at the beginning of this
section; the possibility that after reading input w, the DPDA makes a sequence of
e-moves, entering both final and nonfinal states. The solution is to modify the
DPDA by adding a second component to the state. The second component re-
cords whether a final state of the original DPDA has been entered since the last
time a true (non-¢)-input was used in a move. If not, the DPDA accepting the
complement enters a final state of its own, just before it is ready to use the next
true input symbol.

Theorem 10.1 The complement of a DCFL is a DCFL.

Proof Let M =(Q, X, T, 6, qo, Z,, F) be a DPDA satisfying Lemma 10.3. Let
M =(Q,%T,8, gy, Zy, F') be a DPDA simulating M, where

Q' ={lg k]|qisin Qand k=1, 2, or 3}.
Let F' = {[q, 3]|q in 0}, and let

. ‘[40» 1] ifgeisin F;
o= ‘[qO’ 2] lf 9o is not in F.

The purpose of k in [g, k] is to record, between true inputs, whether or not M
has entered an accepting state. If M has entered an accepting state since the last
true input, then k = 1. If M has not entered an accepting state since the last true
input, then k = 2. If k = 1 when M reads a true input symbol, then M’ simulates
the move of M and changes k to 1 or 2, depending on whether the new state of M
is or is not in F.Ifk = 2, M’ first changes k to 3 and then simulates the move of M,
changing k to 1 or 2, depending on whether the new state of M is or is not in F.
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Thus, &' is defined as follows, for g and p in Q, and a in .
1) If 5(g, €, Z) = (p, 7), then for k = 1 or 2,

&g, k. & Z) = ([ k'], 7).
where k' = 1if k =1 or p is in F; otherwise k' = 2.
2) If 8(g, a, Z) = (p, y), for a in Z, then

5(la, 2} & Z) = (g, 3], 2)
and

&(lg 1}, @, 2) = 5'([g, 3}, a, Z) = ([p, K], )
where k = 1 or 2 for p in F or not in F, respectively.

We claim that L(M') is the complement of L{M). Suppose that a, a, -*- a, is in
L(M). Then M enters an accepting state after using a, as an input. In that case, the
second component of the state of M’ will be 1 before it is possible for M’ to use a
true input after a,. Therefore, M’ does not accept (enter a state whose second
component is 3) while a, was the last true input used.

Ifa, a, -+ a,is not in L(M), by Lemma 10.3 M’ will some time after reading a,
have no e-moves to make and will have to use a true input symbol. But, at this
time, the second component of M’’s state is 2, since a, a, ** a, is not in L(M). By
rule (2), M’ will accept before attempting to use a true input symbol. O

Before concluding this section we state the following corollary.

Corollary Every deterministic CFL is accepted by some DPDA that, in an
accepting state, may make no move on ¢-input.

Proof The statement is implicit in the proof of Theorem 10.1. Note that in a final
state (one in which k = 3) no e-move is possible. O

It is possible to use Theorem 10.1 to show certain languages not to be
DCFL’s.

Example 10.1 The language L = {0'172*|i = j or j = k} is a CFL generated by the
grammar

S-—»ABlCD A—->0A1|£
B—2B|e¢ C—-0C|e D — 1D2|¢

However, L is not a DCFL. If it were, then L would be a DCFL and hence a CFL.
By Theorem 6.5, L, = L n 0*1*2* would be a CFL. But L, = {0'1/2*i #j and
Jj # k}. A proof using Odgen’s lemma similar to that of Example 6.3 shows that L,
is not a CFL, so L is not a DCFL.
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103 PREDICTING MACHINES

For a number of other closure properties of DCFL’s we need a construction in
which the stack symbols of DPDA M are modified to contain information about a
certain finite automaton A. The information associated with the top stack symbol
tells, for each state g of M and p of A, whether there is some input string that
causes M to accept when started in state g with its current stack and simultan-
eously causes A4 to accept if started in state p.

Formally, let M = (Qu, Z, T, du, 9o, Zo, Fy) be a normal form DPDA and
A=(Q., X, 0,4, po, Fa)- Then n(M, A), the predicting machine for M and 4, is
defined by (Qu, Z, T x A, 6, qo, X, Fur), where A is the set of subsets of 0, x Q.
The intention is that if z(M, A4) is in ID (r, x, [Z, u]y), then u consists of exactly
those pairs (g, p) such that there is a w in £* for which 8,(p, w) is in F,, and
(g, w, ZB) B (s, €, @) for some s in Fy, and « and B in I'*, where S is the string of
first components of y.

To define 6 and X, we need additional notation. Let M, ; be M with gand Z
made the start state and start symbol respectively. Let 4, be A with p made the
start state. Then by our usual notation,

LM, ;)= {w|(g w, Z) & (s, ¢, 7) for some s in Fy and y in I'*}
and
L(A,) = {w|84(p, w) is in F}.

Let N,(M, ;) be the set of strings that cause M, , to erase its stack and enter state
r, that is,

N.M,z) ={w|(g w. Z)kr (r, & )}

Surely L(M, ;) is a DCFL and L(4,) is a regular set. It is also true that N, (M, ;) is
a DCFL. In proof, modify M to place a marker Y, at the bottom of stack and then
simulate M in state q with stack ZY,. If Y, becomes the top stack symbol, then
accept if the state is r and reject if not. Finally, let L(A,) = {w|d(p, w) =s}.
Clearly L(A,) is regular.

Now we may define 8(r, a, [Z, u]), for r in Qy, ainX U {¢},ZinT,and pin A
as follows.

1) If dy(r, a, Z) = (s, ¢), then &(r, a, [Z, u]) = (s, ¢). Note that u does not
influence the action of n(M, A), except in rule (3) below, where it influences
the second component of the stack symbol pushed.

2) If 6pi(r, a, Z) = (s, Z), then 8(r, a, [Z, p]) = (s, [Z, u]).

3) If 6plr, @, Z) = (s, YZ), then 6(r, a, [Z, u]) = (s, [Y. v][Z, u]), where v consists
of those pairs (g, p) such that either
a) L(M,y) n L(A4,) is nonempty, or
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b) there is some ¢ in Q) and u in Q, such that

Nr(Mq.Y) N Lu(Ap)
is nonempty and (¢, u) is in p.
Note that (M, y) and N,(M, y) are CFL’s, and I(4,) and L,(4,) are regular,
so by Theorems 6.5 and 6.6, we may determine whether the languages men-
tioned in (a) and (b) are empty.

Finally, let X, = [Z,, po], where

Ho = (q’ 'L(A’quo)m L( p);ég}
Lemma 104 n(M, A) as defined above has the property that

(‘10, X, [ZO’ ”0]) I_:(MT (r7 Y [Zl’ [11][22, #2] T [Zm ”n])
if and only if

a) (‘107 X, ZO)'T:' (r’ »ZiZy - Z,,), and
b) for1 <i<n,

= {(g, p)|for some w, (9, w, Z;Z;1, -** Z,) Hs (s, €, y) for some
sin Fy and y in I'*, and J 4(p, w) is in F}.

Proof (a) is obvious, since n(M, A) simulates M, carrying along the second
component of stack symbols but not allowing them to influence anything but
other second components of stack symbols.

We prove (b) by induction on i, starting at i = n and working down. The
basis, i = n is easy. Z, must be Z,, since M is in normal form. The definition of X,
plus rule (2) in the definition of & gives us the basis.

For the induction, suppose the result is true for i + 1. Then y; was constructed
from ;. , as v is constructed from g in rule (3). Suppose there is some w such that

(W, Z:Ziyy - Z) (5, 6, 7)

for s in Fy, and 6 4(p, w) is in F ,. Then there are two cases depending on whether
Z;is ever erased. If it is not, then w is in L(M, ;,) and also in L(4,), so by rule (3a),
(g, p) is in g;. If Z; is erased, let w = w, w,, where

(9. wi, Z)hr (L € €) and (t,wss Zis Zivz Z) By (5, 6 7)

for some s in F,. Also let d,(p, w,) =u, so d,(u, w,;) is in F,. Then w, is in
N(M, ;) and also in L,(A,). By the inductive hypothesis, (¢, u) is in y; ;. Thus by
rule (3b), (g, p) is in p;.

Conversely, if (g, p) is in y; by rule (3a), then there is a w such that 6 ,(p, w) is
in Fyand (g, w, Z; Zi1y " Z,) B (s, € 7) for s in Fyy, by a sequence of moves in
which Z; is never erased. If (g, p) is in y; by rule (3b), then there exists wy in Z*, ¢ in
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Qu and u in @, such that (g, wy, Z,) By (4, € €), 8.4(p, wy) = u, and (¢, u) isin g 4.
By the inductive hypothesis, there exists w, in Z* such that (¢, w,, Z; 1 Z;4 5 -+
Z,)Hr (s, & y) for some s in Fy, and 8 4(u, w,) is in F 4. Thus (g, wy wy, Z; Z;, | -+
Z,) % (s, €, v), and 8 ,(p, w, w,) is in F 4, s0 (g, p) belongs in ;. This completes the
induction and the proof of the lemma. O

Example 10.2 Let
M = ({90, 41, 92, 43} {0, 1}, {X; Zo}, u, do> Zo, {43}),
where
Sm(gos 0, Zo) = (g0, XZo), om(d1, 0, X) = (g2, €),
Om(go, 0, X) = (g0, XX), om(@2, 0, X) = (g2, €),
omlgo 1, X) = (g1, XX), Ou(42, € Zo) = (g3, €)-
gy, 1, X) = (g1, XX),
Also let A = ({po, P1}, {0, 1}, 6.4, Po, {Po}), Where
34(Po, 0) = py, 3.4(Po> 1) = po,
041, 0)=po,  B4lpy, 1) = py.
Observe that
L(M) = LM, z,) = {0'1/0*|i + j =k, i > 0 and j > 0}.
Also L(M,, z,) = & and L(M,, z,) = L(M,, 2,) = {¢}-
L(A) = L(A,,) = (1 + 01*0)*;

that is, strings with an even number of 0’s, and L(A4,,) = 1*0(1 + 01*0)* that is,
strings with an odd number of 0’s. Thus (M, ,,) N L(A,,) contains strings such
as 00110000, and L(M,, ;) n L(A,) contains strings such as 01110000.
LM, z,) N L(4,) and L(M_, ;,) n L(A4,,) each contain ¢, but the other four
intersections of the form L(M, ;,) N L(A,,) are empty. Thus the start symbol of
n(M, A) is [Z,, uo], where

to = {(do> Po) (Go» P1): (425 Po); (43 Po)}-

Now let us compute

5(‘10’ Ov [ZO’ .uO]) = (qO’ [X’ v][ZO* /‘lO])

To do so we need to deduce that L(M, x) = & for i = 0, 1, or 2, since we cannot
accept without a Z, on the stack and cannot write Z, if it wasn’t there originally.
Thus there is no contribution to v from rule (3a). However, L(M,, x) n L(A,,) =
{¢}, so we add (g3, po) to v.
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Consider rule (3b).
Ny (M, x) = {0190%|i + j = k — 1 and j > 0},
N (Mg, x) = {V0"]j =k — 1},
and
Ng,(Mg, x) = {0}.

The other sets of the form N (M, y) are empty. Also, L,(4,,) is all strings with an
even number of 0’s if i = j and all strings with an odd number of O’s if i # j.

Since N, (M, x) is nonempty only ifi = 2 and j = 0, 1, or 2, we can only apply
rule (3b) successflully if the pair (q,, po) is chosen from py. We see N, (M, x) N
L,(4,,) and N, (M, x) n L, (4,,) are both nonempty, yielding (go, po) and
(40, py) for v. Similarly N,(M,, x) n L, (4,,)and N,,(M,, ) n L, (A,,)are non-
empty, yielding (q,, po) and (g;, p;) for v. Also, Ny (M, x) N L, (A,,) is nonempty,
yielding (g, py) for v, but

NQZ(MGz,X) N Lpo(Apo) = Q
Thus,

V= {(‘Io, Po)’ (qu pl)» (qu pO)? (ql’ pl)? (qZ’ pl)’ (q3r Po)}'

104 ADDITIONAL CLOSURE PROPERTIES OF DCFL’s

Using the idea developed in the previous section we can prove a few closure
properties of deterministic context-free languages. Before proceeding, we present
one more technical lemma. The lemma asserts that we can define acceptance for a
DPDA by a combination of state and the top stack symbol; the language so
defined is still a deterministic language.

Lemma 10.5 Let M =(Q, %, T, 4, o, Zo, F) be a DPDA. Let B be any subset of
0O x T, that is, pairs of state and stack symbol. Define

L={w|(g0, W, Zo) s (g, € Zy) for some (g, Z) in B}.

Then L is a DCFL.
Proof We define a DPDA M’, accepting L, as follows.

M =(Q,%,T, 8, g0, Zo, F'),
where

Q={4.4.4"lginQ} and F'={q"|ginQ}

M’ makes the same moves as M, except that M’ moves from an unprimed state to
a singly primed state and then, on ¢-input, moves back to the corresponding

unprimed state, either directly or through a doubly primed version. The latter case
applies only if the pair of state and top symbol of the stack is in B.
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Formally,
1) if 8(q, a, Z) = (p, 7), then &'(q, a, Z) = (p’, y);
2) 8(q, &, Z) = (q, Z) provided (g, Z) is not in B;
3) §(q, & Z)=(q", Z) and &'(¢q", €, Z) = (g, Z) if (g, Z) is in B. O
Quotient with a regular set
Recall that the quotient of L, with respect to L,, denoted L, /L,, is
{x | there exists w in L, such that xw is in L,}.

In Exercise 6.4 we claimed that the CFL’s were closed under quotient with a
regular set. (See Theorem 11.3 for a proof.) We shall now prove a similar result for
DCFL’s.

Theorem 10.2 Let L be a DCFL and R a regular set. Then L/R is a DCFL.

Proof Let L= L(M) for M a DPDA that always scans its entire input.
Let R = L(A) for finite automaton A. Suppose M = (Qu, Z, T, Su1, Gos Zos Fu)
and A = (Q4, =, 64, Po, F4)- Then let

M =(Qum Z, T x A, 6, g0, [Zo, o}, Fu)

be n(M, A), the predicting machine for M and A4. Let B be the subset of
Oy x (T x A) containing all (g, [Z, u]) such that (g, po) is in pu.
Then by Lemma 10.5,

L, = {x|(40, X, [Zo, 1o)) it (4 & [Z, p]y) and (g, po) is in p}

is a DCFL. By Lemma 104,
L, = {x|for some w in T*, (qo, X, Zo) & (¢; & Z¥')
and (¢, w, ZY') 137 (s, & B),
where s is in Fy, y' is the first components of y, and J,(po, w) is in F,}.
Equivalently,

L, = {x|for some w in T*, xw is in L{M) and w is in L(A)}.

That is, L, = L/R. Thus L/R is a DCFL. O

MIN and MAX

We now show two operations that preserve DCFL’s but not arbitrary CFL’s.
Recall that for each language L:
MIN(L) = {x|x is in L and no w in L is a proper prefix of x},
and
MAX(L) = {x|x is in L and x is not a proper prefix of any word in L}.
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Example 10.3 Let
L={010"i,j, k>0,i+j=>k}

Then MIN(L) = 00*11*0, and MAX(L) = {0°'10°*/ |i, j > O}.

Theorem 10.3 If L is a DCFL, then MIN(L) and MAX(L) are DCFL’s.

Proof LetM = (Qum, Z, T, 0um, o, Zo, Fr) be a DPDA that accepts L and always
scans its entire input. Modify M to make no move in a final state. Then the
resulting DPDA M, accepts MIN(L). In proof, if w is in MIN(L), then let

(qu w, ZO)=IOWIIWWIM (101)

be the sequence of ID’s entered by M, where I,, = (g, ¢, y) for some y, and q is in
F . Furthermore, since w is in MIN(L), none of I, I, ..., I,,_, has an accepting
state. Thus (10.1) is also a computation of M, so w is in L(M).

Conversely, if (g0, W, Zo) = Io b I1 bir; - bir, I 1 an accepting computation
of M,, then none of Iy, I, ..., I,,_, has an accepting state. Thus w is in MIN(L).

For MAX we must use the predicting machine. Let 4 = (Q,, %, 64, po, F,) be
the simple FA of Fig. 10.1 accepting X*. Let M = (Qu, Z, T X A, 6, qo, [Zo, 10),
Fy) be n(M, A). Let B={(q, [Z, u])|q is in Fy and (g, po) is not in pu}. Then by
Lemma 10.5,

L, = {x|(g0, x, Zo) Br (9, ¢, 7)

for some g in F,, and for no w # ¢

does (g, w, y) = (s, ¢, B) for s in Fp}

is a DCFL. But L, = MAX(L), so MAX(L) is a DCFL. O
‘ Any symbol in £
Start @ Any symbol
inZ

Fig. 10.1 The automaton A.

Example 104 Let us use Theorem 10.3 to show a CFL not to be a DCFL. Let
Ly ={0°1/2*|k <ior k <j}. Then L, is a CFL generated by the grammar

S AB|C
A—04]c
B 1B2|1B|c
C-0C2|0C|D
D—1D|c
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Suppose L, were a DCFL. Then L, = MAX(L,) would be a DCFL and hence a
CFL. But L, = {0'1/2* |k = max(j, j)}. Suppose L, were a CFL. Let n be the pump-
ing lemma constant and consider z = uvwxy = 0"1"2". If neither v nor x has a 2,
then z' = up?wx?y has n 2's and at least (n + 1) O’s or at least (n + 1) I’s. Thus 2/
would not be in L, as supposed.

Now consider the case where vx has a 2. If either v or x has more than one
symbol, then z’ = uv?’wx?y is not of the form 0°1°2* and would not be L,. Thus
either 0 or 1 is not present in vx. Hence uwy has fewer than n 2’s but has n 0’s or n
I’s and is not in L,. We conclude L, is not a CFL, so L, is not a DCFL.

Other closure properties

As a general rule, only those closure properties of CFL’s mentioned in Section 6.2
that were given proofs using the PDA characterization carry over to DCFL’s. In
particular, we can state the following.

Theorem 10.4 The DCFL’s are closed under (a) inverse homomorphism, and (b)
intersection with a regular set.

Proof The arguments used in Theorems 6.3 and 6.5 work for DPDA’s. O

Theorem 10.5 The DCFL’s are not closed under (a) homomorphism, (b) union,
(c) concatenation, or (d) Kleene closure.

Proof See Exercise 10.4 and its solution. g

10.5 DECISION PROPERTIES OF DCFL’s
A number of problems that are undecidable for CFL’s are decidable for DCFL's.

Theorem 10.6 Let L be a DCFL and R a regular set. The following problems are
decidable.

1) Is L= R?
2) IsRS L?
3) Is L= &?

4) Is La CFL?
5) Is L regular?

Proof
1) L=Rifand onlyif L, = (L n R) U (L n R) is empty. Since the DCFL’s ar¢
effectively closed under complementation and intersection with a regular set,
and since the CFL’s are effectively closed under union, L, is a CFL, and
emptiness for CFL’s is decidable.
2) ReLifand only if Ln R= (. Since Ln Risa CFL,LAR= i
decidable.
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3) Since the DCFL?’s are effectively closed under complementation, Lis a DCFL
and hence L = (J is decidable.

4) The property L is a CFL is trivial for DCFL’s and hence is decidable.

5) Regularity for DCFL’s is decidable. The proof is lengthy and the reader is
referred to Stearns [1967] or Valiant [1975b). a

Undecidable properties of DCFL’s

Certain other properties undecidable for CFL’s remain so even when restricted to
the DCFL’s. Many of these problems can be proved undecidable by observing
that the languages L, and L, of Section 8.6, whose intersection is the valid compu-
tations of a Turing machine M, are DCFL’s.

Theorem 10.7 Let L and L be arbitrary DCFL’s. Then the following problems
are undecidable.

1)IsLn L=?

2) IsLc L?

3) IsL n L a DCFL?
4)IsLn LaCFL?
5) Is L v L a DCFL?

Proof Given an arbitrary TM M we showed in Lemma 8.6 how to construct
languages L, and L, such that L, n L, = ¢ ifand only if L(M) = . It is easy to
show that L, and L, are DCFL’s by exhibiting DPDA’s that accept them. Thus (1)
follows immediately from the fact that it is undecidable whether L(M) = (. Since
DCFL’s are closed under complement, and L < L if and only if L n L = ¢, (2)
follows from (1).

To prove (3), (4), and (5), modify each TM M to make at least two moves
before accepting, as in Lemma 8.8. Then L, n L, is either a finite set (in which
case it is surely a CFL and a DCFL) or is not a CFL depending on whether L(M)
is finite. Thus decidability of (3) or (4) would imply decidability of finiteness for
L(M), a known undecidable property. Since DCFL’s are closed under
complementation, deciding whether L u L is a DCFL is equivalent to deciding if
L n Lis a DCFL. Thus (5) follows from (3). O

Theorem 10.8 Let Lbe anarbitrary CFL. It is undecidable whether L is a DCFL.

Proof Let L be the CFL of invalid computations of an arbitrary TM M that
makes at least two moves on every input. L is regular and, hence, a DCFL if and
only if M accepts a finite set. O

Finally we observe that the question of whether two DCFL’s are equivalent is
an important unresolved problem of language theory.
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10.6 LR(0) GRAMMARS

Recall that one motivation for studying DCFL’s is their ability to describe the
syntax of programming languages. Various compiler writing systems require syn-
tactic specification in the form of restricted CFG’s, which allow only the represen-
tation of DCFL’s. Moreover, the parser produced by such compiler writing
systems is essentially a DPDA. In this section we introduce a restricted type of
CFG called an LR(0) grammar. This class of grammars is the first in a family
collectively called LR-grammars. Incidentally, LR(0) stands for “left-to-right scan
of the input producing a rightmost derivation and using 0 symbols of lookahead
on the input.”

The LR(0) grammars define exactly the DCFL’s having the prefix property.
(L is said to have the prefix property if, whenever wis in L, no proper prefix of w is
in L) Note that the prefix property is not a severe restriction, since the introduc-
tion of an endmarker converts any DCFL to a DCFL with the prefix property.
Thus LS = {(w$|w is in L} is a DCFL with the prefix property whenever L is a
DCFL.

While the LR(0) restriction is too severe to provide convenient and natural
grammars for many programming languages, the LR(0) condition captures the
flavor of its more useful generalizations, which we discuss in Section 10.8, and
which have been successfully used in several parser-generating systems.

LR-items

To introduce the LR(0) grammars we need some preliminary definitions. First, an
item for a given CFG is a production with a dot anywhere in the right side,
including the beginning or end. In the case of an e-production, B— ¢, B— - is an
item.

Example 10.5 We now introduce a grammar that we shall use in a series of
examples.
S’ — Sc S—>S4|4 A — aSb|ab (10.2)

This grammar, with start symbol S’, generates strings of “balanced parentheses,”
treating a and b as left and right parentheses, respectively, and c as an endmarker.
The items for grammar (10.2) are

§ —-Sc S-S54 A— - aSb
N S84 A—a-Sb

S —Sc- S—SA4- A—aS-b
S—-4 A —aSb -

S—oA- A—-ab

A—a-b

A—ab-
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In what follows, we use the symbols £ and = to denote rightmost deriva-
tions and single steps in a rightmost derivation, respectively. A right-sentential
form is a sentential form that can be derived by a rightmost derivation. A handle of

a right-sentential form y for CFG G is a substring B, such that
SE 54w = 5pw,

and 6fw = y. That is, a handle of y is a substring that could be introduced at the
last step in a rightmost derivation of y. Note that in this context, the position of
B within y is important.

A viable prefix of a right-sentential form y is any prefix of y ending no farther
right than the right end of a handle of y.

Example 10.6 In grammar (10.2) there is a rightmost derivation
§'=Sc=SAc=SaSbc.

Thus SaSbc is a right-sentential form, and its handle is aSh. Note that in any
unambiguous grammar with no useless symbols, such as grammar (10.2), the
rightmost derivation of a given right-sentential form is unique, so its handle is
unique. Thus we may speak of “the handle” rather than “a handle.” The viable
prefixes of SaSbc are ¢, S, Sa, SaS, and SaSh.

We say an item A — « - § is valid for a viable prefix y if there is a rightmost
derivation

SE 5Aw = dafw

and éa = y. Knowing which items are valid for a given viable prefix helps us find a
rightmost derivation in reverse, as follows. An item is said to be complete if the dot
is the rightmost symbol in the item. If 4 — « - is a complete item valid for y, then it
appears that 4 — a could have been used at the last step and that the previous
right-sentential form in the derivation of yw was dAw.

Of course, we cannot more than suspect this since 4 — a - may be valid for y
because of a rightmost derivation S 2> 4w’ = yw'. Clearly, there could be two or
more complete items valid for y, or there could be a handle of yw that includes
symbols of w. Intuitively, a grammar is defined to be LR(0) if in each such situa-
tion dAw is indeed the previous right-sentential form for yw. In that case, we can
start with a string of terminals x that is in L(G) and hence is a right-sentential form
of G, and work backward to previous right-sentential forms until we get to S. We
then have a rightmost derivation of x.

Example 10.7 Consider grammar (10.2) and the right-sentential form abc. Since
S %> Ac = abc,

we see that A — ab - is valid for viable prefix ab. We also see that 4 — a - b is valid
for viable prefix a, and A — - ab is valid for viable prefix . As A > ab - is a



250 DETERMINISTIC CONTEXT-FREE LANGUAGES

complete item, we might be able to deduce that Ac was the previous right-
sentential form for abc.

Computing sets of valid items

The definition of LR(0) grammars and the method of accepting I{G) for LR(0)
grammar G by a DPDA each depend on knowing the set of valid items for each
viable prefix y. It turns out that for every CFG G whatsoever, the set of viable
prefixes is a regular set, and this regular set is accepted by an NFA whose states
are the items for G. Applying the subset construction to this NFA yields a DFA
whose state in response to the viable prefix y is the set of valid items for 7.

The NFA M recognizing the viable prefixes for CFG G=(V, T, P, S) is
defined as follows. Let M = (Q, V U T, 9, qo, Q), where Q is the set of items for G
plus the state g, which is not an item. Define

1) (g0, €) = {S > «|S — a is a production},
2) 6(A—>=x- BB, ¢)={B—-y|B— 7y is a production},
3) (Ad—a- XB, X)={A—>aX - B}
Rule (2) allows expansion of a variable B appearing immediately to the right of the

dot. Rule (3) permits moving the dot over any grammar symbol X if X is the next
input symbol.

Example 10.8 The NFA for grammar (10.2) is shown in Fig. 10.2.

Fig. 10.2 NFA recognizing viable prefixes for Grammar (10.2).
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Theorem 10.9 The NFA M defined above has the property that §(g,, y) contains
A—a- pifand only if A -« - fis valid for y.

Proof
Only if: We must show that each item A — « - f contained in 6(qq, y) is valid for y.
We proceed by induction on the length of the shortest path labeled y from g, to
A — a - Bin the transition diagram for M. The basis (length 1) is straightforward.
The only paths of length one from g, are labeled ¢ and go to items of the form
S — - a. Each of these items is valid for ¢ because of the rightmost derivation S = «.
For the induction, suppose that the result is true for paths shorter than k, and
let there be a path of length k labeled y from g, to A — o - . There are two cases
depending on whether the last edge is labeled ¢ or not.

caseé 1 The last edge is labeled X, for X in ¥ U T. The edge must come from a
state A — o’ - X, where a = o’ X. Then by the inductive hypothesis, 4 — o' - Xfis
valid for 7, where y = y’X. Thus there is a rightmost derivation

S & 0Aw = oo’ X fw,

where 6o’ = y'. This same derivation shows that 4 » «'X - f (whichis A > a - )
is valid for 7.

case 2 The last edge is labeled e In this case a must be ¢, and A — « - f is really
A — - B. The item in the previous state is of the form B—a, - Af,, and is also
valid for y. Thus there is a derivation
S %> 6Bw = da, A, w,
where y = éa,. Let B, %> x for some terminal string x. Then the derivation
S 2> 6Bw = by APy w > Sy Axw = dat,y fxw

can be written

S 2> day Axw = ay fxw.

Thus A — - B is valid for y, as y = da,.

If: Suppose A — « - B is valid for y. Then
Sty Aw =y, afw, (10.3)

where y, a = y. If we can show that &(q,, y,) contains 4 — - af, then by rule (3) we
know that (qe, y) contains 4 — o - §. We therefore prove by induction on the
length of derivation (10.3) that 8(qq, y,) contains 4 — - af.

The basis, one step, follows from rule (1). For the induction, consider the step
in $%y, Aw in which the explicitly shown A was introduced. That is, write
Sy, Aw as

S22 v2Bx 27273 Avax 75 7273 Ayx,
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where y,y; =y, and yx = w. Then by the inductive hypothesis applied to the
derivation

S y2BX =273 Ay, x,

we know that B — - y; Ay, is in 6(qo, 72). By rule (3), B — y; - Ay, isin 5(go, y2 1),
and by rule (2), 4 — - af is in 6(qo, y,73)- Since y,y; = y,;, we have proved the
inductive hypothesis. O

Definition of LR(0) grammar

We are now prepared to define an LR(0) grammar. We say that G is an LR(0)
grammar if

1) its start symbol does not appear on the right side of any production, and

2) for every viable prefix y of G, whenever A — a - is a complete item valid for y,
then no other complete item nor any item with a terminal to the right of the
dot 1s valid for y.t

There is no prohibition against several incomplete items being valid for y, as long
as no complete item is valid.

Theorem 10.9 gives a method for computing the sets of valid items for any
viable prefix. Just convert the NFA whose states are items to a DFA. In the DFA,
the path from the start state labeled y leads to the state that is the set of valid items
for y. Thus construct the DFA and inspect each state to see if a violation of the
LR(0) condition occurs.

Example 10.9 The DFA constructed from the NFA of Fig. 10.2, with the dead
state (empty set of items) and transitions to the dead state removed, is shown in
Fig. 10.3. Of these states, all but I, I, I3, and I consist of a single complete item.
The states with more than one item have no complete items, and surely §’, the
start symbol, does not appear on the right side of any production. Hence grammar
(10.2) is LR(0).

10.7 LR(0) GRAMMARS AND DPDA’s

We now show that every LR(0) grammar generates a DCFL, and every DCFL
with the prefix property has an LR(0) grammar. Since every language with an
LR(0) grammar will be shown to have the prefix property, we have an exact
characterization of the DCFL’s; namely L is a DCFL if and only if L$ has an
LR(0) grammar.

+ The only items that could be valid simultaneously with 4 — a-are productions with a nonterminal
to the right of the dot, and this can occur only if a = ¢; otherwise another violation of the LR(0)
conditions can be shown to occur.
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Fig. 10.3 DFA whose states are the sets of valid items.

DPDA’s from LR(0) grammars

The way in which we construct a DPDA from an LR(0) grammar differs from the
way in which we constructed a (nondeterministic) PDA from an arbitrary CFL in
Theorem 5.3. In the latter theorem we traced out a leftmost derivation of the word
on the PDA’s input, using the stack to hold the suffix of a left-sentential form
beginning at the leftmost variable. Now we shall trace out a rightmost derivation,
in reverse, using the stack to hold a viable prefix of a right-sentential form,
including all variables of that right-sentential form, allowing the remainder of the
form to appear on the input.

In order to clearly describe this process, it is useful to develop a new notation
for ID’s of a PDA. We picture the stack with its top at the right end, rather than
the left. To distinguish the new notation from the old we use brackets rather than
parentheses: [g, a, w] is our synonym for (g, w, a®).
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To simulate rightmost derivations in an LR(0) grammar not only do we keep
a viable prefix on the stack, but above every symbol we keep a state of the DFA
recognizing viable prefixes. If viable prefix X, X, --- X, is on the stack, then the
complete stack contents will be s, X, s, -+ X, s, where s;is 8(¢o, X; -- X;)and §
is the transition function of the DFA. The top state s, provides the valid items for
XX, X,

If s, contains A — « -, then A — « - is valid for X, --- X,. Thus « is a suffix of
X, Xy, say o = X;,1 -- X, (note a may be ¢, in which case i = k). Moreover,
there is some w such that X, --- X, w is a right-sentential form, and there is a
derivation

SEX, - XiAwz X, - Xw.

Thus to obtain the right-sentential form previous to X, -+ X, w in a right deriva-
tion we reduce o to A, replacing X, , -+ X, on top of the stack by 4. That is, by a
sequence of pop moves (using distinct states so the DPDA can remember what it
is doing) followed by a move that pushes A and the correct covering state onto the
stack, our DPDA will enter a sequence of ID’s

(9 50Xy " sk XS W= [0, 50 Xy -+ 5i2 1 Xi5i4s, W], (10.4)

where s = §(s;, A). Note that if the grammar is LR(0), s, contains only 4 » o -,
unless a = ¢, in which case s, may contain some incomplete items. However, by
the LR(0) definition, none of these items have a terminal to the right of the dot, or
are complete. Thus for any y such that X, --- X, y s a right-sentential form, X, -
X Ay must be the previous right-sentential form, so reduction of « to A4 is correct
regardless of the current input.

Now consider the case where s, contains only incomplete items. Then the
right-sentential form previous to X, --- X, w could not be formed by reducing a
suffix of X, --- X, to some variable, else there would be a complete item valid for
X, -+ X,. There must be a handle ending to the right of X, in X, --- X, w, as
X, -+ X, is a viable prefix. Thus the only appropriate action for the DPDA is to
shift the next input symbol onto the stack. That is,

[9 50Xy " S 1 Xisw @yl [y So Xy -+ sk 1 XicSeat, y), (10-5)

where t = §(s,, a). I t is not the empty set of items, X, -~ X, a is a viable prefix. If
t is empty, we shall prove there is no possible previous right-sentential form for
X, '+ X,ay, so the original input is not in the grammar’s language, and the
DPDA “dies” instead of making the move (10.5). We summarize the above obser-
vations in the next theorem.

Theorem 10.10 If Lis L(G) for an LR(0) grammar G, then Lis N(M) for a DPDA
M.

Proof Construct from G the DFA D, with transition function §, that recognizes
G’s viable prefixes. Let the stack symbols of M be the grammar symbols of G and
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the states of D. M has state g, which is its start state, along with the additional
states used to perform reductions by sequences of moves such as (10.4) above. We
assume the reader can specify the set of states for each reduction and the e-
transitions needed to effect a reduction. We also leave to the reader the
specification of the transition function of M needed to implement the moves
indicated by (10.4) and (10.5).

We have previously indicated why, if G is LR(0), reductions are the only
possible way to get the previous right-sentential form when the state of the DFA
on the top of M’s stack contains a complete item. We claim that when M starts
with w in L{G) on its input and only s, on its stack, it will construct a rightmost
derivation for w in reverse order. The only point still requiring proof is that when
a shift is called for, as in (10.5), because the top DFA state on M’s stack has only
incomplete items, then there could not be a handle among the grammar symbols
X, -+ X, found on the stack at that time. If there were such a handle, then some
DFA state on the stack, below the top, would have a complete item.

Suppose there were such a state containing 4 — a - . Note that each state,
when it is first put on the stack either by (10.4) or (10.5), is on top of the stack.
Therefore it will immediately call for reduction of a to 4. Ifa # ¢, then {4 —> a - }is
removed from the stack and cannot be buried. If & = ¢, then reduction of ¢ to A
occurs by (10.4), causing A to be put on the stack above X, --- X,. In this case,
there will always be a variable above X, on the stack as long as X, --- X, occupies
the bottom positions on the stack. But 4 — ¢ at position k could not be the handle
of any right-sentential form X, --- X, B, where B contains a variable.

One last point concerns acceptance by G. If the top state on the stack is
{S— a -}, where S is G’s start symbol, then G pops its stack, accepting. In this case
we have completed the reverse of a rightmost derivation of the original input.
Note that as S does not appear on the right of any production, it is impossible that
there is an item of the form A4 — S-a valid for viable prefix S. Thus there is never
a need to shift additional input symbols when S alone appears on the stack. Put
another way, L(G) always has the prefix property if G is LR(0).

We have thus proved that if w is in L(G), M finds a rightmost derivation of w,
reduces w to S, and accepts. Conversely, if M accepts w, the sequence of right-
sentential forms represented by the ID’s of M provides a derivation of w from S.
Thus N(M) = L(G). O

Corollary Every LR(0) grammar is unambiguous.

Proof The above argument shows that the rightmost derivation of w is unique.
Od

Example 10.10 Consider the DFA of Fig. 10.3. Let 0, 1, ..., 8 be the names of the
states corresponding to the sets of items I, I, ..., Iy, respectively. Let the input
be aababbc. The DPDA M constructed as in Theorem 10.10 makes the sequence
of moves listed in Fig. 10.4.
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Stack Remaining input Comments

1) 0 aababbc Initial ID

2)  0a3 ababbc Shift

3)  0a3a3 babbc Shift

4)  0a3a3b7 abbe Shift

5) 04342 abbc Reduce by A — ab

6)  0a3S6 abbc Reduce by S — 4

7) 0a3S6a3 bbc Shift

8) 0a3S6a3b7 be Shift

9)  0a356A45 be Reduce by 4 — ab
10)  0a3S6 be Reduce by S — SA4
11) 0a3S6b8 c Shift
12) 042 c Reduce by 4 — aSh
13)  0s1 c Reduce by S —» 4
14)  0Slca — Shift
15) — — Accept

Fig. 10.4 Sequence of moves of DPDA M.

For example, in line (1), state 0 is on top of the stack. There is no complete
item in set I, so we shift. The first input symbol is g, and there is a transition from
I, to I labeled a. Thus in line (2) the stack is 0a3. In line (9), 5 is the top state. I5
consists of complete item S — SA. We pop S4 off the stack, leaving 0a3. We then
push S onto the stack. There is a transition from I; to I labeled S, so we cover S
by 6, yielding the stack 0a3S6 in line (10).

LR(0) grammars from DPDA’s

We now begin our study of the converse result—if L is N(M) for a DPDA M, then
L has an LR(0) grammar. In fact, the grammar of Theorem 5.4 is LR(0) whenever
M is deterministic, but it is easier to prove that a modification of that grammar is
LR(0). The change we make is to put at the beginning of the right side of each
production a symbol telling which PDA move gave rise to that production.

Formally, let M = (Q, %, T, 8, g0, Z,, &) be a DPDA. We define grammar
Gy =(V, Z, P, S) such that L(Gy) = N(M). V consists of the symbol S, the
symbols [gXp] for g and p in Q and X in I, and the symbols A,y for ¢ in Q, ain
Z uU{¢ and Y in I. S and the [gXp]'s play the same role as in Theorem 5.3.
Symbol A,y indicates that the production is obtained from the move of M in
&(q, a, Y). The productions of G, are as follows (with useless symbols and pro-
ductions removed).

1) S—=[goZop] forall pin Q.
2) If 6(g, a, Y) = (p, €), then there is a production [qYp] — A,y
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3) If6(g, a, Y) = (py, X1 X, -+~ X)) for k > 1, then for each sequence of states p,,
P3» ---» Di+1 there is a production

[quk+ 1] - Aan[P1 X1P2] [PkaPk+ x]-
4) For all g, a, and Y, Ay — a.

Consider a rightmost derivation in Gy,. It starts with S = [g, Z, p] for some
state p. Suppose for the sake of argument that §(q, a, Z,) = (r, XYZ). Then the
only productions for [g, Z, p] that derive strings beginning with a (a may be «)
have right sides A, [rXs][sYt][tZp] for some states s and t. Suppose that the
rightmost derivation eventually derives some string w from [tZp]. Then, if
(s, b, Y) = (u, VW), we might continue the rightmost derivation as

SE Agoazolr Xsl[sYtlw = A, ouzo[rX s]Agy[uVo][vWilw. (10.6)

Now consider the moves made by M before reading input w. The input
corresponding to derivation (10.6) is of the form ax, bx, x3w, where [rXs] % x,,
[uVv] 2 x,, and [vWt] 2> x5. The corresponding sequence of moves is of the form?

(9o, axybxyx3w, Zo) b— (r, x, bx,x3w, XYZ)
P (s, bx,x3w, YZ)
(1, x,x3w, VWZ)
— (v, x3w, WZ)

—(t, w, Z). (10.7)

If we compare (10.6) and (10.7) we note that stack symbols (Z in particular)
which remain on the stack at the end of (10.7) are the symbols that do not appear
(with two states attached in a bracketed variable) in the longest viable prefix of
(10.6). The stack symbols popped from the stack in (10.7), namely X, V, and W,
are the symbols that appear in the viable prefix of (10.6). This situation makes
sense, since the symbols at the left end of a sentential form derive a prefix of a
sentence, and that prefix is read first by the PDA.

In general, given any viable prefix a of G,;, we can find a corresponding ID |
of M in which the stack contains all and only the stack symbols that were in-
troduced in a rightmost derivation of some aw and later replaced by a string of
terminals. Moreover, I is obtained by having M read any string derived from . In
the case that M is deterministic, we can argue that the derivations of right-
sentential forms with prefix a have a specific form and translate these limitations
on derivations into restrictions on the set of items for a.

Lemma 10.6 If M is a DPDA and G,, is the grammar constructed from M as
above, then whenever [qX p] 2> w, there is a unique computation (g, w, X) - (p, ¢,

t Note that we have reverted to our original notation for ID’s.
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€). Moreover, the sequence of moves made by M corresponds to the reverse of the
sequence in which subscripted A,,’s are replaced by a, where Ay is deemed to
“correspond” to a move in which the state is s, Y is on top of the stack, and input a
is used.

Proof The existence of such a computation was proved in Theorem 5.3. Its
uniqueness follows from the fact that M is deterministic. To show the correspon-
dence between the moves of M and the reverse of the sequence of expansions of
subscripted A’s, we perform an easy induction on the length of a derivation. The
key portion of the inductive step is when the first expansion is by rule (3):

[¢Xp]= Aqax[pl X, p2Jlp2X2ps] - [P XiP)

Then the explicitly shown A4, will be expanded after all subscripted A’s derived
from the other variables are expanded.
As the first move of M,

(g, w, X)I‘—(ny w, X X, Xk)v

where w = aw’, corresponds to A, we have part of the induction proved. The
remainder of the induction follows from observing that in the moves of M, X,
X,, ..., X, are removed from the stack in order, by using inputs w,, w,, ..., w,
where w; w, --- w, = w', while in the rightmost derivation of w from [¢Xp], the
derivation of w, from [p, X, p,] follows the derivation of w, from [p, X, p;], and
so on. Since all these derivations are shorter than [gXp] 2> w, we may use the
inductive hypothesis to complete the proof. O

Now, for each variable [qXp] of Gy, let us fix on a particular string w,y,
derived from [gXp].+ Let h be the homomorphism from the variables of G, to Z*
defined by

h(Aqay) =a, h([qXp]) = WqXp'
Let N(A,,,) = 1 and N([¢Xp]) be the number of moves in the computation corre-
sponding to [gXp] 2 w,y,. Extend N to V* by N(B, B, --* B,) = Y%, N(B))-
Finally, let us represent a move (g, a, Y) of M by the triple (gaY). Let m be the
homomorphism from V* to moves defined by

1) m(Agy) = (qa¥);

2) m([gXp]) is the reverse of the sequence of subscripts of the A’s expanded in the
derivation of w,x, from [¢X p]. By Lemma 10.6, m([qX p]) is also the sequence
of moves (g, wox,, X) - (p, €, €).

We can now complete our characterization of LR(0) grammars.

Lemma 10.7 Let y be a viable prefix of G,. (Note that by the construction of
Gy, v is in V*). Then (qo, h(y), Zo) X (p, ¢, B) for some p and B, by the sequence
of moves m(y).

t We assume G, has no useless symbols, so w,y, exists.
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Proof As y is a viable prefix, there is some y in £* such that yy is a right-
sentential form. Then for some state r, [gy Zo 7] % h(y)y. By Lemma 10.6, the last
N(y) expansions of A’s in that derivation take place after the right-sentential form
yy is reached. Also by Lemma 10.6, there is a unique sequence of moves (go, h(y)y,
Zy) = (1, €, €), and the first N(y) of these must be m(y). O

We are now ready to show that G, is LR(0). Since the start symbol obviously
does not appear in any right side, it suffices to show that each set of items with a
complete item B — f - contains no other complete item and no item of the form
Agy — - afor ain . We prove these facts in two lemmas.

Lemma 10.8 If is a set of items of Gy, and B— B - is in I, then there is no item
Agy—-ain I

Proof Let I be the set of items for viable prefix 7.

case 1 If B— B is a production from rule (1), then y = B, and y is a single
variable [g, Z, p], since S appears on no right side. If 4.,y — - ais valid for y, then
there is a derivation S 2> yA_,y y = yay. However, no right-sentential form begins
with a variable [go Z, p] unless it is the first step of a derivation; all subsequent
right-sentential forms begin with a subscripted 4, until the last, which begins with
a terminal. Thus y could not be followed by A,y in a right-sentential form.

case 2 If B— B is introduced by rules (2) or (3), then we can again argue that
Y'BA.y is a viable prefix, where y = y'8. However, in any rightmost derivation,
when B — B is applied, the last symbol of B is immediately expanded by rules (2),
(3), or (4), so B could not appear intact in a right-sentential form followed by A4,,y.

case 3 If B— B is Ay, — b introduced by rule (4), and A,y —- ais valid for y,
then b must be ¢, else y4,y, which is a viable prefix, has a terminal in it. As
A,z — - is valid for v, it follows that yA,,; is a viable prefix. Thus, by Lemma 10.7
applied to yA,y and y4,,;, the first N(7) + 1 moves made by M when given input
h(y)a are both m(y)(peZ) and m(y)(gaY), contradicting the determinism of M.
(Note that in the first of these sequences, a is not consumed.) O

Lemma 10.9 If ] is a set of items of G, and B — B -is in I, then there is no other
item C -« - in I.

Proof Again let y be a viable prefix with set of valid items I.

case 1 Neither B— § nor C — a is a production introduced by rule (4). Then the
form of productions of types (2) and (3), and the fact that productions of type (1)
are applied only at the first step tell us that as « and f are both suffixes of y, we
must have § = a. If these productions are of type (1), B = C = S, so the two items
are really the same. If the productions are of type (2) or (3), it is easy to check that
B = C. For example, if « = f = A,,y, then the productions are of type (2), and B
and C are each [qYp] for some p. But rule (2) requires that é(q, a, Y) = (p, ¢), so
the determinism of M assures that p is unique.
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CASE2 B— B and C — « are type (4) productions. Then yB and yC are viable
prefixes, and Lemma 10.7 provides a contradiction to the determinism of M. That
is, if B = o = ¢, then the first N(y) + 1 moves of M on input h(y) must be m(;B) and
must also be m(yC). If B = a + ¢ and a = b # ¢, then a = b, and the first N(y) + 1
moves of M on input h(y)a must be m(yB) and m(yC). If § = a # eand « = ¢, then
the first N(y) + 1 moves of M on input h(y)a provides a similar contradiction.

CASE 3 B— Bisfrom rule (1), (2), or (3) and C — a is from rule (4), or vice versa.
Then yC is a right-sentential form, and y ends in . We can rule out this possibility

as in cases (1) and (2) of Lemma 10.8. 0
Theorem 10.11 If M is a DPDA, then G, is an LR(0) grammar.
Proof Immediate from Lemmas 10.8 and 10.9. O

We can now complete our characterization of LR(0) grammars.

Theorem 10.12 A language L has an LR(0) grammar if and only if L is a DCFL
with the prefix property.

Proof

If: Suppose L is a DCFL with the prefix property. Then L is L(M’) for a DPDA
M’'. We can make M’ accept L by empty stack by putting a bottom-of-stack
marker on M’ and causing M’ to enter a new state that erases the stack whenever
it enters a final state. As L has the prefix property, we do not change the language
accepted, and L is accepted by empty stack by the new DPDA, M. Thus
L = L(G,), and the desired conclusion follows from Theorem 10.11.

Only if: Theorem 10.10 says that L is N(M) for a DPDA, M. We may use the
construction of Theorem 5.2 to show that Lis L(M’) fora DPDA M’. The fact that
L has the prefix property follows from the fact that a DPDA “dies” when it
empties its stack. O

Corollary LS$ has LR(0) grammar if and only if L is a DCFL, where $ is not a
symbol of L’s alphabet.

Proof LS surely has the prefix property. If L$ is a DCFL, then L = L$/$ is a
DCFL by Theorem 10.2. Conversely, if L is a DCFL, it is easy to construct a
DPDA for LS. d

108 LR(k) GRAMMARS

It is interesting to note that if we add one symbol of “lookahead,” by determining
the set of following terminals on which reduction by 4 —a could possibly be
performed, then we can use DPDA’s to recognize the languages of a wider class of
grammars. These grammars are called LR(1) grammars, for the one symbol of
lookahead. It is known that all and only the deterministic CFL’s have LR(1)
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grammars. This class of grammars has great importance for compiler design, since
they are broad enough to include the syntax of almost all programming languages,
yet restrictive enough to have efficient parsers that are essentially DPDA’s.

It turns out that adding more than one symbol of lookahead to guide the
choice of reductions does not add to the class of languages definable, although for
any k, there are grammars, called LR(k), that may be parsed with k symbols of
lookahead but not with k — 1 symbols of lookahead.

Let us briefly give the definition and an example of LR(1) grammars, without
proving any of the above contentions. The key extension of LR(0) grammars is
that an LR(1) item consists of an LR(0) item followed by a lookahead set consisting
of terminals and/or the special symbol $, which serves to denote the right end of a
string. The generic form of an LR(1) item is thus

A—a- B {ay, ay, ..., a4

We say LR(1) item A — « - B, {a} is valid for viable prefix y if there is a rightmost
derivation S 2 6Ay > dafy, where da = y, and either

i) a is the first symbol of y, or
i) y=ecand ais $.

Also, A—a - B, {ay, a,, ..., a,} is valid for y if for each i, 4 > o - B, {a;} is valid
for y.

Like the LR(0) items, the set of LR(1) items forms the states of a viable prefix
recognizing NFA, and we can compute the set of valid items for each viable prefix
by converting this NFA to a DFA. The transitions of this NFA are defined as
follows.

1) There is a transition on X from A »a - XB, {a;, a5, ..., a,} to A—>aX - B,
{ay, a3, ..., a,}

2) There is a transition on ¢ from 4 —»a - BB, {a,, a5, ..., a,} to B—-y, T, if
B — vy is a production and T is the set of terminals and/or $ such thatbisin T
if and only if either

i) B derives a terminal string beginning with b, or
ii) B2¢ and b is g; for some 1 <i<n

3) There is an initial state g, with transitions on ¢ to S —-a, {8} for each
production S — a.

Example 10.11 Consider the grammar
S—>4 A— BAle B—aB|b (10.8)

which happens to generate a regular set, (a*b)*. The NFA for grammar (10.8) is
shown in Fig. 10.5, and the corresponding DFA is shown in Fig. 10.6. The NFA of
Fig. 10.5 is unusual in that no two items differ only in the lookahead sets. In
general, we may see two items with the same dotted production.
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Start
B—>-b, {a, b, S}
B-b-, {a, b. S}
B
Fig. 10.5 NFA for LR(1) items.
40
S—=-A. {S}
A=>-BA, {S}
Start A== (S}

B—=-aB3. {a. b, S}
B=-b. {a. b. S}

"
B—=a-B. ‘u. b, S}
B=>aB. {a. h. S}

B=+b. {a. h. S}

A=B-A,
A=>-BA. {S}
A= S}

B—>-aB. {a. b, S}
B=+b, {a. b. S}
I’

Fig. 10.6 DFA for LR(1) items.
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To see how Fig. 10.5 is constructed, consider item S —- 4, {$}. It has ¢-
transitions to items of the form 4 — - AB, T,and A — - , T, but what should T be?
In rule (2) above, B is ¢, so (2i) yields no symbols for T. Rule (2ii) tells us that $ is in
T, so T={3}. Now consider item A4 —- BA, {3}. There are e-transitions to
B—-aB, U and B—- b, U for some U. Here, f = A. It is easy to check that 4
derives strings beginning with a and b, so a and b are in U. A4 also derives ¢, 50 $ is
in U because it is the lookahead set of A —- BA, {8}. Thus U = {a, b, .

A grammar is said to be LR(1) if

1) the start symbol appears on no right side, and

2) whenever the set of items I valid for some viable prefix includes some com-
plete ittem A -« -, {ay, a,, ..., a,}, then
i) no a; appears immediately to the right of the dot in any item of I, and
ii) if B— -, {by, b, ..., b} is another complete item in I, then a; # b; for
anyl<i<nand1<j<k

Example 10.12 Consider Fig. 10.6. Sets of items I,, I, I'5, and I consist of only
one item and so satisfy (2). Set I, has one complete item, A — -, {$}. But $ does not
appear to the right of a dot in any item of I,. A similar remark applies to I,, and
I has no complete items. Thus grammar (10.8) is LR(1). Note that this grammar
is not LR(0); its language does not have the prefix property.

The automaton that accepts an LR(1) language is like a DPDA, except that it
is allowed to use the next input symbol in making its decisions even if it makes a
move that does not consume its input. We can simulate such an automaton by an
ordinary DPDA if we append $ to the end of the input. Then the DPDA can keep
the next symbol or § in its state to indicate the symbol scanned. The stack of our
automaton is like the stack of the LR(0) grammar recognizing DPDA: it has
alternating grammar symbols and sets of items. The rules whereby it decides to
reduce or shift an input symbol onto the stack are:

1) If the top set of items has complete item A — « - , {ay, a,, ..., a,}, where A # S,
reduce by 4 — « if the current input symbol is in {a,, a,, ..., a,}.

2) If the top set of items has an item S >« -, {$}, then reduce by S — o and
accept if the current symbol is §, that is, the end of the input is reached.

3) If the top set of items has an item A — « - aB, T, and a is the current input
symbol, then shift.

Note that the definition of an LR(1) grammar guarantees that at most one of
the above will apply for any particular input symbol or §. We customarily sum-
marize these decisions by a table whose rows correspond to the sets of items and
whose columns are the terminals and $.
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Example 10.13 The table for grammar (10.8), built from Fig. 10.6, is shown in
Fig. 10.7. Empty entries indicate an error; the input is not in the language. The
sequence of actions taken by the parser on input aabb is shown in Fig. 10.8. The
number i on the stack represents set of items I; from Fig. 10.6. The proper set of
items with which to cover a given grammar symbol is determined from the DFA
transitions (Fig. 10.6) exactly as for an LR(0) grammar.

a b $
Iy Shift Shift Reduce by 4 — ¢
1, Accept
I, Shift Shift Reduce by 4 - ¢
I Shift Shift
A Reduce by B— b Reduce by B— b Reduce by B— b
Is Reduce by A —» BA
I Reduce by B — aB Reduce by B— aB Reduce by B— aB
Fig. 10.7 Decision table for grammar (10.8).
Stack Remaining input Comments
0 aabb$ Initial
0a3 abb$ Shift
0a3a3 bb$ Shift
0a3a3b4 bs Shift
0a3a3B6 b$ Reduce by B— b
0a3B6 b$ Reduce by B— aB
0B2 bS Reduce by B— aB
0B2b4 3 Shift
0B2B2 3 Reduce by B— b
0B2B2AS 3 Reduce by 4 — ¢
0B2A4S 3 Reduce by A - BA
041 3 Reduce by A - BA
— 3 Reduce by S — 4 and accept
Fig. 10.8 Action of LR(1) parser on input aabb.
EXERCISES
10.1  Show that the normal form of Lemma 10.2 holds for nondeterministic PDA’s.
10.2

a) Show that every DCFL is accepted by a DPDA whose only ¢ moves are pop moves-
b) Show that the DPDA of part (a) can be made to satisfy the normal form of Lemma

10.2.
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*10.3  Give an efficient algorithm to implement rule (4) of Lemma 10.3.

*S10.4 Show that the DCFL’s are not closed under union, concatenation, Kleene closure,
or homomorphism.

**10.5 Show that the following are not DCFL'’s.
Sa) {ww®|wisin (0 +1)*}  b) {0"1"|n > 1} U {0"1*"|n > 1}
**10.6 Prove that
{0'a2i|i, j = 1} U {0°¥b2]i, j = 1}
is a DCFL, but is not accepted by any DPDA without e-moves.

10.7  Show that if L is a DCFL, then L is accepted by a DPDA which, if it accepts
a,a, -** a,, does so immediately upon consuming a, (without subsequent e-moves). [Hint :
Use the predicting machine.]

10.8 Does Greibach’s Theorem (Theorem 8.14) apply to the DCFL’s?

109 Construct the nonempty sets of items for the following grammars. Which are
LR(0)?
a) §'—>S
S —aSa|bSb|c
b) §'=S
S — aSa|bSh|c
Sc) S—E,
E, - T E, | T
E, - TE, | T,
T, —a$ I(E PR
T, » )| (E2)
7‘3 —a+ |(E2 +
10.10 Show the sequence of stacks used by the DPDA constructed from grammar 10.9(c)
when the input is a + (a + a)$.
10.11 Construct the nonempty sets of LR(1) items for the following grammars. Which are
LR(1)?
a) S—> A4
A— AB|c¢
B—aB|b
b) S»E
E-E+T|T
T a|(E)
10.12 Repeat Exercise 10.10 for grammar 10.11(b).
10.13 Let G be an LR(0) grammar with 4 > a -, a # ¢, valid for some viable pretix y.
Prove that no other production can be valid for y.

Solutions to selected exercises

104 Let L, ={0'12/]i,j > 0} and L, = {0°'1’2’|i, j > 0}. It is easy to show that L and L,
are DCFL’s. However, L, U L, is the CFL shown not to be a DCFL in Example 10.1. Thus
the DCFL’s are not closed under union.
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For concatenation, let Ly = aL; U L,. Then L; is a DCFL, because the presence or
absence of symbol a tells us whether to look for a word in L, or a word in L,. Surelya*isa
DCFL. However a*L; is not a DCFL. If it were, then L, = a*L; n a0*1*2* would be a
DCFL by Theorem 10.4. But Ly = aL, v aL,. If L, is a DCFL, accepted by DPDA M,
then we could recognize L, u L, by simulating M on (imaginary) input a and then on the
real input. As L, U L, is not a DCFL, neither is L,, and therefore the DCFL’s are not
closed under concatenation.

The proof for closure is similar, if we let Ls = {a} U L;. Lsis a DCFL, but L? is not, by
a proof similar to the above.

For homomorphism, let Ls = aL; v bL,, which is a DCFL. Let L be the homomor-
phism that maps b to a and maps other symbols to themselves. Then h(Lg) = L, so the
DCFL’s are not closed under homomorphism.

10.5(a) Suppose L, = {ww®|w is in (0 + 1)*} were a DCFL. Then by Theorem 10.4, so
would be

L, = L; n (01)*(10)*(01)*(10)*.
Now
L, = {(01)'(10Y(01)(10)'|i, j > 0, i and j not both 0}.
By Theorem 10.3, Ly = MIN(L,) is a DCFL. But
Ls = {(01)(10)/(01)(10)'|0 <j < i},
since if j > i, a prefix is in L,. Let L be the homomorphism h(a) = 01 and h(b) = 10. Then
Ly = h™Y(L;) = {d'ba’b'|0 < j < i}

is a DCFL by Theorem 10.4. However, the pumping lemma with z = a"* 'b"a"b"* ! shows
that L, is not even a CFL.

10.9(c) Before tackling this project, let us describe the language of the grammar. We first
describe “expression” and “term” recursively, as follows.

1) A term is a single symbol a which stands for any “argument” of an arithmetic expres-
sion or a parenthesized expression.
2) An expression is one or more terms connected by plus signs.

Then the language of this grammar is the set of all expressions followed by an endmar-
ker, $. E, and T, generate expressions and terms followed by a $. E, and T, generate
expressions and terms followed by a right parenthesis, and T; generates a term followed by
a plus sign.

It turns out that LR(0) grammars to define arithmetic expressions, of which our gram-
mar is a simple example, are quite contorted, in comparison with an LR(1) grammar for the
same language [see Exercise 10.11(b)]. For this reason, practical compiler-writing systems
never require that the syntax of a language be described by an LR(0) grammar; LR(1)
grammars, or a subset of these, are preferred. Nevertheless, the present grammar will serve
as a useful exercise. The DFA accepting viable prefixes has 20 states, not counting the dead
state. We tabulate these sets of items in Fig. 10.9. Figure 10.10 gives the transition table for
the DFA; blanks indicate transitions to the dead state.

Inspection of the sets of items tells us that certain sets, namely 1, 3, 6,7, 8, 11, 14, 15, 16,
17, and 19, consist of a single complete item, while the remainder have no complete items.
Thus the grammar is LR(0).
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Fig. 10.9 Sets of items for Exercise 10.9(c).

BIBLIOGRAPHIC NOTES

Deterministic pushdown automata were first studied by Fischer [1963], Schutzenberger
[1963), Haines [1965), and Ginsburg and Greibach [1966a]. Lemma 10.3, the fact that
DPDA'’s can be made to consume all their input, is from Schutzenberger [1963]; Theorem
10.1, closure under complementation, was observed independently by various people. Most
of the closure and decision properties, Theorems 10.2 through 10.8, were first proved by
Ginsburg and Greibach [1966a]. An exception is the fact that it is decidable whether a
DCFL is regular, which was proved by Stearns [1967). The predicting-machine construc-
tion is from Hopcroft and Uliman [1969b].
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Fig. 10.10 Transition table of viable prefix recognizing DFA.

LR(k) grammars and the equivalence of DPDA’s to LR(1) grammars is from Knuth
[1965]. The latter work generalized a sequence of papers dealing with subclasses of the
CFG’s having efficient parsing algorithms. The history of this development is described in
Aho and Ullman [1972, 1973]. Graham [1970] shows that a number of other classes of
grammars define exactly the CFL’s.

Subsequent to Knuth [1965], a series of papers examined the class of LR(1) grammars
for a useful subclass for which parsers of reasonable size could be built. Korenjak’s [1969]
was the first such method, although two subclasses of LR(1) grammars, called SLR(1) (for
“simple” LR) and LALR(1) (for “lookahead LR”), due to DeRemer [1969, 1971] are the
methods used most commonly today. By way of comparison, a typical programming
language, such as ALGOL, has an LR(1) parser (viable prefix recognizing DFA) with
several thousand states, and even more are needed for an LR(0) parser. As the transition
table must be part of the parser for a language, it is not feasible to store such a large parser
in the main memory of the computer, even if the table is compacted. However, the same
languages have SLR(1) or LALR(1) parsers of a few hundred states, which fit easily with
compaction. See Aho and Johnson [1974] or Aho and Ullman [1977) for a description of
how LR-based parsers are designed and used.

A good deal of research has been focused on the open question of whether equivalence
is decidable for DPDA’s. Korenjak and Hopcroft [1966] showed that equivalence is decid-
able for a subclass of the DCFL’s called “simple” languages.t These are defined by gram-

+ These are not related to “simple” LR grammars in any substantial way.
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mars in Greibach normal form such that no two productions 4 — ax and A — af exist. The
decidability of equivalence was extended to the LL(k) grammars of Lewis and Stearns
[1968], which are a proper subset of the LR(k) grammars, by Rosenkrantz and Stearns
[1970]. Valiant [1973] showed that equivalence was decidable for finite-turn DPDA’s (see
Exercise 6.13 for a definition), among other classes; see also Valiant [1974], Beeri [1976],
and Taniguchi and Kasami [1976]. Friedman [1977] showed that équivalence for DPDA’s
is decidable if and only if it is decidable for “monadic recursion schemes,” which in terms of
automata can be viewed as one-state DPDA's that can base their next move on the current
input synibol, without consuming that symbol.

Additionally, work was done on extending the undecidability of containment for
DCFVL’s to small subsets of the DCFL’s. The work culminated in Friedman [1976], which
proved that containment is undecidable even for the simple languages of Korenjak and
Hopcroft [1966].

A solution to Exercise 10.5(b) is found in Ginsburg and Greibach [1966a], and Exercise
10.6 is based on Cole [1969].



CHAPTER

CLOSURE PROPERTIES
OF FAMILIES OF
LANGUAGES

There are striking similarities among the closure properties of the regular sets, the
context-free languages, the r.e. sets, and other classes. Not only are the closure
properties similar, but so are the proof techniques used to establish these proper-
ties. In this chapter we take a general approach and study all families of languages
having certain closure properties. This will provide new insight into the underly-
ing structure of closure properties and will simplify the study of new classes of
languages.

1.1 TRIOS AND FULL TRIOS

Recall that a language is a set of finite-length strings over some finite alphabet. A
SJamily of languages is a collection of languages containing at least one nonempty
language. A trio is a family of languages closed under intersection with a regular
set, inverse homomorphism, and ¢-free (forward) homomorphism. [We say a hom-
omorphism h is e-free if h(a) # ¢ for any symbol a.] If the family of languages is
closed under all homomorphisms, as well as inverse homomorphism and intersec-
tion with a regular set, then it is said to be a full trio.

Example 11.1 The regular sets, the context-free languages, and the r.e. sets are
full trios. The context-sensitive languages and the recursive sets are trios but not
full trios, since they are not closed under arbitrary homomorphisms. In fact,
closing the CSL’s or the recursive sets under arbitrary homomorphisms yields the
r.e. sets (see Exercise 9.14 and its solution).

270
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Theorem 3.3 showed that regular sets are closed under intersection; hence
they are closed under “intersection with a regular set.” Theorem 3.5 showed
closure of the regular sets under homomorphisms and inverse homomorphism,
completing the proof that the regular sets form a full trio. The corollary to
Theorems 6.2, 6.3, and 6.5 show that the CFL’s are a full trio. Exercise 9.10 and its
solution provide a proof that the CSL’s are closed under inverse homomorphism,
intersection (hence intersection with a regular set), and substitution (hence ¢-free
homomorphism, but not all homomorphisms, since ¢ is not permitted in a CSL).
Thus the CSL’s are a trio but not a full trio.

We shall prove that the recursive sets are a trio, leaving the proof that the r.e.
sets are a full trio as an exercise. Let h be a homomorphism and L a recursive
language recognized by algorithm A. Then h™ (L) is recognized by algorithm B,
which simply applies A to h(w), where w is B’s input. Let g be an ¢-free homomor-
phism. Then g(L) is recognized by algorithm C which, given input w of length n,
enumerates all the words x of length up to n over the domain alphabet of g. For
each x such that g(x) = w, algorithm A is applied to x, and if x is in L, algorithm C
accepts w. Note that since g is e-free, w cannot be g(x) if |x| > |w|. Finally, if R is
a regular set accepted by DFA M, we may construct algorithm D that accepts
input w if and only if A accepts w and M accepts w.

We conclude this section by observing that every full trio contains all regular
sets. Thus the regular sets are the smallest full trio. Also, the ¢-free regular sets are
the smallest trio. (A language is e-free if ¢ is not a member of the language.)

Lemma 11.1 Every full trio contains all regular sets; every trio contains all ¢-free
regular sets.

Proof Let € be a trio, £ an alphabet, and R < Z* an ¢-free regular set. Since ¢
contains at least one nonempty language, let L be in ¥ and w be in L. Define
%' ={d'|ais in Z} and let h be the homomorphism that maps each ain Z to cand
each a’ in ' to w. Then L, = h™ (L) is in ¥ because ¥ is a trio. Aswisin L, L,
contains all strings in X'2*, and others as well. Let g be the homomorphism
g(@') = g(a) = a for all a in . Then g being ¢-free, we know that L, = g(L,)isin ¢
and is either £* or £*, depending on whether or not L, contains e. Thus
L, n R=R is in ¥, proving our contention that every trio contains all ¢-free
regular sets.

If € is a full trio, we may modify the above proof by letting g'(a’) = ¢ and
g'(a)=aforallain Z. Then L, = ¢g'(L,) = X*. If R is any regular set whatsoever,
L,nR=Risin%. a

We leave it as an exercise to show that the e-free regular sets are a trio and
hence the smallest trio. Note that they do not form a full trio, because they are not
closed under all homomorphisms.
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112 GENERALIZED SEQUENTIAL MACHINE MAPPINGS

In studying closure properties, one quickly observes that certain properties follow
automatically from others. Thus to establish a set of closure properties for a class
of languages one need only establish a set of properties from which the others
follow. In this section we shall establish a number of closure properties that follow
from the basic properties of trios and full trios.

The first operation we consider is a generalization of a homomorphism. Con-
sider a Mealy machine that is permitted to emit any string, including ¢, in a move.
This device is called a generalized sequential machine, and the mapping it defines
is called a generalized sequential machine mapping.

More formally a generalized sequential machine (GSM) is a 6-tuple M = (Q, %,
A, 6, qo, F), where Q, %, and A are the states, input alphabet, and output alphabet,
respectively, 6 is a mapping from Q x X to finite subsets of Q x A*, q, is the initial
state, and F is the set of final states. The interpretation of (p, w) in 5(q, a) is that M
in state g with input symbol a may, as one possible choice of move, enter state p
and emit the string w.

We extend the domain of 6 to @ x X* as follows.

1) é(q, ) = {(4 o)}
2) For xinZ*and a in X,
(g, xa) = {(p, w)|w = w, w, and for some p/,
(p', wy) is in &(g, x) and (p, w,) is in §(p/, a)}.

A GSM is e-free if 6 maps Q x X to finite subsets of Q x A*.Let M(x), where
M is a GSM as defined above, denote the set

{y|(p, y) is in &(qq, x) for some p in F}.
If L is a language over Z, let M(L) denote
{y]y is in M(x) for some x in L}.

We say that M(L) is a GSM mapping. If M is ¢-free, then M(L) is an ¢-free GSM
mapping. Note that L is a parameter of the mapping, not a given language.
Also let

M~Y(x) = {y|M(y) contains x},
and
M~Y(L) = {y|x is in M(y) for some x in L}.

We say that M~ ! is an inverse GSM mapping. It is not necessarily true that
M~Y(M(L))= MM~ (L)) = L, so M~ ' is not a true inverse.

Example 11.2 Let
M = ({40, 91}, {0, 1}, {a, B}, 3, g0, {41})-
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We define 6 by
(90, 0) = {(40, aa), (41, b)},
6(90, 1) = {(0, a)};
(g1, 0)= &,

(g1, 1) ={(q, &)}

We may draw a GSM as a finite automaton, with an edge labeled a/w from state q
to state p if 6(g, a) contains (p, w). The diagram for M above is shown in Fig. 11.1.
Intuitively, as 0’s are input to M, M has the choice of either emitting two a’s or one
b. If M emits the b, it goes to state g,. If 1 is input to M, and M is in state go, M can
only output an a. In state q,, M dies on a 0-input, but can remain in state q, with
no output on a l-input.

Fig. 11.1 A GSM.

Let L= {0"1"|n > 1}. Then
M(L) = {a*"b|n > 0}.

For as 0’s are read by M, it emits two a’s per 0, until at some time it guesses that it
should emit the symbol b and go to state gq,. If I’s do not follow immediately on
the input, M dies. Or if M chooses to stay in g, when the first 1 is read, it can never
reach q, if the input is of the form 0"1". Thus the only output made by M when
given input 0"1" is a®"~ 2b.

If L, = {a*b|n > 0}, then

M~ Y(L,) = {w01'|i = 0 and w has an even number of 1’s}.

Note that M~ '(M(L)) 2 L.

The GSM mapping is a useful tool for expressing one language in terms of a
second language having essentially the same structure but different external trap-
pings. For example, L, = {a"b"|n > 1} and L, = {a"ba"|n > 1} in some sense have
the same structure, but differ slightly. L, and L, are easily expressible in terms of
each other by GSM mappings. Figure 11.2(a) shows a GSM mapping L, to L,,
and Fig. 11.2(b) shows a GSM mapping L, to L,.
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Fig. 11.2 Two GSM’s.

Closure under GSM mappings

A key fact about GSM mappings is that they can be expressed in terms of homo-
morphisms, inverse homomorphisms, and intersection with regular sets. Thus any
class of languages closed under the latter operations is closed under GSM
mappings.

Theorem 11.1 Every full trio is closed under GSM mappings. Every trio is closed
under ¢-free GSM mappings.

Proof Let ¢ be a full trio, L a member of ¢, and M = (Q, X, A, 9, qo, F) a GSM.
We must prove that M(L) is in 4. Let

8, = {[4. @, x, p}|3(g. a) contains (p, x)}

and let h; and h, be the homomorphisms from A¥ to £* and A¥ to A* defined by
hi([g, a, x, p]) = a and h,([q, a, x, p]) = x. Let R be the regular set of all strings in
A¥ such that

1) the first component of the first symbol is g, the start state of M
2) the last component of the last symbol is a final state of M;

3) the last component of each symbol is the same as the first component of the
succeeding symbol.

It is easy to check that R is a regular set. A DFA can verify condition (3) by
remembering the previous symbol in its state and comparing it with the current
symbol.

If ¢ is not in L, then M(L) = hy(hy *(L) n R). That is, hy ' maps M’s input
to a string that has encoded in it, for each symbol of the input string, a possible
state transition of M on the input symbol and a corresponding output string. The
regular set forces the sequence of states to be a possible sequence of state transi-
tions of M. Finally, h, erases the input and state transitions, leaving only the
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output string. Formally,

hl_l(L) = {[plr al’ xl’ ql][pla a2, xZ’ qZ] o [pk: Ay, xkr qk] Ialal o ak
is in L, the p;’s are arbitrary, and (g;, x;) is in 8(p;, a;)}.
Intersecting hy *(L) with R yields

L = {[q0 a1, X1, 011[491> 25 X2, 42] =" [Ga— 15 B> Xi> 4] laja; - a
isin L, g, is in F, and 8(g;-, a;) contains (g;, x;) for all i}.

Hence h,(L) is M(L) by definition.

If eis in L and gy is not a final state, then h,(L) is still M(L). But if ¢ is in L and
qo is a final state, then M(c) = ¢, so we must modify the construction above to
make sure ¢ is in the resulting language. Let L' = h{ (L) n (R + ¢). Then
L =L v {e}, since ¢ is in h™(L). Hence h,(L) = M(L). Since every full trio is
closed under intersection with a regular set, homomorphism, and inverse homo-
morphism, M(L) is in €.

The proof for trios and e-free GSM mappings proceeds in a similar fashion.
Since the GSM never emits ¢, the x in [g, g, x, p] is never ¢, and consequently h, is
an ¢-free homomorphism. O

Limited erasing and inverse GSM mappings

Trios are not necessarily closed under homomorphisms that result in arbitrary
erasing. However, trios are closed under certain homomorphisms that allow eras-
ing, provided the erasing is limited. A class of languages is said to be closed under
k-limited erasing if for any language L of the class and any homomorphism h such
that h never maps more than k consecutive symbols of any sentence x in L to ¢,
h(L) is in the class. The class is closed under limited erasing if it is closed under
k-limited erasing for all k. Note that if h(a) is ¢ for some a, then whether h is a
limited erasing on L depends on L.

Lemma 11.2 Every trio is closed under limited erasing.

Proof Let € be a trio, L = ¥ be a member of €, and h a homomorphism that is
k-limited on L. Let

Z,={[x]]xisin ¥, |x| <k + 1, and h(x) # ¢
Let h, and h, be homomorphisms defined by
hi(a,a; - a,]) = a,a; - a,, and hy([a,a, - a,]) = h(a,a; - a,,)

Since [a,a, *** a,,] is only in £, if h(a; a; *** a,,) # ¢, h is e-free. Then hy(h7 (L))
is in 4 since € is closed under ¢-free homomorphisms and all inverse homomor-
phisms. It is easy to check that h,(h; (L)) = h(L). 0
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Theorem 11.2 Every trio is closed under inverse GSM mappings.

Proof Let € beatrio, Lamember of %,and let M = (Q, X, A, 4, go, F) be a GSM.
Without loss of generality assume that the sets X and A are disjoint. If not, replace
symbols in A by new symbols and restore them at the end of the construction by
an c¢-free homomorphism mapping each new symbol to the corresponding old
symbol. Let h, be the homomorphism mapping (£ U A)* to A* defined by

]a for g in A,

hi(a) = |¢ forain X.

Let L, = h7 '(L). Then L, is the set of strings in £*b, £*b, --- L*b, T* such that
byb, - b,is in L.

Let R be the regular set consisting of all words of the form a, x, a; x, *** a,, x,,
such that

1) the a’s are in Z,

2) the x’s are in A¥,

3) thereexist states qq, gy, - - -, g, Such that q,,isin Fand for 1 <i < m, 8(g;-,, @)
contains (g;, X;).

Note that x; may be ¢. The reader may easily show R to be a regular set by
constructing a nondeterministic finite automaton accepting R. This NFA guesses
the sequence of states qy, q;, ..., G-

Now L; n R is the set of all words in R of the form a, x,a,x, *** a, X,
m > 0, where the a’s are in X, the x’s are in A*, x, x, - x,, is in L, and d(go,
a,a, *** a,) contains (p, x, x, *** x,,), for some p in F. None of the x;’s is of length
greater than k, where k is the length of the longest x such that (p, x) is in (g, a) for
some p and g in Q and a in X.

Finally, let h, be the homomorphism that maps a to a for each ain X, and b to
¢ for each b in A. Then

M~Y(L) = hy(L, ~ R)

is in 4 by Lemma 11.2, since h, never causes more than k consecutive symbols to
be mapped to ¢ a

11.3 OTHER CLOSURE PROPERTIES OF TRIOS

Trios and full trios are closed under many other operations. In this section we
present several of these closure properties.

Theorem 11.3 Every full trio is closed under quotient with a regular set.

Proof Let € be a full trio, L < £¥ a member of ¢, and R < X* a regular set. For
each a in X, let a’ be a new symbol, and let I be the set of all such symbols. Let hy
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and h, be the homomorphisms from (X, U X})* to X} defined by h,(a) =
hy(a’) = a, hy(a) = € and hy(a’) = a. Then L/R = hy(h7 *(L) n (Z})*R), and hence
L/R is in 4. That is, hy '(L) is the words in L with each symbol primed or
unprimed independently. Thus hy }(L) n (£7)*R is those words xy such that x
consists only of primed symbols, y consists only of unprimed symbols, y is in R,
and if z is x with the primes removed, then zy is in L. It follows that

hy(h (L) ~ (Z7)*R)
is all strings z as described above, that is, L/R. O

Theorem 11.4 Trios are closed under substitution by ¢-free regular sets, and full
trios are closed under substitution by regular sets.

Proof Let € be a trio, L = £} a member of € and s: £ — X% a substitution such
that for each a in X,, s(a) is regular. For the time being assume X, and X, are
disjoint, and s(a) does not contain «.

Let x be a string in L. By an inverse homomorphism we can insert arbitrary
strings from X% among symbols of x. By intersecting with a regular set we can
assure that the string inserted after the symbol a is in s(a). Then by limited erasing
we can erase the symbols of x, leaving a string from s(x).

More precisely let h,: (£, u £,)* > X¥ be the homomorphism defined by
hy(a)=aforainX, and h,(a) = cforain £, and let h,: (X, U X,)* - X% be the
homomorphism defined by h,(a) = ¢ for a in £, and h,(a) = a for a in Z,. Then

()= hlh 0 o (Y et

ainI,

Now

*
( U as(a))
ainX

is a regular set, since each s(a) is. Since s(a) is ¢-free, h, erases at most every other
symbol, so s(L) is in 4 by Lemma 11.2. The proof that full trios are closed under
substitution by regular sets is identical except for the fact that s may not be ¢-free.
If %, and Z, are not disjoint, replace each symbol of X, by a new symbol, and
follow the above operations by an (-free homomorphism to restore the old sym-
bols. 0

114 ABSTRACT FAMILIES OF LANGUAGES

Many of the families of languages we have studied have closure properties that are
not implied by the trio or full trio operations. Predominant among these are
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union, concatenation, and Kleene closure. For this reason, two other sets of
closure properties have had their consequences heavily studied, and in fact were
studied long before the trio and full trio. Define a class of languages to be an
abstract family of languages (AFL) if it is a trio and also closed under union,
concatenation, and positive closure (recall that L*, the positive closure of L, is
(U=, L). Call a class of languages a full AFL if it is a full trio and closed under
union, concatenation, and Kleene closure.

For example, we proved in Chapters 3 and 6 that the regular sets and context-
free languages are full AFL’s. The r.e. sets are also a full AFL, and we leave the
proof as an exercise. The CSL’s are an AFL, but not a full AFL, since they are not
closed under general homomorphism (see Exercises 9.10 and 9.14).

We saw that the regular sets are the smallest full trio. They are also a full AFL
and therefore the smallest full AFL. The c-free regular sets are the smallest AFL,
as well as the smallest trio.

The next theorem states that AFL’s are closed under substitution into regular
sets. That is, for each symbol of an alphabet, we associate a language from an AFL
‘6. Then replacing each symbol in each string in some regular set by the associated
language yields a language in 4.

Theorem 11.5 Let 4 be an AFL that contains some language containing ¢, and
let R = =* be a regular set. Let s be a substitution defined by s(a) = L, for each a
in £, where L, is a member of 4. Then s(R) is in 4.

Proof The proof is by induction on the number of operators in a regular expres-
sion denoting R. If there are zero operators, then the regular expression must be
one of &, ¢, or a, for a in Z. Ifit is a, then the result of the substitution is L,, which
is in 6. If the regular expression is (7, the result of substitution is ¢, which is in
by Lemma 11.1. If the regular expression is ¢, the result of the substitution is {¢}.
We claim {¢} is in ¢, because some L containing ¢ is in 6,and L n {¢} = {¢}isin ¥
by closure under intersection with a regular set.

The induction step is easy. AFL’s are closed under union and concatenation,
and we can show closure under * easily, given L in ¢ containing ¢. That is, we
already showed {¢} is in 4. If L, is any language in %, then L{ is in %, sO

¥=L{ u{dis in €. Therefore, the AFL % is closed under U, - and *, from
which the inductive step follows. Thus ¢ is closed under substitution into a
regular set. . O

In general, AFL’s are not closed under substitution of languages in the family
into other languages in the family, although most of the common AFL’s such as
the CFL’s, the recursive sets, and the r.e. sets are. However, any AFL closed under
 is closed under substitution. The proof is similar to that of Theorem 11.5 and is
left as an exercise. We also leave as an exercise the fact that all AFL’s, even those
with no language containing ¢, are closed under substitution into ¢-free regular
sets.
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11.5 INDEPENDENCE OF THE AFL OPERATIONS

The definition of an AFL requires six closure properties. However, to show that a
family of languages is an AFL, one need not show all six properties, since they are
not independent. For example, any family of languages closed under u, ™, ¢-free h,
h~' and MR is necessarily closed under -.1 Similarly, U follows from the other
five operations and the same holds for nR. We shall only prove the dependence
of -.

Theorem 11.6 Any family of languages closed under U, *, e-free h, h™!, and NR
is closed under -.

Proof Let & be such a family of languages,and let L, < X*and L, < £*be in %.
We may assume without loss of generality that ¢ is not in L, or L,. This assump-
tion is justified by the fact that

LiL, = (L; —{g)(L, — {¢}) v L} v L,

where Lj is L, if c is in L, and ¢J otherwise; L, is L, if ¢is in L, and (J otherwise.
As € is closed under union, if we can show that (L, — {¢})(L, — {¢}) is in €, we
shall have shown that L, L, is in %.

Let a and b be symbols not in X. As € is a trio, Theorem 11.1 tells us € is
closed under ¢-free GSM mappings. Let M, be the GSM that prints q, followed by
its first input symbol, then copies its input, and let M, be another GSM that prints
b with its first input symbol, then copies its input. Then as ¢ is not in L, or L,,
M,(L,) = aL, and M,(L,) = bL,, and both are in 6. By closure under u, *, and
NR,

(aL, v bL,)* N aZ*bL* = al,bL,

is in 4. Define g to be the homomorphism g(a) = g(b) = ¢, and g(c) = cforall cin
X. Then g is a 2-limited erasing, since L, and L, are assumed c-free. By Lemma
11.2, g(aL, bL,) = L, L, is in . O

1.6 SUMMARY

We list in Fig. 11.3 some operations under which trios, full trios, AFL’s and full
AFL’s are closed. The properties have all been proved in this chapter or are
exercises. Recall that the regular sets, CFL’s, and r.e. sets are full AFL’s; the CSL’s
and recursive sets are AFL’s. The DCFL’s are not even trios, however.

Some other operations do not fit into the theory of trios and AFL'’s. In Fig.
11.4 we summarize the closure properties of six classes of languages under these
operations. The question of whether the CSL’s are closed under complementation
is a long-standing open problem, and is equivalent to their closure under MIN.

T We use N R for “intersection with a regular set,” h for “homomorphism,” and h~' for “inverse
homomorphism.” The dot stands for concatenation.
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Trio Full trio AFL Full AFL

V] v v

v .
+ v v
* v
h™! v v v v
e-free h v v v v
h v N
NR v v v .
¢-free GSM mappings N v N
GSM mappings v v
Inverse GSM mappings . v v v
Limited erasing N . . .
Quotient with regular set . .
INIT v v
Substitution into regular sets v N
Substitution by ¢-free regular sets . N v N
Substitution by regular sets . .

Fig. 11.3 Summary of closure properties.

While this chapter has concerned itself with closure properties and not deci-
sion properties, we have reached a good point to summarize these properties as
well, for the six classes of languages mentioned in Fig. 11.4. We show in Fig. 11.5
whether each of 10 important properties is decidable for the six classes. D means
decidable, U means undecidable, T means trivially decidable (because the answer
is always “yes”), and ? means the answer is not known. The results in Fig. 11.5 are
proved in various chapters, chiefly Chapters 3, 6, 8, and 10.



Regular Recursive re.
sets CFL’s DCFL’s CSL’s sets sets
Complementation v v ? v
Intersection v v v v
Substitution v v % v
MIN v v ? v v
MAX v v
CYCLE v v v . v
Reversal v v v v v
Fig. 11.4 Some other closure properties.
Regular Recursive  re.
Question sets DCFLs CFL's CSL’s sets sets
Is win L? D D D D D U
Is L= &? D D D U U U
Is L=X*? D D U U U U
IsL, =L,? D ? U U U U
Is L, € L,? D U U U U U
IsLynL,=? D U U U U U
Is L = R, where
R is a given
regular set? D D U U U U
Is L regular? T D U U U U
Is the intersection
of two languages a
language of the
same type? T U U T T T
Is the complement
of a language
also a language
of the same type? T U U ? T U

Fig. 11.5 Some decision properties.
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EXERCISES

*S11.1  Show that the linear languages are a full trio but not an AFL.
11.2  Show that the e-free regular sets are an AFL.
11.3  Show that a full trio is closed under INIT, SUB, and FIN, where

SUB(L) = {x|wxy is in L for some w and y},
and
FIN(L) = {x|wx is in L for some w}.
114  Show that not every AFL is closed under *, h, INIT, SUB, FIN, quotient with a
regular set or substitution by regular sets.

*11.5  Show that not every full trio is closed under v, -, *, *, or substitution into regular
sets. [Hint : The linear languages suffice for all but union. (To prove that certain languages
are not linear, use Exercise 6.11). To show nonclosure under union, find two full trios ¢,
and ¥, containing languages L, and L,, respectively, such that L, U L, is in neither 4, nor
%,. Show that' ¢, U %, is also a full trio.]

11.6  Prove each of the closure and nonclosure properties in Fig. 11.4 (some have been
asked for in previous exercises or proved in previous theorems).

*11.7  The interleaving of two languages L, and L,, denoted IL(L,, L,), is
{wixywyx, -+ wy x| k is arbitrary, wyw, - wy is in Ly and x;x, *+* X, is in Ly}t

Show that if € is any trio, L is in 4, and R is a regular set, then IL(L, R) is in %.
11.8  Are the following closed under IL?
a) regular sets b) CFL’s c) CSL’s d) recursive sets e) r.e. sets

11.9  An A-transducer is a GSM that may move (make output and change state) on
¢-input. Show that every full trio is closed under A-transductions.

11.10 Find a GSM that maps d' to the set {a’b*|i <j + k < 2i} for all i.

*11.11 Show that any class of languages closed under -, h, h™!, and NR is closed under
union.

*11.12  Show that any class of languages closed under h, k™', -, and U is closed under NR.
**11.13  Give examples of classes of languages closed under
a) U, -, «-free h, k™!, and NR, but not *;
b) U, *, c-free h, and AR, but not h™*;
¢) u,-, *, h7!, and AR, but not ¢-free h.
*11.14 Show that an AFL is closed under complementation if and only if it is closed under
MIN.

*11.15 A scattered-context grammar, G = (V, T, P, S), has productions of the form (A4, .-
A,) = (@y, ---, @), where each a; is in (V U T)*. If (4, ..., A,) > (a4, ..., @) is in P, then
we write

BrABrAy BuAnBui1 = Bray B2y e BrctnBary-

+ Note some w’s and x’s may be ¢.
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Let 2 be the reflexive, transitive closure of =. The language generated by G is {x | x is in T*
and S x}.
a) Prove that the scattered-context languages form an AFL.
b) What class of languages is generated by the scattered-context grammars if we allow
productions with the a;’s possibly €?

**11.16 An AFL ¥ is said to be principal if there is a language L such that 4 is the least AFL
containing L.
a) Do the CFL’s form a principal AFL?
b) Prove that the least AFL containing {a"b"|n > 0} is properly contained in the CFL'’s.
c) Let %o, €, €, ... be an infinite sequence of AFL’s such that 4;_, & 4 for alli > 0.
Prove that the union of the %;’s forms an AFL that is not principal.
d) Give an example of a nonprincipal AFL.

*11.17 Show that if an AFL is closed under intersection, then it is closed under
substitution.

Solutions to Selected Exercises

11.1  To prove that the linear languages are closed under homomorphism, let G be a linear
grammar and h a homomorphism. If each production 4 - wBx or A4 — y is replaced by
A — h(w)Bh(x) or A — h(y), respectively, then the resulting grammar generates h(L(G)). To
show closure under h~! and NR, we could use machine-based proofs analogous to the
proofs for CFL’s, since by Exercise 6.13(a), the linear languages are characterized by
one-turn PDA’s. We shall instead give grammar-based proofs.

Let G = (V, T, P,S) be a linear CFG,and M = (Q, T, §, go, F) a DFA. Construct linear
grammar G’ = (V', T, P’,§’) generating L(G) n L(M). Let V' = {[qA4p] |q and p are in Q and
Ain V} U {S'}. Then define P’ to have productions

1) §' > [goSp] for all pin F,

2) [gAp] — w[rBs]x whenever A - wBx is in P, 6(q, w) = r and (s, x) = p, and

3) [gqAp] —» y whenever A > y is in P and (g, y) = p.
An easy induction on derivation length shows that [gAp] :=’> w if and only if 4 £ wand é(g,
w)=p. Thus §'%w if and only if SZw and d(go, w) is a final state. Hence
L(G') = L(G) n L(M).

Now, let G = (V, T, P, S) be a linear grammar and h: £* » T* a homomorphism.
Suppose k is such that for all a in £, |h(a)| < k, and if A > wBx or A —>w is in P, then
|w] < k and |x| < k. Let G” = (V", £, P”, [S]), where V" consists of all symbols [wAx] such
that A isin V, and w and x in T* are each of length at most 2k — 1. Also in V" are
symbols [y], where |y| < 3k — 1. Intuitively G” simulates a derivation of G in its variable
until the string of terminals either to the right or to the left of the variable of G is of
length at least k. Then G” produces a terminal a on the right or left and deletes h(a) from
what is stored in the variable.

The productions of P” are:

1) If A— w;Bx, is in P, then for all w, and x, of length at most k — 1, [w,Ax,;] —»
[wawyBx;x,] is in P”. If A— y is in P, then [w;Ax,;] = [w,yx,] is in P".
2) Forain X,

[(a)wi Ax,] > alwiAx;],  [wiAxih(a)] = [widxi]a,  and  [h(a)y] - aly].
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3) [e] e
It follows by induction on derivation length that
[S] ;: wi[wy Ax,]x,
if and only if
S & h(w)wz Axzh(x,).

Thus [S]% v if and only if S % h(v), and hence L(G") = h™ '(L(G)).

To show that the linear languages are not an AFL, we show they are not closed under
concatenation. Surely {a'b'|i > 1} and {c¢’d’ | j > 1} are linear languages, but their concaten-
ation is not, by Exercise 6.12.

BIBLIOGRAPHIC NOTES

The study of abstract families of languages was initiated by Ginsburg and Greibach [1969],
who proved Theorems 11.1 through 11.5 and Lemma 11.1. The central importance of the
trio in this theory is pointed out by Ginsburg [1975]. Theorem 11.6 on independence of the
operators appears in Greibach and Hopcroft [1969]; a solution to Exercise 11.13 can also
be found there. The notion of limited erasing is also due to Greibach and Hopcroft [1969].
That AFL’s closed under intersection are closed under substitution was first proved by
Ginsburg and Hopcroft [1970]. An enormous amount of literature concerns itself with
abstract families of languages; we mention only Ginsburg and Greibach [1970], dealing
with principal AFL’s (Exercise 11.16), and Greibach [1970], who attempts to work substitu-
tion into the theory. A summary and additional references can be found in Ginsburg [1975].

The theory of families of languages has, from its inception, been connected with the
theory of automata. Ginsburg and Greibach [1969] show that a family of languages is a full
AFL if and only if it is defined by a family of nondeterministic automata with a one-way
input. Of course, the notion of a “family of automata” must be suitably defined, but,
roughly, each such family is characterized by a set of rules whereby it may access or update
its storage. The “if” part was proved independently in Hopcroft and Ullman [1967b].
Chandler [1969] characterized families of deterministic automata with a one-way input, in
terms of closure properties, and Aho and Ullman [1970] did the same for deterministic
automata with a two-way input. Curiously, no characterization for two-way nondeter-
ministic automata is known.

There have also been attempts to codify a theory of grammars, chiefly subfamilies of
the CFG’s. Gabriellian and Ginsburg [1974] and Cremers and Ginsburg [1975] wrote the
basic papers in this area.

The GSM was defined by Ginsburg [1962], and the study of GSM mappings and their
properties commenced with Ginsburg and Rose [1963b]. An important unresolved issu¢
concerns testing for equivalence of two sequential transducers. That equivalence is decid-
able for Moore machines (and hence for Mealy machines, which GSM’s generalize) was
known since Moore [1956]. Griffiths [1968] showed that the equivalence problem for ¢-free
GSM’s was undecidable, while Bird [1973] gave a decision algorithm for the equivalence of
two-tape automata, which are more general than deterministic GSM’s.

Scattered-context grammars (Exercise 11.15) are discussed in Greibach and Hopcroft
[1969].



CHAPTER

COMPUTATIONAL
COMPLEXITY
THEORY

Language theory classifies sets by their structural complexity. Thus regular sets
are regarded as “simpler” than CFL’s, because the finite automaton has less
complex structure than a PDA. Another classification, called computational
complexity, is based on the amount of time, space, or other resource needed to
recognize a language on some universal computing device, such as a Turing
machine.

Although computational complexity is primarily concerned with time and
space, there are many other possible measures, such as the number of reversals in
the direction of travel of the tape head on a single-tape TM. In fact one can define
a complexity measure abstractly and prove many of the results in a more general
setting. We choose to present the results for the specific examples of time and
space, since this approach renders the proofs more intuitive. In Section 12.7 we
briefly outline the more abstract approach.

12.1 DEFINITIONS

Space complexity

Consider the off-line Turing machine M of Fig. 12.1. M has a read-only input tape
with endmarkers and k semi-infinite storage tapes. If for every input word of
length n, M scans at most S(n) cells on any storage tape, then M is said to be an
S(n) space-bounded Turing machine, or of space complexity S(n). The language
recognized by M is also said to be of space complexity S(n).

285
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Input n

Finite
control

Storage tapcsj .

Fig. 12.1 Multitape Turing machine with read-only input.

Note that the Turing machine cannot rewrite on the input and that only the
length of the storage tapes used counts in computing the tape bound. This restric-
tion enables us to consider tape bounds of less than linear growth. If the TM could
rewrite on the input tape, then the length of the input would have to be included in
calculating the space bound. Thus no space bound could be less than linear.

Time complexity

Consider the multitape TM M of Fig. 12.2. The TM has k two-way infinite tapes,
one of which contains the input. All tapes, including the input tape, may be written

Finite
control

Input
.. .
region

Storage tapes

Fig. 12.2 Multitape Turing machine.
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upon. If for every input word of length n, M makes at most T(n) moves before
halting, then M is said to be a T(n) time-bounded Turing machine, or of time
complexity T(n). The language recognized by M is said to be of time complexity
T(n).

The two different models for time and space complexity were selected with an
eye toward making certain proofs simple, and some variation in the models is
feasible. For example, if $(n) > n, then we can use the single tape TM as our model
without changing the class of languages accepted in space S(n). We cannot,
however, when discussing time complexity, use the single tape TM, or TM’s with
any fixed number of tapes, without possibly losing some languages from the class
of languages accepted in time T(n).

Example 12.1 Consider the language
L= {wew® |w in (0 + 1)*}.

Language L is of time complexity n + 1, since there is a Turing machine M ,, with
two tapes, that copies the input to the left of the ¢ onto the second tape. Then,
when a c is found, M ; moves its second tape head to the left, through the string it
has just copied, and simultaneously continues to move its input tape head to the
right. The symbols under the two heads are compared as the heads move. If all
pairs of symbols match and if, in addition, the number of symbols to the right and
left of the lone ¢ are equal, then M, accepts. It is easy to see that M, makes at most
n + 1 moves if the input is of length n.

There is another Turing machine, M ,, of space complexity log,n accepting L.
M, uses two storage tapes for binary counters. First, the input is checked to see
that only one c appears, and that there are equal numbers of symbols to the right
and left of the c. Next the words on the right and left are compared symbol by
symbol, using the counters to find corresponding symbols. If they disagree, M,
halts without accepting. If all symbols match, M, accepts.

Special assumptions about time and space complexity functions

It should be obvious that every TM uses at least one cell on all inputs, so if S(n) is
a space complexity measure, we may assume S(n) > 1 for all n. We make the useful
assumption that when we talk of “space complexity S(n),” we really mean
max (1, [S(n)]). For example, in Example 12.1, we said that TM M, was of “space
complexity log,n.” This makes no sense for n =0 or 1, unless one accepts that
“log,n” is shorthand for max (1, [log,n]).

Similarly, it is reasonable to assume that any time complexity function T(n) is
at least n + 1, for this is the time needed just to read the input and verify that the
end has been reached by reading the first blank.f We thus make the convention

T Note, however, that there are TM’s that accept or reject without reading all their input. We choose
to eliminate them from consideration.
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that “time complexity T(n)” means max (n + 1, [T(n)). For example, the value of
time complexity n log,n at n=11is 2, not 0, and at n = 2, its value is 3.

Nondeterministic time and space complexity

The concepts of time- and space-bounded Turing machines apply equally well to
nondeterministic machines. A nondeterministic TM is of time complexity T(n) if
no sequence of choices of move causes the machine to make more than T(n)
moves. It is of space complexity S(n) if no sequence of choices enables it to scan
more than S(n) cells on any storage tape.

Complexity classes

The family of languages of space complexity S(n) is denoted by DSPACE(S(n));
the languages of nondeterministic space complexity S(n) are collectively called
NSPACE(S(n)). The family of languages of time complexity T(n) is denoted
DTIME(T(n)) and that of nondeterministic time complexity T(n) is denoted
NTIME(T(n)). All these families of languages are called complexity classes. For
example, language L of Example 12.1 is in DTIME(n)t and in DSPACE(log,n).
L is therefore also in NTIME(n) and NSPACE(log,n) as well as larger classes
such as DTIME(n2) or NSPACE(/n).

122 LINEAR SPEED-UP, TAPE COMPRESSION, AND REDUCTIONS
IN THE NUMBER OF TAPES

Since the number of states and the tape alphabet size of a Turing machine can be
arbitrarily large, the amount of space needed to recognize a set can always be
compressed by a constant factor. This is achieved by encoding several tape sym-
bols into one. Similarly one can speed up a computation by a constant factor.
Thus in complexity results it is the functional rate of growth (e.g., linear, quad-
ratic, exponential) that is important, and constant factors may be ignored. For
example, we shall talk about complexity log n without specifying the base of
logarithms, since log,n and log.n differ by a constant factor, namely log,c. In
this section we establish the basic facts concerning linear speed up and compres-
sion as well as considering the effect of the number of tapes on complexity.

Tape compression

Theorem 12.1 If L is accepted by an S(n) space-bounded Turing machine with k
storage tapes, then for any ¢ > 0, L is accepted by a ¢S(n) space-bounded TM.}

+ Recall that n really means max (n + 1, n) = n + | for time complexity.
+ Note that by our convention, ¢S(n) is regarded as max (1, [¢S(n)]).
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Proof Let M, be an S(n) tape-bounded off-line Turing machine accepting L. The
proof turns on constructing a new Turing machine M, that simulates M, where
for some constant r, each storage tape cell of M, holds a symbol representing the
contents of r adjacent cells of the corresponding tape of M. The finite control of
M, can keep track of which of the cells of M,, among those represented, is
actually scanned by M.

Detailed construction of the rules of M, from the rules of M, are left to the
reader. Let r be such that rc > 2. M, can simulate M, using no more than [S(n)/r]
cells on any tape. If S(n) > r, this number is no more than c¢S(n). If S(n) < r, then
M, can store in one cell the contents of any tape. Thus, M, uses only one cell in
the latter case. O

Corollary If L is in NSPACE(S(n)), then L is in NSPACE(cS(n)), where c is any
constant greater than zero.

Proof 1f M, above is nondeterministic, let M, be nondeterministic in the above
construction. O

Reduction in the number of tapes for space complexity classes

Theorem 12.2 If a language L is accepted by an S(n) space-bounded TM with k
storage tapes, it is accepted by an S(n) space-bounded TM with a single storage
tape.

Proof Let M, be an S(n) space-bounded TM with k storage tapes, accepting L.
We may construct a new TM M, with one storage tape, which simulates the
storage tapes of M, on k tracks. The technique was used in Theorem 7.2. M, uses
no more than S(n) cells. O

From now on we assume that any S(n) space-bounded TM has but one
storage tape, and if S(n) > n, then it is a single-tape TM, rather than an off-line
TM with one storage tape and one input tape.

Linear speed up

Before considering time bounds, let us introduce the following notation. Let f (n)
be a function of n. The expression sup,_. , f(n)is taken to be the limit as n — oo of
the least upper bound of f(n), f(n + 1), f(n + 2), ... Likewise, inf,_ , f(n) is the
limit as n— oo of the greatest lower bound of f(n), f(n + 1), f(n + 2), ... If f(n)
converges to a limit as n — oo, then that limit is both inf, . ., f(n)and sup,.. , f(n).

Example 122 Let f(n) = 1/n for n even, and f(n) = n for n odd. The least upper
bound of f(n), f(n + 1), ... is clearly co for any n, because of the terms for odd n.
Hence sup, .., f(n) = co. However, because of the terms with n even, it is also true
that inf,_, _ f(n) =0.
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For another example, suppose f(n) = n/(n + 1). Then the least upper bound
of n/f(n+ 1), (n + 1)/(n + 2), ... is 1 for any n. Thus

=1
,,s_l.lgn+1

The greatest lower bound of n/(n+1), (n+ 1)/(n+2),... is n/(n+ 1) and
lim,_, n/(n+1)=1,s0inf,, n/(n+1)=1 as well.

Theorem 12.3 If L is accepted by a k-tape T(n) time-bounded Turing machine
M, then L is accepted by a k-tape ¢T(n) time-bounded TM M, for any ¢ >0,
provided that k > 1 and inf,_, , T(n)/n = co.

Proof A TM M, can be constructed to simulate M, in the following manner.
First M, copies the input onto a storage tape, encoding m symbols into one. (The
value of m will be determined later.) From this point on, M, uses this storage tape
as the input tape and uses the old input tape as a storage tape. M, will encode the
contents of M,’s storage tapes by combining m symbols into one. During the
course of the simulation, M , simulates a large number of moves of M, in one basic
step consisting of eight moves of M,. Call the cells currently scanned by each of
M ;’s heads the home cells. The finite control of M, records, for each tape, which of
the m symbols of M, represented by each home cell is scanned by the correspond-
ing head of M,.

To begin a basic step, M, moves each head to the left once, to the right twice,
and to the left once, recording the symbols to the left and right of the home cells in
its finite control. Four moves of M, are required, after which M, has returned to
its home cells.

Next, M, determines the contents of all of M,’s tape cells represented by the
home cells and their left and right neighbors at the time when some tape head of
M, first leaves the region represented by the home cell and its left and right
neighbors. (Note that this calculation by M, takes no time. It is built into the
transition rules of M,.) If M, accepts before some tape head leaves the repre-
sented region, M, accepts. If M, halts, M, halts. Otherwise M, then visits, on
each tape, the two neighbors of the home cell, changing these symbols and that of
the home cell if necessary. M , positions each of its heads at the cell that represents
the symbol that M,’s corresponding head is scanning at the end of the moves
simulated. At most four moves of M, are needed.

It takes at least m moves for M, to move a head out of the region represented
by a home cell and its neighbors. Thus, in eight moves, M, has simulated at least
m moves of M,. Choose m such that cm > 16.

If M, makes T(n) moves, then M, simulates these in at most 8[ T(n)/m1moves-
Also, M, must copy and encode its input (m cells to one), then return the head of
the simulated input tape to the left end. This takes n + [n/m]moves, for a total of

n + [n/ml+ 8[T(n)/m] (12.1)
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moves. As [x]< x + 1 for any x, (12.1) is upper bounded by
n+ n/m+ 8T(n)/m + 2. (12.2)

Now we have assumed that inf,_, , T(n)/n = o0, so for any constant d there is
an ny such that for all n > n,, T(n)/n > d, or put another way, n < T(n)/d. Thus
whenever n > 2 (so n + 2 < 2n) and n > n,, (12.2) is bounded above by

)[ +d md (12.3)

We have not yet specified d. Remembering that m was chosen so that cm > 16,
choose d=m/4+4%, and substitute 16/c for m in (12.3). Then for all
n > max (2, n;) the number of moves made by M, does not exceed ¢T(n).

To recognize the finite number of words of length less than the maximum of 2
and n,, M, uses its finite control only, taking n + 1 moves to read its input and
reach the blank marking the end of the input. Thus the time complexity of M, is
cT(n). Recall that for time complexity, ¢T(n) stands for max (n + 1, [cT(n)1). O

Corollary If inf,_, T(n)/n = oo and ¢ > 0, then
DTIME(T(n)) = DTIME(cT(n)).

Proof Theorem 12.3 is a direct proof for any language L accepted by a DTM
with 2 or more tapes in time T(n). Clearly if L is accepted by a 1-tape TM, it is
accepted by a 2-tape TM of the same time complexity. O

Theorem 12.3 does not apply if T(n) is a constant multiple of n, as then
inf,_,, T(n)/n is a constant, not infinity. However, the construction of Theorem
12.3, with a more careful analysis of the time bound of M, shows the following.

Theorem 12.4 If L is accepted by a k-tape cn time-bounded TM, for k > 1 and
for some constant c, then for every ¢ > 0, L is accepted by a k-tape (1 + ¢)n
time-bounded TM.

Proof Pick m = 1/16¢ in the proof of Theorem 12.3. O

Corollary If T(n) = cn for some ¢ > 1, then DTIME(T(n)) = DTIME((1 + ¢)n)
for any ¢ > 0.

Corollary (of Theorems 12.3 and 12.4)

a) If inf,_., T(n)/n = oo, then NTIME(T(n)) = NTIME(cT(n)) for any ¢ > 0.

b) If T(n) = cn for some constant ¢, then NTIME(T(n)) = NTIME((1 + ¢)n), for
any € > 0.

Proof The proofs are analogous to Theorems 12.3 and 12.4. O
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Reduction in the number of tapes for time complexity classes

Now let us see what happens to time complexity when we restrict ourselves to one
tape. A language like L = {wew® |w is in (a + b)*} can be recognized in linear time
on a two-tape machine, as we saw in Example 12.1. However, on a one-tape
machine, L requires time cn? for some ¢ > 0. (The exercises give hints how this
may be proved.) Thus permitting only one tape can square the time necessary to
recognize a language. That this is the worst that can happen is expressed in the
next theorem.

Theorem 12.5 If L is in DTIME(T(n)), then L is accepted in time T*(n) by a
one-tape TM.

Proof In the construction of Theorem 7.2, going from a multitape TM to a
one-tape TM, M, uses at most 6T*(n) steps to simulate T(n) steps of M,. By
Theorem 12.3, we may speed up M, to run in time T(n)/\/g. Then M, is a
one-tape TM accepting L in T?(n) steps. O

Corollary If L is in NTIME(T(n)), then L is accepted by a one-tape NTM of
nondeterministic time complexity T?(n).

Proof Analogous to the proof of the theorem. O

If we restrict ourselves to two tapes, the time loss is considerably less than if
we restrict ourselves to one tape, as the next theorem shows.

Theorem 12.6 If L is accepted by a k-tape T(n) time-bounded Turing machine
M,, then L is accepted by a two-storage tape TM M, in time T(n) log T(n).

Proof The first storage tape of M, will have two tracks for each storage tape of
M . For convenience, we focus on two tracks corresponding to a particular tape of
M . The other tapes of M, are simulated in exactly the same way. The second tape
of M, is used only for scratch, to transport blocks of data on tape 1.

One particular cell of tape 1, known as B, will hold the storage symbols
scanned by each of the heads of M,. Rather than moving head markers, M, will
transport data across By in the direction opposite to that of the motion of the head
of M, being simulated. Thus M, can simulate each move of M, by looking only at
By. To the right of cell B, will be blocks By, B,, ... of exponentially increasing
length; that is, B; is of length 2'~ . Likewise, to the left of B, are blocks B_1,
B_,, .... with B_; having length 2/~ . The markers between blocks are assumed
to exist. although they will not actually appear until the block is used.

Let a, denote the contents of the cell initially scanned by this tape head of M.
The contents of the cells to the right of this cell are a,, a,, ..., and those to the left,
a_,, a_,, ... The values of the a;’s may change when they enter B,; it is not their
values, but their positions on the tracks of tape 1 of M ,, that is important. Initially
the upper track of M, for the tape of M, in question is assumed to be empty, while
the lower track is assumed to hold ..., a_,, a_,, ag, a,, a,, ... These are placed in
blocks ..., B_,, B_,, By, By, B,, ..., as shown in Fig. 12.3.
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a gla_gfa sla gla zla sfa | ag|a; | as | a3 | ay | a5 | ag | daq
B_; B, B, By, B B, B,

Fig. 12.3 Blocks on tape 1.

As mentioned previously, data will be shifted across B, and perhaps changed
as it passes through. After the simulation of each move of M, the following will
hold.

1) For any i > 0, either B; is full (both tracks) and B_; is empty, or B, is empty
and B_; is full, or the bottom tracks of both B; and B_; are full, while the
upper tracks are empty.

2) The contents of any B; or B_; represent consecutive cells on the tape of M
represented. For i > 0, the upper track represents cells to the left of those of
the lower track; for i < 0, the upper track represents cells to the right of those
of the lower track.

3) For i < j, B; represents cells to the left of those of B;.

4) B, always has only its lower track filled, and its upper track is specially
marked.

To see how data is transferred, imagine that the tape head of M, in question
moves to the left. Then M, must shift the corresponding data right. To doso, M,
moves the head of tape 1 from By, where it rests, and goes to the right until it finds
the first block, say B;, that does not have both tracks full. Then M, copies all the
data of By, By, ..., B;_, onto tape 2 and stores it in the lower track of B, B,, ...,
B;_, plus the lower track of B;, assuming that the lower track of B; is not already
filled. If the lower track of B; is already filled, the upper track of B; is used instead.
In either case, there is just enough room to distribute the data. Also note the data
can be picked up and stored in its new location in time proportional to the length
of B;.

Next, in time proportional to the length of B;, T; can find B_; (using tape 2 to
measure the distance from B; to B, makes this easy). If B_; is completely full, T}
picks up the upper track of B_; and stores it on tape 2. If B_; is half full, the lower
track is put on tape 2. In either case, what has been copied to tape 2 is next copied
to the lower tracks of B_;_y), B__,, ..., Bo. (By Rule 1, these tracks have to be
empty, since By, B,, ..., B;_, were full.) Again, note that there is just enough room
to store the data, and all the above operations can be carried out in time propor-
tional to the length of B;. Also note that the data can be distributed in a manner
that satisfies rules (1), (2), and (3), above.

We call all that we have described above a B;-operation. The case in which the
head of M, moves to the right is analogous. The successive contents of the blocks
as M, moves its tape head in question five cells to the left are shown in Fig. 12.4.
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B_; 8., B, By, B8 8, By
aqlag|astaglas|aylay]| a| a | a| a | a | as| a | a;
a9
aq|a¢las|aylas|a, a_,| a, a, ay | a, as ag | a
a | 4
a5 | a¢ | a_s|a_, asyla,la | a | a3 | a4 | as | ag | 9

a_,| a | 9

a5 laglagla, a3 la_ | a | a3 | as | as | ag | a
ay | a; | a, | a3
aqlag|laslaglaslasia, ]| a | a5 | ag | a7
a, a, | a; | a, | a3
a ., |ag aclasja,|a,|a, | as | a | a;

Fig. 12.4 Contents of blocks of M.

We note that for each tape of M, M, must perform a B;-operation at most
once per 2'~ ! moves of M, since it takes this long for B,, B,, ..., B;_,, which are
half empty after a B;-operation, to fill. Also, a B;-operation cannot be performed
for the first time until the 2°~ 'th move of M,. Hence, if M, operates in time T(n),
M, will perform only B;-operations, for those i such that i < log,T(n) + 1.

We have seen that there is a constant m, such that M, uses at most m2’ moves
to perform a B;-operation. If M| makes T(n) moves, M, makes at most

log2T(n)+ 1 ; T(n)

L= Y m2 o
i=1

(12.4)

moves when simulating one tape of M.
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From (12.4), we obtain

Ty(n) = 2mT(n)[log, T(n) + 1], (12:5)
and from (12.5),
Ty(n) < 4mT(n) log, T(n).

The reader should be able to see that M, operates in time proportional to
Ti(n) even when M, makes moves using different storage tapes rather than only
the one upon which we have concentrated. By Theorem 12.3, we can modify M, to
run in no more than T(n) log, T(n) steps. 0

Corollary If L is accepted by a k-tape NTM of time complexity T(n), then L is
accepted by a two-tape NTM of time complexity T(n) log T(n).

Proof Analogous to the proof of the theorem. 0O

12.3 HIERARCHY THEOREMS

Intuitively, given more time or space, we should be able to recognize more lan-
guages or compute more functions. However, the linear speed-up and compression
theorems tell us that we have to increase the available space or time by more than a
constant factor. But what if we multiply the space or time by a slowly growing
function such as log log n? Is it possible that we cannot then recognize any new
languages? Is there a time or space bound f (n) such that every recursive language
is in DTIME(f (n)), or perhaps in DSPACE(f(n))?

The answer to the last question is “no,” as we shall prove in the next theorem.
However, the answer to the first question depends on whether or not we start with
a “well-behaved” function. In this section we shall give suitable definitions of “well
behaved” and show that for well-behaved functions, small amounts of extra time
and space do add to our ability to compute.

In Section 12.6 we shall consider arbitrary total recursive functions and the
complexity classes they define. There we shall see that strange behavior is ex-
hibited. There are “gaps” in any complexity hierarchy, that is, there exists a
function T(n) for which DTIME(T?(n)) = DTIME(T(n)), and in general, for any
total recursive function f there is a time complexity Ty(n) for which
DTIME(T(n)) = DTIME(f(Ty(n))). Similar statements hold for space, and
indeed for any reasonable measure of computational complexity. We shall also see
that there are languages L for which no “best” recognizer exists; rather there is an
infinite sequence of TM’s recognizing L, each of which runs much faster than the
previous one.

Theorem 12.7 Given any total recursive time-bound (space-bound) T(n), there is
a recursive language L not in DTIME(T(n)) or DSPACE(T(n)), respectively.

Proof We shall show the result for time; the argument for space is analogous.
The argument is basically a diagonalization. Since T(n) is total recursive, there is a
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halting TM M that computes it. We construct M to accept a language
L = (0 + 1)* that is recursive but not in DTIME(T(n)). Let x; be the ith string in
the canonical ordering of (0 + 1)*. In Chapter 8, we ordered single-tape TM’s with
tape alphabet {0, 1, B}. We can similarly order multitape TM’s with arbitrary tape
alphabets by replacing their transition functions by binary strings. The only sub-
stantial point is that the names of the tape symbols, like those of states, don’t
matter, so we may assume that all TM’s whose input alphabet is {0, 1} have tape
alphabet 0, 1, B, X4, X5, ... up to some finite X, then encode 0, 1, and B by 0, 00,
and 000 and encode X; by 0/, i > 4. We also permit an arbitrary number of 1’s in
front of the code for M to represent M as well, so M has arbitrarily long
encodings.

We are thus free to talk about M;, the ith multitape TM. Now define
L = {x;| M, does not accept x; within T(|x;|) moves}. We claim L is recursive. To
recognize L, execute the following algorithm, which can surely be implemented on
a Turing machine. Given input w of length n, simulate M on n to compute T(n).
Then determine i such that w = x;. The integer i written in binary is the transition
function of some multitape TM M; (if i in binary is of improper form for a
transition function, then M; has no moves). Simulate M; on w for T(n) moves,
accepting if M, either halts without accepting or runs for more than T(n) moves
and does not accept.

To see that L is not in DTIME(T(n)), suppose L = L{M;), and M, is T(n) time
bounded. Is x; in L? If so, M accepts x; within T(n) steps, where n = |x;|. Thus by
definition of L, x; is not in L, a contradiction. If x; is not in L, then M; does not
accept x;, so by definition of L, x; is in L, again a contradiction. Both assumptions
lead to contradictions, so the supposition that M; is T(n) time bounded must be
false. O

If T'(n) = T(n) for all n, it follows immediately from the definition of a time
complexity class that DTIME(T(n)) < DTIME(T’(n)). If T(n) is a total recursive
function, Theorem 12.7 implies there exists a recursive set L not in DTIME(T(n)).
Let T'(n) be the running time of some Turing machine accepting L and let T'(n) =
max {T(n), T(n)}. Then DTIME(T (n)) & DTIME(T"(n)), since L is in the latter but
not the former. Thus we know that there is an infinite hierarchy of deterministic
time complexity classes. A similar result holds for deterministic space complexity
classes, and for nondeterministic time and space classes.

Theorem 12.7 demonstrates that for any recursive time or space complexity
£ (n), there is an f'(n) such that some language is in the complexity class defined by
f'(n) but not f(n). We now show that for a well-behaved function f (n) only a slight

increase in the growth rate of f(n) is required to yield a new complexity class.
Theorems 12.8 and 12.9 are concerned with the increase needed in order to obtain
a new deterministic complexity class. These theorems are used later to establish
lower bounds on the complexity of various problems. Similar results for non-
deterministic classes are very much more difficult; we shall touch on a denseé
hierarchy for nondeterministic space in Section 12.5.
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A space hierarchy

We now introduce our notion of a “well-behaved” space complexity function. A
function S(n) is said to be space constructible if there is some Turing machine M
that is S(n) space bounded, and for each n, there is some input of length n on which
M actually uses S(n) tape cells. The set of space-constructible functions includes
log n, n*, 2, and n!. If S,(n) and S,(n) are space constructible, then so are
S;(n)Sz(n), 25'™, and S,(n)%2™. Thus the set of space-constructible functions is
very rich. .

Note that M above need not use S(n) space on all inputs of length n, just on
some one input of that length. If for all n, M in fact uses exactly S(n) cells on any
input of length n, then we say S(n) is fully space constructible. Any space-
constructible S(n) > n is fully space constructible (exercise).

In order to simplify the next result we prove the following lemma.

Lemma 12.1 If L is accepted by an S(n) > log, n space-bounded TM, then L is
accepted by an S(n) space-bounded TM that halts on all inputs.

Proof Let M be an S(n) space-bounded off-line Turing machine with s states and
t tape symbols accepting L. If M accepts, it does so by a sequence of at most
(n + 2)sS(n)r>™ moves, since otherwise some ID repeats. That is, there are n + 2
input head positions, s states, S(n) tape head positions, and 3 storage tape
contents. If an additional track is added as a move counter, M can shut itself off
after (4st)’™ > (n + 2)sS(n)>™ moves. Actually, M sets up a counter of length
log n, and counts in base 4st. Whenever M scans a new cell beyond the cells con-
taining the counter, M increases the counter length. Thus if M loops having used
only i tape cells, then the counter will detect this when the count reaches
(4stymaxti-loe2m which is at least (n + 2)sS(n)>™. O

Theorem 12.8 If S,(n) is a fully space-constructible function,

o Si(n) _
o )

and S,(n) and S,(n) are each at least log,n, then there is a language in
DSPACE(S,(n)) not in DSPACE(S, (n)).

Proof The theorem is proved by diagonalization. Consider an enumeration of
off-line Turing machines with input alphabet {0, 1} and one storage tape, based on
the binary encoding of Section 8.3, but with a prefix of 1’s permitted, so each TM
has arbitrarily long encodings. We construct a TM M that uses S,(n) space and
disagrees on at least one input with any S,(n) space-bounded TM.

On input w, M begins by marking S,(n) cells on a tape, where n is the length of
w. Since S,(n) is fully space constructible, this can be done by simulating a TM
that uses exactly S,(n) cells on each input of length n. In what follows, if M
attempts to leave the marked cells, M halts and rejects w. This guarantees that M
is S,(n) space bounded.

0,
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Next M begins a simulation on input w of TM M,,, the TM encoded by binary
string w. If M, is S, (n) space bounded and has ¢ tape symbols, then the simulation
requires space [log,t1S,(n). M accepts w only if M can complete the simulation in
S,(n) space and M,, halts without accepting x.

Since M is §,(n) space bounded, L(M) is in DSPACE(S,(n)). L{M) is not in
DSPACE(S,(n)). For suppose there were an S, (n) space-bounded TM M with ¢
tape symbols accepting L(M). By Lemma 12.1 we may assume that M halts on all
inputs. Since M appears infinitely often in the enumeration, and

. o Sy(n)
inf =0,
v S2(n)

there exists a sufficiently long w, |w| = n, such that [log,1S,(n) < S,(n) and M,,

is M. On input w, M has sufficient space to simulate M, and accept if and only 1f
M, rejects. Thus L(M,)+ L(M), a contradlctlon Thus L(M) is in
DSPACE(S,(n)) but not in DSPACE(S,(n)). O

While most common functions are fully space constructible, we need only
space constructibility to make Theorem 12.8 go through. We therefore state the
following.

Corollary Theorem 12.8 holds even if S,(n) is space constructible but not fully
space constructible.

Proof Let M, be a TM that constructs S,(n) on some input. Let X be the input
alphabet of M,. We design M to accept a language over alphabet £ x {0, 1}. That
is, the input to M is treated as if it had two tracks: the first is used as input to M,
the second as the code of a TM with input alphabet X x {0, 1}. The only
modification to the design of M is that M must lay off blocks on tapes 1 and 2 by
simulating M, on M’s first track. We may show that M disagrees with any S,(n)
space-bounded TM M on an input whose length, n, is sufficiently large, whose first
track is a string in X" that causes M, to use S,(n) cells, and whose second track is
an encoding of M. ]

We leave as an exercise a proof that the condition S,(n) > log,n in Theorem
12.8 and its corollary are not really needed. The proof is not a diagonalization, but
hinges on showing that

{wew|wisin (a+b)*, |w|=S,(n) and i=n—2Sy(n)}
is accepted in S,(n) space but not in S,(n) space if

e Si0)
n—»isz(") 0

and S,(n) < log,n.
Note that if inf, . ., [S,(n)/S,(n)] = 0 and S,(n) < S,(n) for all n, then

DSPACE(S, (n)) & DSPACE(S,(n)).
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However, if we do not have S, (n) < S,(n), then it is possible that DSPACE(S, (n))
and DSPACE(S,(n)) each have languages not in the other.

A time hierarchy

The deterministic time hierarchy is not as tight as the space hierarchy. The reason
is that a TM which diagonalizes over all multitape TM’s has some fixed number of
tapes. To simulate a TM with a larger number of tapes we make use of the
two-tape simulation of a multitape TM, thereby introducing a logarithmic slow-
down. Before giving the construction we introduce the notion of time
constructibility.

A function T(n) is said to be time constructible if there exists a T(n) time-
bounded multitape Turing machine M such that for each n there exists some input
on which M actually makes T(n) moves. Just as for space-constructible functions
there is a rich hierarchy of time-constructible functions. We say that T(n) is fully
time-constructible if there is a TM that uses T(n) time on all inputs of length n.
Again, most common functions are fully time-constructible.

Theorem 12.9 If T,(n) is a fully time-constructible function and
o Tin) log Tifn) _
n—+o TZ(")

then there is a language in DTIME(T;(n)) but not DTIME(T,(n)).

Proof The proof is similar to that of Theorem 12.8, and only a brief sketch of the
necessary construction is given. A Ty(n) time-bounded TM M is constructed to
operate as follows. M treats the input w as an encoding of a Turing machine M
and simulates M on w. A difficulty arises because M has some fixed number of
tapes, so for some w’s M will have more tapes than M. Fortunately, by Theorem
12.6, only two tapes are needed to simulate any M, although the simulation costs a
factor of log T,(n). Also, since M may have many tape symbols, which must be
encoded into some fixed number of symbols, the simulation of T;(n) moves of M
by M requires time cT,(n) log T,(n), where c is a constant depending on M.

In order to assure that the simulation of M is T»(n) time bounded, M simul-
taneously executes steps of a TM (using additional tapes) that uses exactly T,(n)
time on all inputs of length n. This is the reason that T,(n) must be fully time
constructible. After T,(n) steps, M halts. M accepts w only if the simulation of Mis
completed and M rejects w. The encoding of M is designed as in the previous
theorem, so each M has arbitrarily long encodings. Thus, if M is a T;(n) time-
bounded Turing machine, there will be a sufficiently large w encoding M so that

CTn(IWI) log Tx(lwl) =< Tz(lwl)’

and the simulation will carry to completion. In this case, w is in L{M )if and only if
w is not in L(M). Thus (M) # L(M) for any M that is T(n) time bounded.
Therefore L(M) is in DTIME(T,(n)) — DTIME(T,(n)). O

07
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Example 12.3 Let T,(n) = 2" and T,(n) = n*2". Then
inf DM logTi(n) _ . 1
n—w TZ(") nvw N

Thus Theorem 12.9 applies, and DTIME(2") # DTIME(n?2"). Since T;(n) < Ty(n)
for all n, we may conclude that DTIME(2") & DTIME(n?2").

124 RELATIONS AMONG COMPLEXITY MEASURES

There are several straightforward relationships and one not-so-obvious relation-
ship among the complexities of a given language L according to the four complex-
ity measures we have defined. The straightforward relationships are stated in one
theorem.

Theorem 12.10
a) If L is in DTIME(f (n)), then L is in DSPACE(f (n)).

b) If L is in DSPACE(f(n)) and f(n) > log,n, then there is some constant ¢,
depending on L, such that L is in DTIME(c/™).

c) If L is in NTIME(f (n)), then there is some constant ¢, depending on L, such
that L is in DTIME(c/™).

Proof

a) If TM M makes no more than f(n) moves, it cannot scan more than f(n) + 1
cells on any tape. By modifying M to hold two symbols per cell we can lower
the storage requirements to [[f(n) + 1]/21, which is at most f(n).

b) Observe that if TM M, has s states and t tape symbols, and uses at most f (1)
space, then the number of different ID’s of M| with input of length n is at most
s(n + 2)f(n)t/™. Since f (n) > log,n, there is some constant ¢ such that for all
n>1,c/™ > s(n+2)f(n)t/™. A

Construct from M, a multitape TM M , that uses one tape to count to ¢/*”,
and two others to simulate M,. If M, has not accepted when the count
reaches ¢/™, M, halts without accepting. After this number of moves, M,
must have repeated an 1D and so is never going to accept. Clearly M, is ¢/
time bounded.

c) Let M, be an f(n) time-bounded nondeterministic TM with s states, ¢ tape
symbols, and k tapes. The number of possible ID’s of M, given input of length
n is at most s(f(n) + 1)}/, the product of the number of states, head
positions, and tape contents. Thus d = s(t + 1)** satisfies

d’™ > s(f(n) + 1™ forall n>1.

A deterministic multitape TM can determine if M, accepts input W of
length n by constructing a list of all the ID’s of M| that are accessible from the
initial ID. This process can be carried out in time bounded by the square of
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the length of the list. Since the list of accessible ID’s has length no greater than
'™ times the length of an ID, which can be encoded in 1 + k(f(n) + 1)
symbols, the time is bounded by ¢/ for some constant c. 0O

Theorem 12.11 (Savitch’s theorem) If L is in NSPACE(S(n)), then L is in
DSPACE(S?(n)) provided S(n) is fully space constructible and S(n) > log, n.

Proof Let L= L(M,), where M is an S(n) space-bounded nondeterministic TM.
For some constant c, there are at most ¢>™ ID’s for an input of length n. Thus, if
M, accepts its input, it does so by some sequence of at most ¢>™ moves, since no
ID is repeated in the shortest computation of M, leading to acceptance.

Let I, 22 I, denote that the ID I, can be reached from I, by a sequence of at
most 2' moves. For i > 1, we can determine if I, I, by testing each I’ to see if
I, 1= 1 and I f¥=2 [, Thus the space needed to determine if we can get from
one ID to another in 2' moves is equal to the space needed to record the ID I’
currently being tested plus the space needed to determine if we can get from one
1D to another in 2~ ! moves. Observe that the space used to test whether one ID is
reachable from another in 2~ ! moves can be reused for each such test.

The details for testing if w is in L(M ,) are given in Fig. 12.5. The algorithm of
Fig. 12.5 may be implemented on a Turing machine M, that uses a tape as a stack
of activation recordst for the calls to TEST. Each call has an activation record in
which the values of parameters I,, I,, and i are placed, as well as the value of local
variable I'. As I,, I, and I’ are ID’s with no more than S(n) cells, we can represent
each of them in S(n) space. The input head position in binary uses log n < S(n)
cells. Note that the input tape in all ID’s is fixed and is the same as the input to

begin
let |w| =nand m = [log; cl;
let I, be the initial ID of M, with input w;
for each final ID I, of length at most S(n) do
if TEST (Io, I, mS(n)) then accept;
end;

procedure TEST (I, I,, i);

ifi=0and (I, =1, or I, |— I,) then return true;

if i > 1 then

for each ID I’ of length at most S(n) do
if TEST (I, I', i — 1) and TEST (I', I, i — 1) then
return true;

return false

end TEST

Fig. 12.5 Algorithm to simulate M.

t An “activation record” is the area used for the data belonging to one call of one procedure.
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M ,, so we need not copy the input in each ID. The parameter i can be coded in

binary using at most mS(n) cells. Thus each activation record takes space 0(S(n)).

As the third parameter decreases by one each time TEST is called, the initial

call has i = mS(n), and no call is made when i reaches zero, the maximum number

of activation records on the stack is 0(S(n)). Thus the total space used is 0(S*(n)),
and by Theorem 12.1, we may redesign M, to make the space be exactly S%(n).

g

Example 124
NSPACE(log n) = DSPACE(log? n)

NSPACE(n?) < DSPACE(n*) and  NSPACE(2") € DSPACE(4").

Note that for S(n) > n, Savitch’s theorem holds even if S(n) is space construc-
tible rather than fully space constructible. M, begins by simulating a TM M that
constructs S(n), on each input of length n, taking the largest amount of space used
as S(n) and using this length to lay out the space for the activation records.
Observe, however, that if we have no way of computing S(n) in even S?(n) space,
then we cannot cycle through all possible values of I, or I without getting some
that take too much space.

12.5 TRANSLATIONAL LEMMAS AND NONDETERMINISTIC
HIERARCHIES

In Theorems 12.8 and 12.9 we saw that the deterministic space and time hierar-
chies were very dense. It would appear that corresponding hierarchies for non-
deterministic machines would require an increase of a square for space and an
exponential for time, to simulate a nondeterministic machine for diagonalization
purposes. However, a translational argument can be used to give a much denser
hierarchy for nondeterministic machines. We illustrate the technique for space.

A translation lemma

The first step is to show that containment translates upward. For example, sup-
pose it happened to be true (which it is not) that NSPACE(n*) = NSPACE(n?).
This relation could be translated upward by replacing n by n?, yielding

NSPACE(n®) € NSPACE(n%).

Lemma 122 Let S,(n), S(n), and f(n) be fully space constructible, with
S,(n) = n and f(n) > n. Then
NSPACE(S, (1)) = NSPACE(S,(n))
implies
NSPACE(S, (f(n))) = NSPACE(S,(f (n))).
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Proof Let L, be accepted by M,, a nondeterministic S,(f(n)) space-bounded
TM. Let

L, = {x8$| M, accepts x in space S,(|x| + i)},

where $ is a new symbol not in the alphabet of L,. Then L, is accepted by a TM
M, as follows. On input x$', M, marks off S, (| x| + i) cells, which it may do, since
S, is fully constructible. Then M, simulates M, on x, accepting if and only if M,
accepts without using more than S,(|x| + i) cells. Clearly M, is S,(n) space
bounded.

What we have done is to take a set L, in NSPACE(S,(f(n))) and pad the
strings with $’s so that the padded version L, is in NSPACE(S,(n)). Now by the
hypothesis that NSPACE(S, (n)) € NSPACE(S,(n)), there is a nondeterministic
S,(n) space-bounded TM M accepting L,.

Finally we construct M, accepting the original set L, within space S,(f(n)).
M, marks off f (n) cells and then S,(f(n)) cells, which it may do since fand S, are
fully constructible. As S,(n) > n, f(n) < S,(f(n)), so M, has not used more than
S2(f (n)) cells.

Next M, on input x simulates M5 on x$ fori =0, 1,2, ... To do this, M
must keep track of the head location of M5 on x$'. If the head of M, is within x,
M,’s head is at the corresponding point on its input. Whenever the head of M,
moves into the $’s, M, records the location in a counter. The length of the counter
is at most log i.

If during the simulation, M 5 accepts, then M, accepts. If M ; does not accept,
then M, increases i until the counter no longer fits on S,(f(|x|)) tape cells. Then
M, halts. Now, if x is in L,, then x$' is in L, for i satisfying S,(|x| + i) =
S1(f(]x]))- Since f (n) > n, this equality is satisfied by i = f(|x|) — |x|. Thus the
counter requires log (f(|x|) — |x|) space. Since S,(f(|x|)) = f(|x|) it follows
that the counter will fit. Thus x is in L(M ) if and only if x$' is in L(M) for some i.
Therefore L(M,) = L,, and L, is in NSPACE(S,(f(n))). O

Note that we can relax the condition that S,(n) > n, requiring only that
S,(n) > log, n, provided that S,(f(n)) is fully space constructible. Then M, can
lay off S,(f(n)) cells without having to lay off f(n) cells. As S,(f(n)) > log f(n),
there is still room for M,’s counter.

Essentially the same argument as in Lemma 12.2 shows the analogous results
for DSPACE, DTIME, and NTIME.

Example 12.5 Using the analogous translation result for deterministic time we
can prove that DTIME(2") & DTIME(n2"). Note that this result does not follow
from Theorem 12.9, as

2" log 2"

o L

inf

n— o
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Suppose that
DTIME(n2") < DTIME(2").
Then letting S, (n) = n2", S,(n) = 2", and f(n) = 2", we get
DTIME(22%") = DTIME(2%"). (12.6)
Similarly by letting f(n) = n + 2" we get
DTIME((n + 27)2"2%") =« DTIME(2"2?"). (12.7)
Combining (12.6) with (12.7), we obtain
DTIME((n + 2")2"2%") < DTIME(2?"). (12.8)
However,
2n 2n
Jof (5 ¥ l2(3522:22" =l +l 7 =0

Thus Theorem 12.9 implies that (12.8) is false, so our supposition that
DTIME(n2") = DTIME(2") must be false. Since DTIME(2") € DTIME(n2"), we
conclude that DTIME(2") & DTIME(n2").

Example 12.6 The translation lemma can be used to show that NSPACE(n?) is
properly contained in NSPACE(n*). Suppose to the contrary that
NSPACE(n*) = NSPACE(n?). Then letting f(n) = n®, we get NSPACE(n'?) c
NSPACE(n®). Similarly letting f (n) = n*, we get NSPACE(n'®) < NSPACE(n'?),
and f(n) = n® gives NSPACE(n*°) < NSPACE(n'%). Putting these together yields
NSPACE(n?°) = NSPACE(n®). However, we know by Theorem 12.11 that
NSPACE(n’) = DSPACE(n'®), and by Theorem 128, DSPACE(n'®) &
DSPACE(n?°). Thus combining these results, we get

NSPACE(n?°) = NSPACE(n®) < DSPACE(n'*)
& DSPACE(n?°) < NSPACE(n2°),

a contradiction. Therefore our assumption NSPACE(n*) € NSPACE(n?) is
wrong, and we conclude NSPACE(n*) & NSPACE(n*).

A nondeterministic space hierarchy

Example 12.6 can be generalized to show a dense hierarchy for nondeterministic
space in the polynomial range.

Theorem 12.12 If ¢ > 0 and r > 0, then
NSPACE(n") & NSPACE(n"*).
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Proof If r is any nonnegative real number, we can find positive integers s and ¢
such thatr < s/tand r + € > (s + 1)/t. Therefore it suffices to prove for all positive
integers s and ¢, that

NSPACE(n*") & NSPACE(n®* ).
Suppose to the contrary that

NSPACE(n** V") = NSPACE(n*").
Then by Lemma 12.2 with f(n) = n“*", we have

NSPACE(n* V+9) < NSPACE(n¢*?) (12.9)
fori=0,1,...,5. Ass(s +i) < (s+ 1)(s +i— 1) for i > 1, we know that
NSPACE(r** 9) € NSPACE(n®* Ds+i- 1)) (12.10)

Using (12.9) and (12.10) alternately, we have
NSPACE(n®* P29) = NSPACE(n*>)
< NSPACE(n®* V25~ Dy = NSPACE(n**s~ V)
< --- = NSPACE(n“* V) ¢ NSPACE(n**).
That is,
NSPACE(n?**2) € NSPACE(n*").
However, by Savitch’s theorem,
NSPACE(n*’) € DSPACE(n***),
and by Theorem 12.8,
DSPACE(n*?) & DSPACE(n*’* %).
Clearly,
DSPACE(n?¥** 2*) € NSPACE(n?s** %),
Combining these results, we get
NSPACE(n?s**25) ¢ NSPACE(n?** %),
a contradiction. We conclude that our assumption
NSPACE(n“* V") ¢ NSPACE(n*")
was wrong. Since containment in the opposite direction is obvious, we conclude
NSPACE(n*") € NSPACE(n"** 11

for any positive integers s and t. O
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Similar dense hierarchies for nondeterministic space can be proved for ranges
higher than the polynomials, and we leave some of these results as exercises.
Theorem 12.12 does not immediately generalize to nondeterministic time, because
of the key role of Savitch’s theorem, for which no time analog is known. However,
a time analog of Theorem 12.12 has been established by Cook [1973a].

126 PROPERTIES OF GENERAL COMPLEXITY MEASURES:
THE GAP, SPEEDUP, AND UNION THEOREMS

In this section we discuss some unintuitive properties of complexity measures.
While we prove them only for deterministic space complexity, they will be seen in
the next section to apply to all measures of complexity.

Theorems 12.8 and 12.9 indicate that the space and time hierarchies are very
dense. However, in both theorems the functions are required to be constructible.
Can this condition be discarded? The answer is no: the deterministic space and
time hierarchies have arbitrarily large gaps in them.

We say that a statement with parameter n is true almost everywhere (a.e.) if it
is true for all but a finite number of values of n. We say a statement is true infinitely
often (i.0.) if it is true for an infinite number of n’s. Note that both a statement and
its negation may be true i.0.

Lemma 12.3 If Lis accepted by a TM M that is S(n) space bounded a.e., then Lis
accepted by an S(n) space-bounded TM.

Proof Use the finite control to accept or reject strings of length n for the finite
number of n where M is not S(n) bounded. Note that the construction is not
effective, since in the absence of a time bound we cannot tell which of these words
M accepts. Od

Lemma 12.4 There is an algorithm to determine, given TM M, input length n,
and integer m, whether m is the maximum number of tape cells used by M on some
input of length n.

Proof For each m and n there is a limit ¢ on the number of moves M may make
on input of length n without using more than m cells of any storage tape or
repeating an ID. Simulate all sequences of up to t moves, beginning with each
input of length n. O

Theorem 12.13 (Borodin’s Gap Theorem) Given any total recursive function
g(n) = n, there exists a total recursive function S(n) such that DSPACE(S(n)) =
DSPACE(g(S(n))). In other words, there is a “gap” between space bounds S(n) and
g(S(n)) within which the minimal space complexity of no language lies.

Proof Let M|, M,, ... be an enumeration of TM’s. Let S;(n) be the maximum
number of tape cells used by M; on any input of length n. If M; always halts, then
S,(n) is a total function and is the space complexity of M;, but if M; does not halt
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on some input of length n, then S;(n) is undefined.t We construct S(n) so that for
each k either

1) Si(n) < S(n) ae., or
2) Si(n) = g(S(n)) i.o.

That is, no §,(n) lies between S(n) and g(S(n)) for almost all n.

In constructing S(n) for a given value of n, we restrict our attention to the
finite set of TM’s M, M, ..., M,. The value for S(n) is selected so that for no i
between 1 and n does S;(n) lie between S(n) and g(S(n)). If we could compute the
largest finite value of S;(n) for 1 <i < n, then we could set S(n) equal to that value.
However, since some S;(n) are undefined, we cannot compute the largest value.
Instead, we initially set j = 1 and see if there is some M; in our finite set for which
Si(n) is between j + 1 and g(j). If there is some such S;(n), then set j to S;(n) and
repeat the process. If not, set S(n) to j and we are done. As there is but a finite
number of TM’s under consideration, and by Lemma 12.4 we can tell whether
Si(n) = m for any fixed m, the process will eventually compute a value for j such
that for 1 <i < n either Si(n) <j or S;(n) > g(j). Assign S(n) this value of j.

Suppose there were some language L in DSPACE(g(S(n)) but not in
DSPACE(S(n)). Then L = L(M,) for some k where S,(n) < g(S(n)) for all n. By the
construction of S(n), for alin > k, S,(n) < S(n). That is, S,(n) < S(n) a.e., and hence
by Lemma 12.3, L is in DSPACE(S(n)), a contradiction. We conclude that
DSPACE(S(n)) = DSPACE(g(S(n))). 0O

Theorem 12.13 and its analogs for the other three complexity measures have a
number of highly unintuitive consequences, such as the following.

Example 12.7 There is a total recursive function f(n) such that
DTIME(f (n)) = NTIME(f (n)) = DSPACE(f (n)) = NSPACE( f (n)).

Clearly DTIME(f(n)) is contained within NTIME(f(n)) and DSPACE(f (n)).
Similarly, both NTIME(f(n)) and DSPACE(f(n)) are contained within
NSPACE(f(n)). By Theorem 12.10, for all f(n) > log,n, if L is in NSPACE(f (n)),
then there is a constant c, depending only on L such that L is in DTIME(c/™).
Therefore, L = L(M) for some TM M whose time complexity is bounded above by
f(nY™ ae. By the DTIME analog of Lemma 12.3, L is in DTIME(f(n)/™).
Finally, the DTIME analog of Theorem 12.13 with g(x) = x* establishes the exist-
ence of f(n) for which DTIME(f(n)) = DTIME(f (n)'*"), proving the result.
Similarly, if one has two universal models of computation, but one is very
simple and slow, say a Turing machine that makes one move per century, and the
other is very fast, say a random-access machine with powerful built-in instructions
for multiplication, exponentiation, and so on, that performs a million operations

+ We identify an undefined value with infinity, so an undefined value is larger than any defined value.
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per second, it is easily shown that there exists a total recursive T(n) such that any
function computable in time T(n) on one model is computable in time T(n) on the
other.

The speed-up theorem

Another curious phenomenon regarding complexity measures is that there are
functions with no best programs (Turing machines). We have already seen that
every TM allows a linear speed up in time and compression in space. We now
show that there are languages with no “best” program. That is, recognizers for.
these languages can be sped up indefinitely. We shall work only with space and
show that there is a language L such that for any Turing machine accepting L,
there always exists another Turing machine that accepts L and uses, for example,
only the square root of the space used by the former. This new recognizer can of
course be replaced by an even faster recognizer and so on, ad infinitum.

The basic idea of the proof is quite simple. By diagonalization we construct L
so that L cannot be recognized quickly by any “small” machine, that is, a machine
with a small integer index encoding it. As machine indices increase, the diagonali-
zation process allows faster and faster machines recognizing L. Given any ma-
chine recognizing L, it has some fixed index and thus can recognize L only so fast.
However, machines with larger indices can recognize L arbitrarily more quickly.

Theorem 12.14 (Blum’s Speed-up Theorem) Let r(n) be any total recursive func-
tion. There exists a recursive language L such that for any Turing machine M;
accepting L, there exists a Turing machine M; accepting L such that r(Sy(n)) <
S;(n), for almost all n.

Proof Without loss of generality assume that r(n) is a monotonically nondecreas-
ing fully space-constructible function with r(n) > n? (see Exercise 12.9). Define
h(n) by
h(1)=2,  h(n)=r(h(n — 1)).
Then h(n) is a fully space-constructible function, as the reader may easily show.
Let M,, M,, ... be an enumeration of all off-line TM’s analogous to that of

Section 8.3 for single-tape TM’s. In particular, we assume that the code for M; has
length log,i. We construct L so that

1) if L(M;) = L, then S;(n) = h(n — i) ae;
2) for each k, there exists a Turing machine M; such that I(M;) = L and
Si(n) < h(n — k).
The above conditions on L assure that for each M; accepting L there exists an
M accepting L with
Si(n) > r(S;(n))  ae.
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To see this, select M; so that S(n) < h(n — i — 1). By (2), M; exists. Then by (1),
S{n) > h(n—i)=r(h(n—i — 1)) > r(Sy(n))  ae.

Now let us construct L < 0* to satisfy (1) and (2). Forn=0, 1, 2, ... in turn,
we specify whether 0" is in L. In the process, certain M; are designated as
“canceled.” A canceled TM surely does not accept L. Let (n) be the least integer
j < n such that Sy(n) < h(n — j), and M; is not canceled by i=0, 1,..., n— 1.
When we consider n, if o(n) exists, M, is designated as canceled. Then 0" is
placed in L if and only if o(n) exists and 0" is not accepted by M.

Next we prove that L satisfies condition (1), namely: if L(M;) = L, then
Si(n) = h(n — i) ae. Let L(M;) = L. In constructing L, all TM’s M, for j < i, that
are ever canceled are canceled after considering some finite number of n’s, say up
to ny. Note that n, cannot be effectively computed, but nevertheless exists. Sup-
pose S;(n) < h(n — i) for some n > max(n,, i). When we consider n, no M, j <1,
is canceled. Thus o(n) = i, and M; would be canceled had it not been previously
canceled. But a TM that is canceled will surely not accept L. Thus S;(n) > h(n — i)
for n > max(ny, i), that is, S;(n) > h(n — i) a.e.

To prove condition (2) we show that there exists, for given k,a TM M = M;
such that L(M) = L,and S;(n) < h(n — k)for all n. To determine whether 0" is in L,
M must simulate M, on 0". To know what o(n) is, M must determine which M’s
have already been canceled by ' for / < n. However, constructing the list of
canceled TM’s directly requires seeing if M; uses more than h(/ — i) space for
0</<nand 1 <i<n Fori<k+/—n, this requires more than h(n — k)
space.

The solution is to observe that any TM M,, i <k, that is ever canceled, is
canceled when we consider some / less than a particular n,. For each / < n,,
incorporate into the finite control of M whether (/ is in L, and also incorporate a
list of all TM’s M, canceled by any / < n,. Thus no space at all is needed by M if
n < ny. If n> ny, to compute ¢(n) and simulate M, on 0", it will only be neces-
sary to simulate TM’s M; on input (', where n, </ <nand k <i <n, to see
whether M; is canceled by /.

To test whether M; is canceled by 7, we need only simulate M; using h(/ — i)
of M;’s cells, which is less than h(n — k), as / < nand i > k. As n > n,, it must be
that a(n), if it exists, is greater than k. Thus simulating M, ,, on input 0" takes
h(n — o(n)) of M ,’s cells, which is less than h(n — k) cells.

Lastly, we must show that M can be made to operate within space h(n — k).
We need only simulate TM’s M; for k <i <n on inputs O, n, </ < n, to see
whether they get canceled, so we need represent no more than h(n — k — 1) cells of
M;’s tape for any simulation. Since i < n, the integer code for M, has length no
more than log,n. Thus any tape symbol of M; can be coded using log,n of M’s
cells. As r(x) > x2, we know h(x) > 2?". Also, by the definition of h, h(n — k) >
[h(n—k = 1)) =2 ""h(n — k — 1). As 2" > log,n ae., h(n — k) space is
sufficient for the simulation for almost all n.
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In addition to the space required for simulating the TM’s, space is needed to
maintain the list of canceled TM’s. This list consists of at most n TM’s, each with a
code of length at most log,n. The n log n space needed to maintain the list of
canceled TM’s is also less than h(n — k) a.e. By Lemma 12.3, M can be modified to
recognize words 0%, where n log,n < h(n — k) or 22"*"' < log,n in its finite
control. The resulting TM is of space complexity h(n — k) for all n, and is the
desired M. O

The union theorem

The last theorem in this section, called the union theorem, has to do with the-
naming of complexity classes. By way of introduction, we know that each polyno-
mial such as n? or n® defines a space complexity class (as well as complexity classes
of the other three types). However, does polynomial space form a complexity
class? That is, does there exist an S(n) such that DSPACE(S(n)) contains all sets
recognizable in a polynomial space bound and no other sets? Clearly, S(n) must
be almost everywhere greater than any polynomial, but it also must be small
enough so that one cannot fit another function that is the space used by some TM
between it and the polynomials, where “fit” must be taken as a technical term
whose meaning is defined precisely in the next theorem.

Theorem 12.15 Let {f{(n)|i = 1, 2, ...} be a recursively enumerable collection of
recursive functions. That is, there is a TM that enumerates a list of TM’s, the first
computing f;, the second computing f5, and so on. Also assume that for each i and
n, fi(n) < fi+(n). Then there exists a recursive S(n) such that

DSPACE(S(n)) = | ) DSPACE(f;(n)).

i1
Proof We construct a function S(n) satisfying the following two conditions:
1) For each i, S(n) > fi(n) ae.

2) If S;(n) is the exact space complexity of some TM M and for each i, S;(n) >
fi{n) i.o., then S;(n) > S(n) for some n (and in fact, for infinitely many n’s).

The first condition assures that
() DSPACE( fi(n)) = DSPACE(S(n)).
The second condition assures that DSPACE(S(n)) contains only those sets that
are in DSPACE( f(n)) for some i. Together the conditions imply that
DSPACE(S(n)) = | ) DSPACE( fi(n)).
Setting S(n) = f,(n) would assure condition (1). However, it may not satisfy

condition (2). There may be a TM M ; whose space complexity S;(n) is greater than
each f;(n) i.0. but less than f,(n) for all n. Thus there may be sets in DSPACE( £,,(n))
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not in | J; DSPACE(fi(n)). To overcome this problem we construct S(n) so that it
dips below each §;(n) that is i.o. greater than each fi(n), and in fact, S(n) will dip
below Sj(n) for an infinity of n’s. This is done by guessing for each TM M; an i;
such that f; (n) > S;(n) a.e. The “guess” is not nondeterministic; rather it is subject
to deterministic revision as follows. If at some point we discover that the guess is
not correct, we guess a larger value for i; and for some particular n define S(n) to
be less than S;(n). If it happens that S; grows faster than any f;, S will infinitely
often be less than S;. On the other hand, if some f; is almost everywhere greater
than §;, eventually we shall guess one such f; and stop assigning values of S less
than §;.

In Fig. 12.6 we give an algorithm that generates S(n). A list called LIST of
“guesses” of the form “i; = k” for various integers j and k is maintained. For each j,
there will be at most one guess k on LIST at any time. As in the previous theorem,
M, M,, ... is an enumeration of all off-line TM’s, and S;(n) is the maximum
amount of space used by M; on any input of length n. Recall that S;(n) may be
undefined (infinite) for some values of n.

begin
1) LIST := empty list
2) forn=1,2,3,...do
3) if for all “i; = k” on LIST, f,(n) > S;(n) then
4) add “i, = n” to LIST and define S(n) = f,(n)
else
begin
5) Among all guesses on LIST such that f,(n) < Sj(n), let “i; = k” be the
guess with the smallest &, and given that k, the smallest j;
6) define S(n) = fi(n);
7) replace “i; = k" by “i; = n” on LIST;
8) add “i, = n” to LIST
end
end

Fig. 12.6 Definition of S(n).

To prove that
DSPACE(S(n)) = U DSPACE( fi(n))

we first show that S(n) satisfies conditions (1) and (2). Consider condition (1). To
see that for each m, S(n) > f,,(n) a.e. observe that S(n) is assigned a value only at
lines (4) and (6) of Fig. 12.6. Whenever S(n) is defined at line (4) for n > m, the
value of S(n) is at least f,(n). Thus for the values of S(n) defined at line (4),
S(n) = f(n) except for the finite set of n less than m. Now consider the values of
S(n) defined at line (6). When n reaches m, LIST will have some finite number of
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guesses. Each of these guesses may subsequently cause one value of S(n), for some
n > m, to be less than f,,(n). However, when that happens, line (7) causes that
guess to be replaced by a guess “i; = p” for some p > m, and this guess, if selected
at line (5), does not cause S(n) to be made less than f,(n), since f,(n) > fu(n)
whenever p > m. Thus from line (6) there are only finitely many n greater than
m (at most the length of LIST when n = m) for which S(n) < f,(n). Since there
are only a finite number of n’s less than m, S(n) > f,,(n) a.e.

Next we must show condition (2), that if there exists TM M; such that for
each i, S;(n) > fi(n) i.0., then Sj(n’) > S(n’) for infinitely many »’. At all times after
n=j, LIST will have a guess for i;, and LIST is always finite. For n=j we
place “i; = j” on LIST. As Sj(n) > f(n) i.o., there will be arbitrarily many sub-
sequent values of n for which the condition of step (3) does not hold. At each of
these times, either our “i; = j” is selected at line (5), or some other one of the
finite number of guesses on LIST when n = j is selected. In the latter case, that
guess is replaced by a guess “i, = ¢” with g > j. All guesses added to LIST are
also of the form “i, = ¢” for g > j, so eventually our “i; = j” is selected at step (5),
and for this value of n, we have S;(n) > fj(n) = S(n). Thus condition (2) is true.

Lastly we must show that conditions (1) and (2) imply

DSPACE(S(n)) = | ) DSPACE(fi(n)).

Suppose L is in | J; DSPACE( fi(n)). Then L is in DSPACE(f,,(n)) for some par-
ticular m. By condition (1), S(n)=> f,(n) a.e. Thus by Lemma 123, L is in
DSPACE(S(n)). Now suppose that L is in DSPACE(S(n)). Let L = L(M;), where
S;(n) < S(n) for all n. If for no i, L is in DSPACE(fi(n)), then by Lemma 12.3,
for every i, each TM M, accepting L has S,(n) > fi(n) i.0. Thus by condition (2)

there 1s some n for which S,(n) > S(n). Letting k = j produces a contradiction.
O

Example 12.8 Let f(n) = n'. Then we may surely enumerate a sequence of TM’s
My, M,, ... such that M,;, presented with input 0", writes 0" on its tape and
halts. Thus Theorem 12.15 says that there is some S(n) such that

DSPACE(S(n)) = U DSPACE(n').

As any polynomial p(n) is equal to or less than some n' a.e., DSPACE(S(n)) is
the union over all polynomials p(n), of DSPACE(p(n)). This union, which in the
next chapter we shall call PSPACE, and which plays a key role in the theory of
intractable problems, is thus seen to be a deterministic space complexity class.

127 AXIOMATIC COMPLEXITY THEORY

The reader may have observed that many theorems in this chapter are not depen-
dent on the fact that we are measuring the amount of time or space used, but only
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that we are measuring some resource that is being consumed as the computation
proceeds. In fact one could postulate axioms governing resources and give a
completely axiomatic development of complexity theory. In this section we briefly
sketch this approach.

The Blum axioms

Let M,, M,, ... be an enumeration of Turing machines defining among them
every partial recursive function. For technical reasons we consider the M/’s as
computing partial recursive functions ¢; rather than as recognizing sets. The
reason is that it is notationally simpler to measure complexity as a function of the
input rather than of the length of the input. Let ¢;(n) be the function of one
variable computed by M;, and let ®,(n), ®,(n), .... be a set of partial recursive
functions satisfying the following two axioms (Blum’s axioms).

Axiom 1 ®(n) is defined if and only if ¢,(n) is defined.

Axiom 2 The function R(i, n, m) defined to be 1 if ®;(n) = m and 0 otherwise, is a
total recursive function.

The function ®,(n) gives the complexity of the computation of the ith Turing
machine on input n. Axiom 1 requires that @;(n) is defined if and only if the ith
Turing machine halts on input n. Thus one possible ®; would be the number of
steps of the ith Turing machine. The amount of space used is another alternative,
provided we define the space used to be infinite if the TM enters a loop.

Axiom 2 requires that we can determine whether the complexity of the ith
Turing machine on input n is m. For example, if our complexity measure is the
number of steps in the computation, then given i, n, and m, we can simulate M; on
0" for m steps and see if it halts. Lemma 12.4 and its analogs are claims that Axiom
2 holds for the four measures with which we have been concerned.

Example 12.9 Deterministic space complexity satisfies Blum’s axioms, provided
we say ®;(n) is undefined if M; does not halt on input 0", even though the amount
of space used by M; on 0" may be limited. Deterministic time complexity likewise
satisfies the axioms if we say ®;(n) is undefined whenever M; runs forever or halts
without any ¢V on its tape. To compute R(i, n, m), simply simulate M, for m steps
on input 0"

We may establish that nondeterministic time and space satisfy the axioms if
we make an intelligent definition of what it means for an NTM to compute a
function. For example, we might say that ¢;(n) = if and only if there is some
sequence of choices by M; with input 0" that halts with O/ on the tape, and no
sequence of choices that leads to halting with some 0%, k # j, on the tape.

If we define ®,(n) = ¢;(n), we do not satisfy Axiom 2. Suppose R(i, n, m) were
recursive. Then there is an algorithm to tell if M; with input 0" halts with 0™ on 1ts
tape. Given any TM M, we may construct M to simulate M. If M halts with any
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tape, M erases its own tape. If i is an index for M, then R(i, n, 0) is true if and only
if M halts on input 0". Thus if R(i, n, m) were recursive, we could tell if a given TM
M halts on a given input, which is undecidable (see Exercise 8.3).

Recursive relationships among complexity measures

Many of the theorems on complexity can be proved solely from the two axioms. In
particular, the fact that there are arbitrarily complex functions, the speed-up
theorem, the gap theorem, and the union theorem can be so proved. We prove
only one theorem here to illustrate the techniques. The theorem we select is that
all measures are recursively related. That is, given any two complexity measures @
and @, there is a total recursive function r such that the complexity of the TM M;
in one measure, ®,(n), is at most r(n, ®,(n)). For example, Theorems 12.10 and
12.11 showed that for the four measures of complexity with which we have been
dealing, at most an exponential function related any pair of these complexity
measures. In a sense, functions that are easy in one measure are “easy” in any
other measure, although the term “easy” must be taken lightly, as r could be a very
rapidly growing function, such as Ackermann’s function.

Theorem 12.16 Let ® and ® be two complexity measures. Then there exists a
recursive function r such that for all i,

r(n, ®(n)) > d(n) ae.
Proof Let R
r(n, m) = max {®i(n)]i<n and @y(n)=m}.

The function r is recursive, since ®;(n) = m may be tested by Axiom 2. Should it be
equal to m, then ¢;(n) and ®,(n) must be defined, by Axiom 1, and hence the
maximum can be computed. Clearly r(n, ®,(n)) > ®;(n) for all n > i, since for
n > i, r(n, ®(n)) is at least ®,(n). O

Although the axiomatic approach is elegant and allows us to prove results in
a more general framework, it fails to capture at least one important aspect of our
intuitive notion of complexity. If we construct a Turing machine M, that first
executes M; on n and then executes M; on the result, we would expect the com-
plexity of M, on n to be at least as great as M; on n. However, there are complexity
measures such that this is not the case. In other words, by doing additional
computation we can reduce the complexity of what we have already done. We
leave the construction of such a complexity measure as an exercise.

EXERCISES

12.1 The notion of a crossing sequence—the sequence of states in which the boundary
between two cells is crossed—was defined in Section 2.6 in connection with two-way finite
automata. However, the notion applies equally well to single-tape TM’s. Prove the follow-
ing basic properties of crossing sequences.
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a) The time taken by single-tape TM M on input w is the sum of the lengths of the
crossing sequences between each two cells of M’s tape.

b) Suppose M is a single tape TM that, if it accepts its input, does so to the right of the
cells on which its input was originally written. Show that if M accepts input w, w,, and
the crossing sequence between w, and w, is the same as that between x, and x, when
M is given input x, x,, then M accepts x; w,.

*12.2  Use Exercise 12.1 to show that the languages

S a) {wew®|w is in (a + b)*} b) {wew|w is in (a + b)*}
each require kn? steps on some input of sufficiently large odd length n, for some constant
k > 0. Thus the bound of Theorem 12.5 is in a sense the best possible.

*12.3  The notion of crossing sequences can be adapted to off-line TM’s if we replace the
notion of “state” by the state, contents of storage tapes, and positions of the storage tape
heads. Theorem 12.8, the space hierarchy, applied only to space complexities of log n or
above. Prove that the same holds for fully space-constructible S,(n) below log n. [Hint:
Using a generalized crossing sequence argument, show that {wc'w|w is in (a + b)* and
|w| = 252+ 2D} is in DSPACE(S,(n)) but not in DSPACE(S, (n)).]

*12.4  Show, using generalized crossing sequence arguments, that if L is not a regular set
and L is in DSPACE(S(n)), then S(n) > log log n i.0. Show the same result for nondeter-
ministic space. Thus for deterministic and nondeterministic space there is a “gap” between
1 and log log n.

125  Show that Lemma 12.2, the “translation lemma,” applies to
a) deterministic space

b) deterministic time, and
c) nondeterministic time.

12.6  Show that DTIME(22"*") properly includes DTIME(2%").

127  Show that NSPACE((c + ¢)") properly includes NSPACE(c") for any ¢ > 1 and
¢>0.

12.8  What, if any, is the relationship between each of the following pairs of complexity
classes?

a) DSPACE(n?) and DSPACE(f (n)), where f(n) = n for odd n and n’ for even n.
b) DTIME(2") and DTIME(3")

¢) NSPACE(2") and DSPACE(5")

d) DSPACE(n) and DTIME([log,n1")

12.9  Show that if r is any total recursive function, then there is a fully space-constructible
monotonically nondecreasing r’ such that r'(n) = r(n), and r'(x) > x? for all integers x.
[Hint: Consider the space complexity of any TM computing r.]

12.10 Show that there is a total recursive function S(n) such that L is in DSPACE(S(n)) if
and only if L is accepted by some c¢" space-bounded TM, for ¢ > 1.

12.11 Suppose we used axioms for computational complexity theory as it pertains to
languages rather than functions. That is, let M, M,, ... be an enumeration of Turing
machines and L; the language accepted by M;. Replace Axiom 1 by:

Axiom 1': ®;(n) is defined if and only if M; halts on all inputs of length n.
Reprove Theorem 12.16 for Axioms 1’ and 2.
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12.12 Show that the speed-up and gap theorem hold for NSPACE, DTIME and NTIME.
[Hint: Use Theorem 12.16 and the speed-up and gap theorems for DSPACE.]

12.13 Show that the following are fully time and space constructible:

a) n? b) 2" c) n!
12.14 Show that the following are fully space constructible:
a) \/;1 b) log,n

**Sc) Some function that is bounded above by log,log,n and that is bounded below by
¢ log,log,n, for some ¢ > 0, infinitely often.

12.15 Show that if T,(n) is time constructible, and

 Ty(n) log Ty(n) _
nl—{li TZ(”) B

then there is a language accepted by a T,(n) time-bounded one-tape TM, but by no T(n)
time-bounded one-tape machine. [Hint: To simulate a one-tape TM M; by a one-tape
machine, move the description of M; so that it is always near the tape head. Similarly, carry
along a “counter™ to tell when M, has exceeded its time limit.]

**12.16 Show that if T(n) is time constructible and

o Ti(n) log® Ty(n) _
BN Y7t R

then for all k, there is a language accepted by a k-tape T, time-bounded TM but by no
k-tape T,(n) time-bounded TM, where log*(m) is the number of times we must take logar-
ithms base 2 of m to get to 1 or below. For example, log*(3) = 2 and log*(2¢°°3¢) = 5. Note
that this exercise implies Exercise 12.15.

0,

0,

*12.17 Show that for any complexity measure @ satisfying the Blum axioms there can be
no total recursive function f such that ®(n) < f(n, ¢«(n)). That is, one cannot bound the
complexity of a function in terms of its value.

**12.18 The speed-up theorem implies that for arbitrarily large recursive functions r we can
find a language L for which there exists a sequence of TM’s M, M,, ..., each accepting L,
such that the space used by M, is at least r applied to the space used by M, ;. However, we
did not give an algorithm for finding such a sequence; we merely proved that it must exist.
Prove that speed up is not effective, in that if for every TM accepting L, there is an M; on
the list using less space, then the list of TM’s is not recursively enumerable.

*12.19 Which of the following are complexity measures?
a) ®;(n) = the number of state changes made by M; on input n.

b) ®,(n) = the maximum number of moves made by M; without a state change on input n.
c) ®(n) =0 for all i and n.
) jo if ¢.(n) is defined,

d) i(n) = |undefined otherwise.

**12.20 (Honesty theorem for space). Show that there is a total recursive function r such that
for every space complexity class %, there is a function S(n) such that DSPACE(S(n)) = ¢
and S(n) is computable in r(S(n)) space.

*12.21 Theorem 12.7 shows that given S(n), there is a set L such that any TM recognizing
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L uses more than S(n) space i.o. Strengthen this result to show there is a set I such that any
TM recognizing L uses more than S(n) space a.e.

**12.22 Let ® be a complexity measure and let c(i, j) be any recursive function such that
when ¢;(n) and ¢ ;(n) are defined then so is ¢ j(n). Prove there exists a recursive function h

such that
@i, p(n) < h(n, Dy(n), ®y(n)) ae.

**12.23 Show that if f(n) is fully space constructible then DTIME(f(n) log f(n)) =
DSPACE(f (n)).

12.24 Exhibit a TM that accepts an infinite set containing no infinite regular subset.

*12.25 Consider one-tape TM’s that use a constant one unit of ink each time they change a
symbol on the tape.

a) Prove a linear “speed-up” theorem for ink.

b) Give an appropriate definition of a “fully ink-constructible” function.

c) How much of an increase in the amount of ink is necessary to obtain a new complexity
class?

12.26 A Turing machine is said to be oblivious if the head position at each time unit
depends only on the length of the input and not on the actual input. Prove that if L is
accepted by a k-tape T(n) time-bounded TM, then L is accepted by a 2-tape T(n) log T(n)
oblivious TM.

*12.27 Let L < (0 + 1)* be the set accepted by some T(n) time-bounded TM. Prove that

for each n there exists a Boolean circuit, with inputs x,,..., X, having at most
T(n) log T(n) two-input gates and producing output 1 if and only if the values of x4, ..., x,
correspond to a string in L. The values of x,, ..., x, correspond to the string x if x; has value

true whenever the ith symbol of x is 1 and x; has value false whenever the ith symbol of x is
0. [Hint: Simulate an oblivious TM.]

**12.28 Loop programs consist of variables that take on integer values and statements. A
statement is of one of the forms below.
1) (variable) := (variable)
2) (variable) : = (variable) + 1
3) for i:= 1 to (variable) do statement;
4) begin (statement); (statement); ... {statement) end;

In (3) the value of the variable is bound before the loop, as in PL/I.
a) Prove that loop programs always terminate.
b) Prove that every loop program computes a primitive recursive function.
c) Prove that every primitive recursive function is computed by some loop program.
d) Prove that a TM with a primitive recursive running time can compute only a
primitive recursive function.

*12.29 Let F be a formal proof system in which we can prove theorems about one-tape
TM’s. Define a complexity class

Crm = {L(M;)|there exists a proof in F that Ty(n) < T(n) for all n}.

Can the time hierarchy of Exercise 12.16 be strengthened for provable complexity? [Hint :
Replace the clock by a proof that T;(n) < T(n).]
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Solutions to Selected Exercises

122(a)  Consider any string wew® of length n and let ¢,,; be the length of the crossing
sequence between positionsiand i + 1, for 1 <i < n/2, made by some one-tape TM M with
s states. Suppose the average of 7, ; over all words w of length (n — 1)/2 is p(i). Then for at
least half of all w’s, ,,; < 2p(i). The number of w’s is 2"~ %2 so there are at least 2"~ 32 y’s
for which /,,; < 2p(i). As the number of crossing sequences of length 2p(i) or less is
2p(i)
35 g2
j=0
there must be at least 2"~ 3/2/s2P@+1 yy5 with the same crossing sequence between posi-
tions i and i + 1. There are 2"~ Y2~ sequences of a’s and b’s that may appear in positions
i + 1 through (n — 1)/2 in these words, so if
2n=3)2 2
n—1)2—i
Then two words with the same crossing sequence differ somewhere among the first i
positions. Then by Exercise 12.1(b), M accepts a word it should not accept.
Thus (12.11) is false, and s*?@*! > 2/~ ! Therefore,
N
> S .
p(i) = 2logys 2
Surely there is some word w such that when presented with wew®, M takes at least
average time. By Exercise 12.1(a), this average is at least
(= 1y2 L S 1 (n—3)(n—l) n—1

i) > —— — >
.';1 pl) = i=zl 2 log; s 4 T 4dlog;s 2 2 4

12.14(c) We may design an off-line TM M of space complexity S(n) to test fori = 2,3, ...
whether its input length n is divisible by each i, stopping as soon as we encounter a value of
i that does not divide n. As the test whether i divides n needs only log,i storage cells, S(n) is
the logarithm of the largest i such that 2, 3, ..., i all divide n. If we let n = k!, we know that
S(n) = log,k. As k! < k*, we know that

log,n < k log,k
and
log,log,n < log,k + log,log,k < 2 log,k.

Thus for those values of n that are k! for some k, it follows that
S(n) = 4 log,log,n.

We must show that for all n, S(n) < 1 + log,log,n. It suffices to show that the smallest
n for which S(n) > k, which is the least common multiple (LCM) of 2,3, ...,2*71 + I, isat
least 227", That is, we need the fact that LCM(2, 3, ..., i) > 2/~ !. A proof requires results in
the theory of numbers that we are not prepared to derive, in particular that the probability
that integer i is a prime is asymptotically 1/In i, where In is the natural logarithm (see
Hardy and Wright [1938]). Since LCM(2, 3, ..., i) is at least the product of the primes
between 2 and i, a lower bound on the order of ¢' for LCM(2, 3, ..., i) for large i is easy t0
show.
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CHAPTER

INTRACTABLE
PROBLEMS

In Chapter 8 we discovered that one can pose problems that are not solvable on a
computer. In this chapter we see that among the decidable problems, there are
some so difficult that for all practical purposes, they cannot be solved in their full
generality on a computer. Some of these problems, although decidable, have been
proved to require exponential time for their solution. For others the implication is
very strong that exponential time is required to solve them; if there were a faster way
of solving them than the exponential one, then a great number of important
problems in mathematics, computer science, and other fields—problems for which
good solutions have been sought in vain over a period of many years—could be
solved by substantially better means than are now known.

13.1 POLYNOMIAL TIME AND SPACE

The languages recognizable in deterministic polynomial time form a natural and
important class, the class ( J;», DTIME(n'), which we denote by . It is an
intuitively appealing notion that £ is the class of problems that can be solved
efficiently. Although one might quibble that an n*7 step algorithm is not very
efficient, in practice we find that problems in £ usually have low-degree polyno-
mial time solutions.

There are a number of important problems that do not appear to be in 2 but
have efficient nondeterministic algorithms. These problems fall into the class
(Ji>1 NTIME(n'), which we denote by .¥"2. An example is the Hamilton circuit
problem: Does a graph have a cycle in which each vertex of the graph appears
exactly once? There does not appear to be a deterministic polynomial time algo-

320
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rithm to recognize those graphs with Hamilton circuits. However, there is a simple
nondeterministic algorithm; guess the edges in the cycle and verify that they do
indeed form a Hamilton circuit.

The difference between 2 and 42 is analagous to the difference between
efficiently finding a proof of a statement (such as “this graph has a Hamilton
circuit”) and efficiently verifying a proof (i.e., checking that a particular circuit is
Hamilton). We intuitively feel that checking a given proof is easier than finding
one, but we don’t know this for a fact.

Two other natural classes are

PSPACE = | )] DSPACE(n')

iz1

NSPACE = () NSPACE(r).

i>1

and

Note that by Savitch’s theorem (Theorem 12.11) PSPACE = NSPACE, since
NSPACE(n') = DSPACE(n*). Obviously, # = #'2 < PSPACE, yet it is not
known if any of these containments are proper. Moreover, as we shall see, it is
unlikely that the mathematical tools needed to resolve the questions one way or
the other have been developed.
Within PSPACE we have two hierarchies of complexity classes:
DSPACE(log n) & DSPACE(log” n) & DSPACE(log® n) & -+~
and
NSPACE(log n) & NSPACE(log? n) ¢ NSPACE(log® n) & ---.
Clearly DSPACE(log* n) € NSPACE(log* n) and thus by Savitch’s theorem
U NSPACE(logt n) = |/ DSPACE(log n).
k>1 kx1

Although one can show that
2 + |J) DSPACE(log* n),

k>1
containment of either class in the other is unknown. Nevertheless
DSPACE(log n) = 2 = 4"#? < PSPACE,

and at least one of the containments is proper, since DSPACE(log n) & PSPACE
by the space hierarchy theorem.

Bounded reducibilities

Recall that in Chapter 8 we showed a language L to be undecidable by taking a
known undecidable language L and reducing it to L. That is, we exhibited a
mapping g computed by a TM that always halts, such that for all strings x, x is in
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L if and only if g(x) is in L. Then if L were recursive, L could be recognized by
computing g(x) and deciding whether g(x) is in L.

By restricting g to be an easily computable function, we can establish that L is
or is not in some class such as 2, A%, or PSPACE. We shall be interested
particularly in two types of reducibility: polynomial time reducibility and log-
space reducibility. We say that L is polynomial-time reducible to L if there is a
polynomial-time bounded TM that for each input x produces an output y that is
in L if and only if x is in L.

Lemma 13.1 Let L be polynomial-time reducible to L. Then

a) Lisin. .t 2if Lisin . ¥,

b) Lisin £ if Lis in 2.
Proof The proofs of (a) and (b) are similar. We prove only (b). Assume that the
reduction is p;(n) time bounded and that L is recognizable in time p,(n), where p,
and p, are polynomials. Then L can be recognized in polynomial time as follows.
Given input x of length n, produce y using the polynomial-time reduction. As the
reduction is p,(n) time bounded, and at most one symbol can be printed per move,
it follows that |y| < p,(n). Then, we can test if y is in L in time p,(p, (n)). Thus the

total time to tell whether x is in L is p,(n) + p,(p;(n)), which is polynomial in n.
Therefore, L is in P. O

A log-space transducer is an off-line TM that always halts, having log n
scratch storage and a write-only output tape on which the head never moves left.
We say that L is log-space reducible to L if there is a log-space transducer that
given input x, produces an output string y that is in L if and only if x is in L.

Lemma 13.2 If L is log-space reducible to L, then

a) Lisin £ if Lis in 2,

b) L is in NSPACE(log* n) if L is in NSPACE(log* n),
¢) L is in DSPACE(log* n) if L is in DSPACE(log* n).

Proof

a) It suffices to show that a log-space reduction cannot take more than polyno-
mial time, so the result follows from Lemma 13.1(b). In proof, note that the output
tape contents cannot influence the computation, so the product of the number of
states, storage tape contents, and positions of the input and storage tape heads is
an upper bound on the number of moves that can be made before the log-space
transducer must enter a loop, which would contradict the assumption that it always
halts. If the storage tape has length log n, the bound is easily seen to be poly-
nomial in n.

There is a subtlety involved in the proofs of (b) and (c). We prove only (c), the
proof of (b) being essentially the same as for (c).
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c) Let M, be the log-space transducer that reduces L to L, and let M, be a log* n
space bounded TM accepting L. On input x of length n, M, produces an output
of length bounded by n° for some constant c. Since the output cannot be written
in log* n space, M, and M, cannot be simulated by storing the output of M, on
a tape. Instead the output of M, can be fed directly to M,, a symbol at a time.
This works as long as M, moves right on its input. Should M, move left, M,
must be restarted to determine the input symbol for M ,, since the output of M,
is not saved.

We construct M5 to accept L as follows. One storage tape of M; holds the
input position of M, in base 2¢. Since the input position cannot exceed n°, this
number can be stored in log n space. The other storage tapes of M simulate the
storage tapes of M, and M,. Suppose at some time M,’s input head is at position
i, and M, makes a move left or right. M, adjusts the state and storage tapes of M,
accordingly. Then M restarts the simulation of M, from the beginning, and waits
until M, has produced i — 1 ori + 1 output symbols if M ,’s input head moved left
or right, respectively. The last output symbol produced is the new symbol scanned
by M,’s head, so M, is ready to simulate the next move of M ,. As special cases, if
i =1and M, moves left, we assume that M, next scans the left endmarker, and if
M, halts before producing i + 1 output symbols (when M, moves right), we
assume that M, next scans the right endmarker. M, accepts its own input when-
ever M, accepts its simulated input. Thus M; is a log* n space bounded TM
accepting L. Wl

Lemma 13.3 The composition of two log-space (resp. polynomial-time) reduc-
tions is a log-space (resp. polynomial-time) reduction.

Proof An easy generalization of the constructions in Lemmas 13.1 and 13.2.

]

Complete problems

As we have mentioned, no one knows whether .4°# includes languages not in £,
so the issue of proper containment is open. One way to find a language in
NP — P is to look for a “hardest” problem in . ¥'2. Intuitively, a language L, is a
hardest problem if every language in .4"¢ is reducible to L, by an easily comput-
able reduction. Depending on the exact kind of reducibility, we can conclude
certain things about L. For example, if all of .1 ' is log-space reducible to L), we
can conclude that if L, were in £, then < would equal . '2. Similarly, if L, were
in DSPACE(log n), then .+"#? = DSPACE(log n). If all of .#"2 were polynomial-
time reducible to L, then we could still conclude that if L, were in 2, then
would equal #'2, but we could not conclude from the statement L, is in
DSPACE(log n) that .#"2 = DSPACE(log n).

We see from the above examples that the notion of “hardest” may depend on
the kind of reducibility involved. That is, there may be languages L, such that all
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languages in A" have polynomial-time reductions to L,, but not all have log-
space reductions to L,. Moreover, log-space and polynomial-time reductions do
not exhaust the kinds of reductions we might consider. With this in mind, we
define the notion of hardest (complete) problems for a general class of languages
with respect to a particular kind of reduction. Clearly the following generalizes to
an arbitrary type of reduction.

Let & be a class of languages. We say language L is complete for € with respect
to polynomial-time (resp. log-space) reductions if L is in %, and every language in ¢
is polynomial-time (resp. log-space) reducible to L. We say L is hard for € with
respect to polynomial-time (resp. log-space) reductions if every language in 4 is
polynomial-time (resp. log-space) reducible to L, but L is not necessarily in 4.
Two special cases are of primary importance, and we introduce shorthands for
them. L is NP-complete (NP-hard) if L is complete (hard) for A°# with respect to
log-space reductions.t L is PSPACE-complete (PSPACE-hard) if L is complete
(hard) for PSPACE with respect to polynomial time reductions.

In order to show a first language L, to be NP-complete, we must give a
log-space reduction of each language in A2 to L,. Once we have an NP-
complete problem L,, we may prove another language L, in .1 2 to be NP-
complete by exhibiting a log-space reduction of L, to L,, since the composition of
two log-space reductions is a log-space reduction by Lemma 13.3. This same
technique will be used for establishing complete problems for other classes as well.

13.2 SOME NP-COMPLETE PROBLEMS

The significance of the class of NP-complete problems is that it includes many
problems that are natural and have been examined seriously for efficient solutions.
None of these problems is known to have a polynomial-time solution. The fact
that if any one of these problems were in ¢ all would be, reinforces the notion that
they are unlikely to have polynomial-time solutions. Moreover, if a new problem
is proved NP-complete, then we have the same degree of confidence that the new
problem is hard that we have for the classical problems.

The first problem we show to be NP-complete, which happens to be histor-
ically the first such problem, is satisfiability for Boolean expressions. We begin by
defining the problem precisely.

The satisfiability problem

A Boolean expression is an expression composed of variables, parentheses, and the
operators A (logical AND), v (logical OR) and — (negation). The precedence of
these operators is — highest, then A, then v. Variables take on values 0 (false)
and 1 (true); so do expressions. If E, and E, are Boolean expressions, then the

+ Many authors use the term “NP-complete” to mean “complete for 4°2 with respect to polynomial
time reductions,” or in some cases, “with respect to polynomial time Turing reductions.”
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value of E; A E, is 1 if both E, and E, have value 1, and O otherwise. The value of
E, v E, is lifeither E, or E, has value 1, and 0 otherwise. The value of — E, is 1 if
E,is0and Oif E, is 1. An expression is satisfiable if there is some assignment of 0’s
and 1’s to the variables that gives the expression the value 1. The satisfiability
problem is to determine, given a Boolean expression, whether it is satisfiable.

We may represent the satisfiability problem as a language L, as follows.
Let the variables of some expression be x4, x,, ..., X, for some m. Code x; as the
symbol x followed by i written in binary. The alphabet of L, is thus

{A, v, (), x,0, 1}

The length of the coded version of an expression of n symbols is easily seen to
be no more than [n log,n], since each symbol other than a variable is coded by one
symbol, there are no more than [n/2] different variables in an expression of length
n, and the code for a variable requires no more than 1 + [log,n] symbols. We
shall henceforth treat the word in L, representing an expression of length n as if
the word itself were of length n. Our results will not depend on whether we use n or
n log n for the length of the word, since log(n log n) < 2 log n, and we shall deal
with log-space reductions.

A Boolean expression is said to be in conjunctivet normal form (CNF) if it is of
the form E; A E, A--- A E,, and each E;, called a clause (or conjunct), is of the form
a;y Vg, Voo vy, where each oy is a literal, that is, either x or —1x, for some
variable x. We usually write x instead of —1 x. For example, (x,Vvx;)A
(X1 v x3VvX4)AXsisin CNF. The expression is said to be in 3-CNF if each clause
has exactly three distinct literals. The above example is not in 3-CNF because the
first and third clauses have fewer than three literals.

Satisfiability is VP-complete
We begin by giving a log-space reduction of each language in .4"% to Ly,,.
Theorem 13.1 The satisfiability problem is NP-complete.

Proof The easy part of the proof is that L, is in A4"2. To determine if an
expression of length n is satisfiable, nondeterministically guess values for all the
variables and then evaluate the expression. Thus L, is in 4 2.

To show that every language in .4"2 is reducible to L,,,, for each NTM M
that is time bounded by a polynomial p(n), we give a log-space algorithm that
takes as input a string x and produces a Boolean formula E, that is satisfiable if
and only if M accepts x. We now describe E,.

Let #Bo#p,% - #8,, be a computation of M, where each §; is an ID
consisting of exactly p(rn) symbols. If acceptance occurs before the p(n)th move, we
allow the accepting ID to repeat, so each computation has exactly p(n) + 1 ID’s.

+ “Conjunctive” is an adjective referring to the logical AND operator (conjunction). The term disjunc-
tive is similarly applied to logical OR.
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In each ID we group the state with the symbol scanned to form a single composite
symbol. In addition, the composite symbol in the ith ID contains an integer m
indicating the move by which the (i + 1)st ID follows from the ith. Numbers are
assigned to moves by arbitrarily ordering the finite set of choices that M may
make given a state and tape symbol.

For each symbol that can appear in a computation and for each i,0 <i <
(p(n) + 1), we create a Boolean variable c;y to indicate whether the ith symbol in
the computation is X. (The Oth symbol in the computation is the initial #.) The
expression E, that we shall construct will be true for a given assignment to the
¢ix's if and only if the ¢;;’s that are true correspond to a valid computation.
The expression E, states the following:

1) The C;y’s that are true correspond to a string of symbols, in that exactly one
Cx is true for each i.

2) The ID B, is an initial ID of M with input x.

3) The last ID contains a final state.

4) Each ID follows from the previous one by the move of M that is indicated.
The formula E, is the logical AND of four formulas, each enforcing one of

the above conditions. The first formula, stating that for each i between 0 and
(p(n) + 1)* — 1, exactly one C;y is true is

ey e

For a given value of i the term \/y C;y forces at least one C,y to be true and
—\/x#y (Cix A Ciy) forces at most one to be true.
Let x =a,a, - a, The second formula expressing the fact that f§, is an
mitial ID is in turn the AND of the following terms.
1) Cou A Cpymy+1.+- The symbols in positions 0 and p(n) + 1 are #.

i) ¢y, Vv ey, VvV Ve, Where Y, Y,, ..., Y, are all the composite symbols that
represent tape symbol a,, the start state g,, and the number of a legal move of
M in state g, reading symbol a,. This clause states that the first symbol of o
Is correct.

iii) /\2<i<n Ciar The 2nd through nth symbols of §, are correct.
V) /\n<izpm Cis- The remaining symbols of B, are blank.

The third formula says that the last ID has an accepting state. It can be
written
v (V)
p(n)(p(my+ 1)<i<(p(m+1)2 \XinF

where F is the set of composite symbols that include a final state.



132 | SOME NP-COMPLETE PROBLEMS 327

To see how to write the fourth formula stating that each ID B;, i > 1, follows
from B;_, by the move appearing in the composite symbol of B;_,, observe that
we can essentially deduce each symbol of B; from the corresponding symbol of
B:-1 and the symbols on either side (one of which may be #). That is, the symbol
in B; is the same as the corresponding symbol in f;_, unless that symbol had the
state and move, or one of the adjacent symbols had the state and move, and the
move caused the head position to shift to where the symbol of ; in question was.
Note that should this symbol of f; be the one representing the state, it also
represents an arbitrary legal move of M, so there may be more than one legal
symbol. Also note that if the previous ID has an accepting state, the current and
previous ID’s are equal.

We can therefore easily specify a predicate f (W, X, Y, Z) that is true if and
only if symbol Z could appear in position j of some ID given that W, X, and Y are
the symbols in positions j — 1, j, and j + 1 of the previous ID [W is # if j=1
and Y is # if j = p(n)]. It is convenient also to declare (W, #, X, #) to be true,
so we can treat the markers between ID’s as we treat the symbols within 1D’s.
We can now express the fourth formula as

( V (€= pm= 2.0 A Cj pmy= 1.5 A Cj pimy.y ’\Cjz))~
p(m)<j<(p(n)+1)2 W.X.Y.Z such
that f(W XY Z)

It is easy, given an accepting computation of M on x to find truth values for
the ¢;y’s that make E, true. Just make c;y true if and only if the ith symbol of the
computation is X. Conversely, given an assignment of truth values making E,
true, the four formulas above guarantee that there is an accepting computation of
M on x. Note that even though M is nondeterministic, the fact that a move choice
is incorporated into each ID guarantees that the next state, symbol printed, and
direction of head motion going from one ID to the next will all be consistent with
some one choice of M.

Furthermore, the formulas composing E, are of length O(p*(n)) and are
sufficiently simple that a log-space TM can generate them given x on its input. The
TM only needs sufficient storage to count up to (p(n) + 1)2. Since the logarithm of
a polynomial in n is some constant times log n, this can be done with O(log n)
storage. We have thus shown that every language in NP is log-space reducible to
L., proving that L, is NP-complete. O

We have just shown that satisfiability for Boolean expressions is NP-
complete. This means that a polynomial-time algorithm for accepting L, could
be used to accept any language in .4'%. Let L be the language accepted by some
p(n) time-bounded nondeterministic Turing machine M, and let 4 be the log-
space (hence polynomial-time) transducer that converts x to E,, where E, is
satisfiable if and only if M accepts x. Then A combined with the algorithm for L,,
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Algorithm E, Algorithm
x constructing 1 for L >
E, from x sat

Deterministic polynomial time algorithm for
arbitrary language in A2

Fig. 13.1 Algorithm for arbitrary set L in /"2 given algorithm for L, .

as shown in Fig. 13.1 is a deterministic polynomial-time algorithm accepting L.
Thus the existence of a polynomial-time algorithm for just this one problem, the
satisfiability of Boolean expressions, would imply 2 = A"2.

Restricted satisfiability problems that are /VP-complete

Recall that a Boolean formula is in conjunctive normal form (CNF) if it is the
logical AND of clauses, which are the logical OR of literals. We say the formula is
in k-CNF if each clause has exactly k literals. For example, (xv y) A (Xvz)A
(yvz)isin 2-CNF.

We shall now consider two languages, L., the set of satisfiable Boolean
formulas in CNF, and L,,,, the set of satisfiable Boolean formulas in 3-CNF. We
give log-space reductions of L, to L, and L, to L., showing the latter two
problems NP-complete by Lemma 13.3. In each case we map an expression to
another expression that may not be equivalent, but is satisfiable if and only if the
original expression is satisfiable.

Theorem 13.2 L, the satisfiability problem for CNF expressions, is NP-
complete.

Proof Clearly L, is in /"2, since L, is. We reduce L, to L, as follows. Let E
be an arbitrary Boolean expression of length n.t Certainly, the number of variable
occurrences in E does not exceed n, nor does the number of A and v operators.
Using the identities

—(E; AE,)=(E;)v—(E,),

TWEy v Ey) = (Ey)AT(Ey), (13.1)

—E, =E,,

we can transform E to an equivalent expression E’, in which the — operators ar¢
applied only to variables, never to more complex expressions. The validity of Eqs.
(13.1) may be checked by considering the four assignments of values 0 and 1 to E;

1 Recall that the length of a Boolean expression is the number of characters, not the length of its code,
and recall that this difference is of no account where log-space reduction is concerned.
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and E,. Incidentally, the first two of these equations are known as DeMorgan’s
laws.

The transformation can be viewed as the composition of two log-space trans-
formations. As a result of the first transformation, each negation symbol that
immediately precedes a variable is replaced by a bar over the variable, and each
closing parenthesis whose matching opening parenthesis is immediately preceded
by a negation sign is replaced by )r—. The symbol — indicates the end of the scope
of a negation. This first transformation is easily accomplished in log-space using a
counter to locate the matching parentheses.

The second transformation is accomplished by a finite automaton that scans
the input from left to right, keeping track of the parity (modulo 2 sum) of the
active negations, those whose immediately following opening parenthesis but not
closing parenthesis has been seen. When the parity of negations is odd, x is
replaced by X, X by x, v by A, and A by v.The symbols — and — are deleted.
That this transformation is correct may be proved using (13.1) by an easy induc-
tion on the length of an expression. We now have an expression E’ in which all
negations are applied directly to variables.

Next we create E”, an expression in CNF that is satisfiable if and only if E’ is
satisfiable. Let V; and V, be sets of variables, with V; = V,. We say an assignment
of values to V, is an extension of an assignment of values to V] if the assignments
agree on the variables of V;. We shall prove by induction on r, the number of A’s
and v’s in an expression E’, all of whose negations are applied to variables, that if
|E'| = n, then there is a list of at most n clauses, F,, F,, ..., F,, over a set of
variables that includes the variables of E’ and at most n other variables, such that
E’ is given value 1 by an assignment to its variables if and only if there is an
extension of that assignment that satisfies Fy AF, A AF}.

Basis r=0.Then E' is a literal, and we may take that literal in a clause by itself
to satisfy the conditions.

Induction IfE' = E,AE,, let F,F,, ...,F,and G,,G,, ..., G, be the clauses for
E, and E, that exist by the inductive hypothesis. Assume without loss of genera-
lity that no variable that is not present in E’ appears both among the F’s and
among the G’s. Then F, F,, ..., F,, G, G,, ..., G, satisfies the conditions for E".

If E' = E, v E,, let the F's and G’s be as above, and let y be a new variable.
Then yvF,, yvF,, ...,yvF,yvG,, yvG,, ..., yv G, satisfies the conditions.
In proof, suppose an assignment of values satisfies E". Then it must satisfy E, or
E,. If the assignment satisfies E,, then some extension of the assignment satisfies
F\, F,, ..., F,. Any further extension of this assignment that assigns y = 0 will
satisfy all the clauses for E'. If the assignment satisfies E,, a similar argument
suffices. Conversely, suppose all the clauses for E' are satisfied by some assign-
ment. If that assignment sets y = 1, then all of G,, G,, ..., G, must be satisfied, so
E, is satisfied. A similar argument applies if y = 0. The desired expression E” is all
the clauses for E’ connected by A’s.
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To see that the above transformation can be accomplished in log-space, con-
sider the parse tree for E. Let y; be the variable introduced by the ith v . The final
expression is the logical AND of clauses, where each clause contains a literal of the
original expression. In addition, if the literal is in the left subtree of the ith v, then
the clause also contains y;. If the literal is in the right subtree of the ith v, then the
clause contains y;. The input is scanned from left to right. Each time a literal is
encountered, a clause is emitted. To determine which y;’s and y;’s to include in the
clause, we use a counter of length log n to remember our place on the input. We
then scan the entire input, and for each v symbol, say the ith from the left, we
determine its left and right operands, using another counter of length log n to
count parentheses. If the current literal is in the left operand, generate y;; if it is in
the right operand, generate y;, and if in neither operand, generate neither y; nor y;.

We have thus reduced each Boolean expression E to a CNF expression E”
that is in L, if and only if E is in L,,. Since the reduction is accomplished in
log-space, the NP-completeness of L, implies the NP-completeness of L,,.

O

Example 13.1 Let
E = —((x; v xa) A (X v X,)).
Applying DeMorgan’s laws yields
E' = (x; vx;3) Vv (x; AX3).
The transformation to CNF introduces variables y, and y, to give

E"=(x; vy, vy ) A2V vya) A v ) A(Xs v y,)

Theorem 13.3 L, the satisfiability problem for 3-CNF expressions, is NP-
complete.

Proof Clearly, Ly, is in 4", since L, is. Let E= F, AF,A---AF, be a CNF
expression. Suppose some clause F; has more than three literals, say
Fi=o,vo,v--va, £>3.
Introduce new variables y,, y,, --., ¥, 3, and replace F; by
(@ vayvy)A(as vy vy)A(eavyavys)as
ANot— 2V YemaV Yo-3) A=y VOV Jr3). (132)

Then F, is satisfied by an assignment if and only if an extension of that assignment
satisfies (13.2). An assignment satisfying F; must have «; = 1 for some j. Thus
assume that the assignment gives literals «;, a5, ..., a;_, the value 0 and o; the
value 1. Then y,, = 1 form < j — 2 and y,, = 0 for m > j — 1 is an extension of the
assignment satisfying (13.2).
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Conversely, we must show that any assignment satisfying (13.2) must have
a; = 1 for some j and thus satisfies F;. Assume to the contrary that the assignment
gives all the a,,’s the value 0. Then since the first clause has value 1, it follows that
y1 = L. Since the second clause has value 1, y, must be 1, and by induction, y,, = 1
for all m. But then the last clause would have the value 0, contradicting the
assumption that (13.2) is satisfied. Thus any assignment that satisfies (13.2) also
satisfies F;.

The only other alterations necessary are when F; consists of one or two
literals. In the latter case replace a; v a, by (ot; v oy v y) A (@ v, v ), where yis a
new variable, and in the former case an introduction of two new variables suffices.
Thus E can be converted to a 3-CNF expression that is satisfiable if and only if E
is satisfiable. The transformation is easily accomplished in log-space. We have
thus a log-space reduction of L, to Ls,, and conclude that L, is NP-
complete. O

The vertex cover problem

It turns out that 3-CNF satisfiability is a convenient problem to reduce to other
problems in order to show them NP-complete, just as Post’s correspondence
problem is useful for showing other problems undecidable. Another NP-complete
problem that is often easy to reduce to other problems is the vertex cover problem.
Let G = (V, E) be an (undirected) graph with set of vertices V' and edges E. A
subset 4 < V is said to be a vertex cover of G if for every edge (v, w) in E, at least
one of v or wis in A. The vertex cover problem is: Given a graph G and integer k,
does G have a vertex cover of size k or less?

We may represent this problem as a language L,., consisting of strings of the
form: k in binary, followed by a marker, followed by the list of vertices, where v; is
represented by v followed by i in binary, and a list of edges, where (v;, v;) is
represented by the codes for v; and v; surrounded by parentheses. L, consists of all
such strings representing k and G, such that G has a vertex cover of size k or less.

Theorem 13.4 L, the vertex cover problem, is NP-complete.

Proof To show L, in A2, guess a subset of k vertices and check that it covers
all edges. This may be done in time proportional to the square of the length of the
problem representation. L, is shown to be NP-complete by reducing 3-CNF
satisfiability to L,..

Let F=F,AF,n---AF, be an expression in 3-CNF, where each F; is a
clause of the form (a;; v a;; v a;3), €ach a;; being a literal. We construct an un-
directed graph G = (V, E) whose vertices are pairs of integers (i, j), 1 <i<g,
I <j < 3. The vertex (i, j) represents the jth literal of the ith clause. The edges of
the graph are

1) [ ), (i, k)] provided j # k, and
2) [, j), (k, o)) if ®yj = 10y
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Each pair of vertices corresponding to the same clause are connected by an edge in
(1). Each pair of vertices corresponding to a literal and its complement are con-
nected by an edge in (2).

G has been constructed so that it has a vertex cover of size 2q if and only if F is
satisfiable. To see this, assume F is satisfiable and fix an assignment satisfying F.
Each clause must have a literal whose value is 1. Select one such literal for each
clause. Delete the g vertices corresponding to these literals from V. The remaining
vertices form a vertex cover of size 2q. Clearly for each i, only one vertex of the
form (i, j) is missing from the cover, and hence each edge in (1) is incident upont
at least one vertex in the cover. Since edges in (2) are incident upon two vertices
corresponding to some literal and its complement, and since we could not have
deleted both a literal and its complement, one or the other of these vertices is in
the cover. Thus we indeed have a cover of size 2g.

Conversely, assume we have a vertex cover of size 2q. For each i the cover
must contain all but one vertex of the form (i, j), for if two such vertices were
missing, an edge [(i, j), (i, k)] would not be incident upon any vertex in the cover.
For each i assign value 1 to the literal a;; corresponding to the vertex (i, j) not in
the cover. There can be no conflict, because two vertices not in the cover cannot
correspond to a literal and its complement, else there would be an edge in group
(2) not incident upon any vertex of the cover. For this assignment F has value 1.
Thus F is satisfiable. The reduction is easily accomplished in log-space. We can
essentially use the variable names in the formula F as the vertices of G, appending
two bits for the j-component in vertex (i, j). Edges of type (1) are generated
directly from the clauses, while those of type (2) require two counters to consider
all pairs of literals. Thus we conclude that L, is NP-complete. O

Example 13.2 Consider the expression
F=(x;vXVX3)A (X VX VX )A (X3 v X3V Xs)A (X3 V Xy v Xs)

The construction of Theorem 13.4 yields the graph of Fig. 13.2. x, = 1, x, = 1,
x3 = 1, x4 = O satisfies F and corresponds to the vertex cover [1, 2], [1, 3], [2, 1},
[2, 3], [3, 1], [3, 3], [4, 1], and [4, 3].

The Hamilton circuit problem

The Hamilton circuit problem is: Given a graph G, does G have a path that visits
each vertex exactly once and returns to its starting point? The directed Hamilton
circuit problem is the analogous problem for directed graphs. We represent these
problems as languages L, and Ly, by encoding graphs as in the vertex cover
problem.

+ An edge (v, w) is incident upon v and w and no other vertices.



13.2 [ SOME NP-COMPLETE PROBLEMS 333

Fig. 132 Graph constructed by Theorem 13.4.
Double circles indicate vertices in set cover.

Theorem 13.5 L, the directed Hamilton circuit problem, is NP-complete.

Proof To show Lg, in A", guess a list of arcs and verify that the arcs form a
simple cyclet through all the vertices. To show L, is NP-complete, we reduce
3-CNF satisfiability to Ly,.

Let F=F,AF,A---AF, be an expression in 3-CNF, where each F; is a
clause of the form (a;, v a;, v a;3), each a;; being a literal. Let x,, ..., x, be the
variables of F. We construct a directed graph G that is composed of two types of
subgraphs. For each variable x; there is a subgraph H; of the form shown in Fig.
13.3(a), where m; is the larger of the number of occurrences of x; and X; in F. The
H;’s are connected in a cycle, as shown in Fig. 13.3(b). That is, there are arcs from
d;to a;,, for 1 <i<nand an arc from d, to a,.

Suppose we had a Hamilton circuit for the graph of Fig. 13.3(b). We may as
well suppose it starts at a,. If it goes next to b,,, we claim it must then go to ¢,
else ¢,, could never appear on the cycle. In proof, note that both predecessors of
¢,o are already on the cycle, and for the cycle to later reach ¢,, it would have to
repeat a vertex. (This argument about Hamilton circuits occurs frequently in the
proof. We shall simply say that a vertex like ¢,, “would become inaccessible.”)
Similarly, we may argue that a Hamilton circuit that begins a,, b,, must continue
Ciosb11s €115 12, €12, - If the circuit begins a,, ¢, then it descends the ladder of
Fig. 13.3(a) in the opposite way, continuing b, ¢, ¢y, by, €y 5, ... Likewise we may
argue that when the circuit enters each H; in turn it may go from g; to either b;, or
¢;o, but then its path through H; is fixed; in the former case it descends by the arcs
¢ij— bi j+ 1, and in the latter case by the arcs b;; — ¢; ;4 - In what follows, it helps
to think of the choice to go from g; to b,, as making x; true, while the opposite
choice makes x; false. With this in mind, observe that the graph of Fig. 13.3(b) has

+ A simple cycle has no repeated vertex.
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Fig. 13.3 Graphs concerned with directed Hamilton circuits.

exactly 2" Hamilton circuits that correspond in a natural way to the 2" assign-
ments to the variables of F.

For each clause F; we introduce a subgraph I}, shown in Fig. 13.3(c). I; has
the properties that if a Hamilton circuit enters it at r;, it must leave at uj; if it
enters at s;, it must leave at v;; and if it enters at t;, it must leave at w;. In proof,
suppose by symmetry that the circuit enters I; at r;.

case 1 The next two vertices on the circuit are s; and ¢;. Then the circuit must
continue with wj, and if it leaves at w; or v}, u; is inaccessible. Thus in this case 1t
leaves at u;.
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case 2 The next two vertices on the circuit are s; and v;. If the circuit does not
next go to u;, then u; will be inaccessible. If after u; it goes to w;, vertex t; cannot
appear on the circuit because its successors are already on the circuit. Thus in this
case the circuit also leaves by u;.

CASE 3 The circuit goes directly to u;. If it next goes to w;, the circuit cannot
include t;, because its successors are already used. So again it must leave by u;.

Observe that the above argument holds even though the circuit may enter I;
more than once. Finally, the graph I; has the additional property that entering I;
atr;, s;, or t;, it can traverse all six vertices before exiting.

To complete the construction of the graph, connect the I}s to the H/’s as
follows. Suppose the first term in F; is x;. Then pick some c;,, that has not yet been
connected to any I, and introduce an arc from ¢;, to r; and from u; to b; . ,. If the
first term is X;, pick an unused b;, and introduce arcs b;, — r; and u; - ¢; 1.
Make analogous connections with s; and v; for the second term of Fj, and analo-
gous connections with t; and w; for the third term. Each H; was chosen sufficiently
long that enough pairs of b;;’s and ¢;;’s are available to make all the connections.

If the expression F is satisfiable, we can find a Hamilton circuit for the graph
as follows. Let the circuit go from a; to b, if x; is true in the satisfying assignment,
and from g; to ¢;, otherwise. Then, ignoring the Is, we have a unique Hamilton
circuit for the subgraph of Fig. 13.3(b). Now, whenever the constructed circuit
uses an arc by, — ¢;x4+q OF ¢y — by, and by or c;, respectively, has an arc to an
I; subgraph that has not yet been visited, visit all six vertices of I;, emerging at
Cix+1 OF biyyy, respectively. The fact that F is satisfiable implies that we can
traverse I; for all j.

Conversely, we must show that the existence of a Hamilton circuit implies F is
satisfiable. Recall that in any Hamilton circuit an I; entered at r;, s;, or t; must be
left at u;, vj, or w;, respectively. Thus as far as paths through the H/s are con-
cerned, connections to an /; look like arcs in parallel with an arc b, — ¢; ., or
Cix = biy 41 If excursions to the I’s are ignored, it follows that the circuit must
traverse the H/’s in one of the 2" ways which are possible without the I}/s; that is, it
may follow the arc a; — b;, or a; — ¢;, for 1 < i < n. Each set of choices determines
a truth assignment for the x;’s. If one set of choices yields a Hamilton circuit,
including the I}s, then the assignment must satisfy all the clauses. For example, if
we reach I; from b, in the circuit, then X; is a term in F;, and it must be that the
circuit goes from q; to ¢;o, which corresponds to the choice x; = 0. Note that if the
circuit goes from q; to b;y, then it must traverse b, , , before ¢; ;. , and we could
not traverse I; between b, and ¢;.y, as b;y,, could never be included in
the circuit.

As a last remark, we must prove we have a log-space reduction. Given F, we
can list the vertices and arcs of H; simply by counting occurrences of x; and x;. We
can list the connections between the H’s and I/’s easily as well. Given a term like
x; in F;, we can find a free pair of vertices in H; to connect to I; by counting
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occurrences of x; in Fy, F,, ..., F;_;. As no count gets above the number of
variables or clauses, log n space is sufficient, where n is the length of F. O

Example 13.3 Let F be
(.xl VXZVX:;)/\(il V.)-C2VX3).

The graph constructed from F by Theorem 13.5 is shown in Fig. 13.4. A Hamilton
circuit corresponding to the assignment x; = 1, x, = 0, x; = 0 is drawn in heavy
lines.

Finally we show that the Hamilton circuit problem is NP-complete by reduc-
ing the directed Hamilton circuit problem to it.

Theorem 13.6 L,, the Hamilton circuit problem for undirected graphs, is NP-
complete.

Proof To show that L,, is in 4", guess a list of the edges and verify that they
form a Hamilton circuit. To show L, NP-complete we reduce L,, to it. Let
G = (V, E) be a directed graph. Construct an undirected graph G’ with vertices v,
v;, and v, for each v in V, and edges

1) (vo, v;) for each vin V,
2) (vy, v) foreachvin V,
3) (v4, wo) if and only if v — w is an arc in E.

Each vertex in V has been expanded into three vertices. Vertices with subscript 1
have only two edges, and since a Hamilton circuit must visit all vertices, the
subscript of the vertices in any Hamilton circuit of G’ must be in the order 0, 1,2,
0, I, ... or its reverse. Assume the order is 0, 1, 2, ... Then the edges whose
subscript goes from 2 to 0 correspond to a Hamilton circuit in G. Conversely, a
Hamilton circuit in G may be converted to a Hamilton circuit in G’ by replacing
an arc v — w by the path from v, to v, to v, to w,. Thus G has a Hamilton circuit
if and only if G has a Hamilton circuit. The reduction of G to G is easily accom-
plished in log-space. Thus we conclude that L, is NP-complete. O

Integer linear programming

Most known NP-complete problems are easily shown to be in .42, and only the
reduction from a known NP-complete problem is difficult. We shall now give an
example of a problem where the opposite is the case. It is easy to prove that
integer linear programming is NP-hard but difficult to show it is in /2. The
integer linear programming problem is: Given an m x n matrix of integers 4 and a
column vector b of n integers, does there exist a column vector of integers x such
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Fig. 13.4 Graph constructed for Example 13.3.
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that Ax > b? The reader may formalize this problem as a language in an obvious
way, where the words of the language are the elements of A and b written in
binary.

Lemma 13.4 Integer linear programming is NP-hard.

Proof We reduce 3-CNF satisfiability to integer linear programming. Let
E=FyAF,n---AF, be an expression in 3-CNF, and let x,, x,, ..., x, be the
variables of E. The matrix A will have a column for each literal x;orx;, 1 <i < n.
We may thus view the inequality Ax > b as a set of linear inequalities among the
literals. For each i, 1 <i < n, we have the inequalities

X+ X = 1, x; =0,
—x; — X, = —1, Xx; >0,

which has the effect of saying that one of x; and X; is 0, the other is 1. For each
clause a, v a, v a3, we have the inequality

oy + o, +az > 1,

which says that at least one literal in each clause has value 1. It is obvious that A
and b can be constructed in log-space and the inequalities are all satisfied if and
only if E is satisfiable. Thus linear integer programming is NP-hard. O

To show integer linear programming is in .4 &, we may guess a vector X and
check that Ax > b. However, if the smallest solution has elements that are too
large, we may not be able to write x in polynomial time. The difficulty is to show
that the elements of x need not be too large, and for this we need some concepts
from linear algebra, specifically determinants of square matrices, the rank of a
matrix, linear independence of vectors, and Cramer’s rule for solving simultaneous
linear equations, with all of which we expect the reader to be familiar.

In what follows, we assume matrix 4 and vector b form an instance of the
integer linear programming problem and that 4 has m rows and n columns. Let ¢
be the magnitude of the largest element of A or b. Note that the number of bits
needed to write out A and b is at least mn + log,a, and we shall use this quantity
as a lower bound on the input size; our nondeterministic solution finder will work
in NTIME(p(mn + log,a)) for some polynomial p. Further, we define a;, for
1 < i < m, to be the vector of length n consisting of the ith row of A. We let b; be
the ith element of b and we let x = (x,, x5, ..., x,) be a vector of unknowns. We
use |i| for the magnitude of integer i and det B for the determinant of matrix B. A
series of technical lemmas is needed.

Lemma 135 If B is a square submatrix of A, then |det B| < (ag)?, where
g = max (m, n).

Proof Recall that the determinant of a k x k matrix is the sum or difference of k!
terms, each of which is the product of k elements. Therefore, if B is a k X k
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submatrix, klo* is an upper bound on |det B|. As k! < k* and k < g, we have our
lemma. L 0O

Lemma 13.6 Let A have rank r.T If r < n, then there is an integer vector z = (z,,
Z3, ..., Z,), Z N0t identically zero, such that 4z = 0 (0 is a vector of all 0’s) and no
z;j exceeds (xg)*? in magnitude, where g = max (m, n).

Proof Assume without loss of generality that B, the r x r submatrix of A4 in the
upper left corner, has a nonzero determinant. Let C be the first r rows of 4 and let
D be the last m — r rows of A. As any r + 1 rows of A are linearly dependent, and
the rows of C are linearly independent (because B has a nonzero determinant),
each row of D can be expressed as a linear combination of rows of C. That is,
D = EC for some (m — r) x r matrix E. Then Az =0 if and only if Cz = 0 and
ECz = 0. It suffices, therefore, to show that we can make Cz = 0. If we choose
z,=—1,and z,,,=2,,,="=2,_,=0, then Cz=0 if and only if By = w,
where y is the vector (z,, z,, ..., z,) and w is the nth column of C. By Cramer’s rule,
By = w is satisfied if we take z; = det B;/det B, where B; is B with the ith column
replaced by w. By Lemma 13.5, these determinants do not exceed (xg)? in magni-
tude. The resulting z may not have integer components, but if we multiply all
components by det B, they will be integers, and will still satisfy Az = 0. When we
do so, z, = —det B; the magnitudes of the first r components of z do not exceed
((xg)*)* = (xq)*9, and components r + 1 through n — 1 are 0. O

It follows that the solution z can be written with a number of bits that is at
most the second power of mn + log, «, the size of the problem statement.

Lemma 13.7 Let A be a matrix with at least one nonzero element. If there is a
solution to Ax > b, x > 0, then there is a solution in which for some i, b; < a;x <
b; + a, where o is the magnitude of the largest element of A.

Proof Let x, be a solution to Ax > b. Suppose a;x, > b; + « for all i. Adding or
subtracting 1 from some component of x, must reduce some product ax,.
Furthermore, no product can decrease by more than «. Thus the new x is also a
solution. The process cannot be repeated indefinitely without obtaining a solution
x for which there is an i such that b; < ax < b, + a. O

Theorem 13.7 Integer linear programming is NP-complete.

Proof By Lemma 13.4 we have to show only that the problem is in . ¥'#. We
begin by guessing the signs of the x;’s in some hypothetical solution and adding n
constraints x; < (=)0 depending on the sign guessed. Then guess a row i and a
constant ¢; in the range b; < ¢; < b; + a such that in some solution x,, we have
a,X, = ¢;. Now suppose that after reordering rows if necessary, we have correctly

t Recall that the rank of r is equivalently defined as the maximum number of linearly independent
rows, the maximum number of linearly independent columns, or the size of the largest square subma-
trix with a nonzero determinant.
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guessed ¢y, ¢,, ..., ¢, such that
1) b; < ¢; < b; + (ag)***?, and
2) Ax > b has a nonnegative integer solution if and only if
ax =c, 1<i<k,
ax > b;, k<i<m,
has such a solution.
Let A, be the first k rows of 4, and let ¢ be the vector (c, ¢, ..., ¢)-

cAasE 1 The rank of A, is less than n. By Lemma 13.6 there is an integer vector z,
z # 0, none of whose components has a magnitude greater than (xq)*9, such that
A,z = 0. Therefore, if 4,x, = ¢, it follows that A,(x, + dz) = ¢ for any integer d. If
it is also true that a;x, > b; + (xq)*9** for all i > k, then we may repeatedly add or
subtract 1 from d until for some j > k, aj(x, + dz) drops below b; + (ag)***".
Since z has some nonzero component, the row a, [corresponding to a constraint
x; < (>)0] that is all zero except for a one in that component, must have / > k.
Thus some aj(x, + dz) for j > k must eventually drop below b; + (xq)***". Since
each component of z is bounded in magnitude by (xq)?*%, changing d by 1 cannot
change any aj(x, + dz) by more than an(xq)??, which is no more than (ag)***".
Therefore aj(x, + dz) > b;. By reordering rows, we may assume j =k + 1 and
repeat the above process for k + 1 in place of k.

caSE 2 The rank of A, is n. In this case, there is a unique x satisfying 4,x = ¢. By
Cramer’s rule. the components of x are ratios of two determinants whose magni-
tudes do not exceed g% + (aq)*?*!)a™ !, which is less than (2aq)*?*'. We may
check whether this x consists only of integers and satisfies a;x > b; for j > k.

The nondeterministic process of guessing ¢;’s repeats at most n times, and for
any sequence of choices requires a number of arithmetic steps that is polynomial
in g [since Cramer’s rule can be applied in O(r*) arithmetic steps to r x r matrices]
applied to integers whose length in binary is polynomial in ag. The arithmetic
steps that are multiplication or division of integers can be performed in time
proportional to the square of the length of the integers in binaryt and addition
and subtraction can be performed in linear time. Thus the entire process takes
time that is polynomial in the input length, since that length is at least mn[-;I
log, .

Other NP-complete problems

There is a wide variety of other known NP-complete problems. We shall list some
of them here.

+ Actually in considerably less time (see Aho, Hopcroft, and Ullman [1974]), although this is of no
importance here.
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1) The Chromatic Number Problem. Given a graph G and an integer k, can G be
colored with k colors so that no two adjacent vertices are the same color?

2) The Traveling Salesman Problem. Given a complete graph with weights on the
edges, what is the Hamilton circuit of minimum weight? To express this
problem as a language, we require the weights to be integers and ask whether
there is a Hamilton circuit of weight k or less. This problem is NP-complete
even if we restrict the weights to 0 and 1, when it becomes exactly the Hamil-
ton circuit problem.

3) The Exact Cover Problem. Given a collection of sets S,, S5, ..., S, all being
subsets of some set U, is there a subcollection whose union is U such that each
pair of sets in the subcollection is disjoint?

4) The Partition Problem. Given a list of integers iy, i,, ..., i,, does there exist a
subset whose sum is exactly 3(i; + i, + --- + i,). Note that this problem
appears to be in 2 until we remember that the length of an instance is not
i, + i, + - + i, but the sum of the lengths of the i;’s written in binary or
some other fixed base.

Among the NP-complete problems are many, including the ones mentioned
in this section, for which serious effort has been expended on finding polynomial-
time algorithms. Since either all or none of the NP-complete problems are in 2,
and so far none have been found to be in &, it is natural to conjecture that none
are in 2. More importantly, if one is faced with an NP-complete problem to solve,
it is questionable whether one should even bother to look for a polynomial-time
algorithm. We believe one is much better off looking for heuristics that work well
on the particular kinds of instances that one is likely to encounter.

Extended significance of /VP-completeness

We have inadvertently implied that the only issue regarding NP-complete prob-
lems was whether they required polynomial or exponential time. In fact, the true
answer could be between these extremes; for example, they could require n'°®"
time. If all languages in .+ "2 are log-space or even polynomial-time reducible to L,
and L is in, say DTIME(n'*®"), then every language in . ¢ is in DTIME(n'°¢")
for some constant c. In general, if L were log-space or polynomial-time complete
for. 1’2, and L were in DTIME(T(n)), then
42 < | DTIME(T(x)).

c>0

13.3 THE CLASS co-.t?

It is unknown whether the class . 1 '# is closed under complementation. Should it
turn out that /"2 is not closed under complementation, then clearly # # .4 2,
since 2 is closed under complementation. There is no NP-complete problem
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whose complement is known to be in A'2. For example, to determine non-
satisfiability for a Boolean formula with n variables, it appears necessary to test
every one of the 2" possible assignments, even if the algorithm is nondeterministic.
In fact if any NP-complete problem is discovered to have its complement in
AP, then /"2 would be closed under complementation, as we show in the next
theorem.

Theorem 13.8 42 is closed under complementation if and only if the comple-
ment of some NP-complete problem is in A 2.

Proof The “only if” part is obvious. For the “if” part let S be an NP-complete
problem, and suppose S were in A2. Since each L in A2 is log-space reducible
to S, each L is log-space reducible to S. Thus L is in A 2. O

We shall define the class co-4"2 to be the set of complements of the lan-
guages in A 2. The relationship between 2, A2, co-A4"%? and PSPACE is shown
in Fig. 13.5, although it is not known for certain that any of the regions except
the one labeled ¢ are nonempty.

PSPACE

Fig. 13.5 Relations among some language classes.

The problem of primality

It is interesting to consider a problem in ..# ¢ such as “nonprimeness” for which
there is no known polynomial time algorithmt and furthermore which is not
known to be NP-complete.] To test an integer to see if it is not a prime, one
simply guesses a divisor and checks. The interesting observation is that the com-
plementary problem is in .#'2, which suggests that there may be sets in the
intersection of #°# and co-A4'Z that are not in 2.

We now consider a nondeterministic polynomial-time algorithm for testing
whether an integer is prime.

Lemma 13.8 Let x and y be integers, with 0 < x, y < p. Then
1) x + y (mod p) can be computed in time O(log p);

+ Although Miller [1976] presents strong evidence that one exists.
+ This is another problem that appears to be in 2 until one remembers that the size of input p is 1082 P,
not p itself.
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2) xy (mod p) can be computed in time 0(log?p);
3) x” (mod p) can be computed in time O(log>p).

Proof (1) and (2) are obvious since an integer mod p requires only log p bits. For
(3) compute x” by repeated squaring to get x2, x* x%, ..., x* mod p, where
i = |log, y], then multiply the appropriate powers of x to get x’. |

We shall, in what follows, make use of Fermat’s theorem: p > 2 is a prime
if and only if there exists an x of order p — 1, that is, for some x, 1 < x < p,

1) x*~! =1 mod p, and
2) x'#1mod p,forl<i<p— 1.

Theorem 13.9 The set of primes is in A 2.

Proof 1f x =2, then x is prime. If x = 1 or x is an even integer greater than 2,
then x is not prime. To determine if p is prime for odd p greater than 2, guess an x,
0 < x < p, and verify that

1) x*"! =1 mod p, and
2) x*#1modpforalli,l<i<p-1

Condition (1) is easily checked in O(logp) steps. We cannot check condition (2)
for each i directly since there are too many i’s. Instead, guess the prime factoriza-
tion of p — 1. Let the factorization be p — 1 = p, p, - p,. Recursively verify that
each p; is a prime. Verify that p — 1 is the product of the p;s. Finally verify
xP~ VP £ 1 mod p. Observe that if X! =1 mod p, then the least i satisfying
x' = 1 mod p must divide p — 1. Furthermore, any multiple of this i, say ai, must
also satisfy x* = 1 mod p. Thus, if there is an i such that x' = 1 mod p, then for
some p;, x?~ Vi = 1 mod p.
Assume that the nondeterministic time to recognize that p is prime is bounded

by c log*p. Then we need only observe that

k k
Y, clogp;+ Y ¢, log’p; + ¢, log’p < c log*p

i=1

i=

for some sufficiently large constant c. O

134 PSPACE-COMPLETE PROBLEMS

We now show several problems to be complete for PSPACE with respect to
polynomial time.

Quantified Boolean formulas

Quantified Boolean formulas (QBF) are built from variables, the operators A, v,
and —, parentheses, and the quantifiers 3 (“there exists”) and V (“for all”). When
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defining the QBF’s recursively, we find it useful simultaneously to define free
occurrences of variables (occurrences to which no quantifier applies), bound
occurrences of variables (occurrences to which a quantifier applies), and the scope
of a quantifier (those occurrences to which the quantifier applies).

1) If x is a variable, then it is a QBF. The occurrence of x is free.

2) If E, and E, are QBF’s, so are —1(E,), (E,) A (E,), and (E,) v (E,). An occur-
rence of x is free or bound, depending on whether the occurrence is free or
bound in E, or E,. Redundant parentheses can be omitted.

3) If E is a QBF, then 3x(E) and Vx(E) are QBF’s. The scopes of 3x and Vx are
all free occurrences of x in E. (Note that there may also be bound occurrences
of x in E; these are not part of the scope.) Free occurrences of x in E are
bound in 3x(E) and Vx(E). All other occurrences of variables in E are free or
bound, depending on whether they are free or bound in E.

A QBF with no free variable has a value of either true or false, which we
denote by the Boolean constants 1 and 0. The value of such a QBF is determined
by replacing each subexpression of the form 3x(E) by E, v E, and each subexpres-
sion of the form Vx(E) by E, A E,, where E, and E, are E with all occurrences of x
in the scope of the quantifier replaced by 0 and 1, respectively. The QBF problem is
to determine whether a QBF with no free variables has value true.

Example 134 vx [Vx[3y(x v y)] A 71x] is a QBF. The scope of the inner Vx is the
first occurrence of x; the scope of the outer Vx is the second occurrence. To test the
truth of the above formula, we must check that Vx[3y(x v y)] A—x is true when
free occurrences of x (that is, the second occurrence only) are set to 0 and also
when set to 1. The first clause Vx(3y(x v y)) is seen to be true, as when this x is 0 or
1 we may choose y = 1 to make x v y true. However, —1x is not made true when
x = 1, so the entire expression is false.

Note a Boolean expression E with variables x,, x,, ..., X, is satisfiable if and
only if the QBF 3x, 3x, -+~ 3x,(E;) is true. Thus the satisfiability problem is a
special case of the problem of whether a QBF is true, which immediately tells us
that the QBF problem is NP-hard. It does not appear that QBF is in .4"2
however.

PSPACE-completeness of the QBF problem
Lemma 139 QBF is in PSPACE.

Proof A simple recursive procedure EVAL can be used to compute the value of a
QBF with no free variables. In fact, EVAL will handle a slightly more general
problem, where the Boolean constants 0 and 1 have been substituted for some
variables. If the QBF consists of a Boolean constant, EVAL returns that constant.
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If the QBF consists of a Boolean operator applied to subformula(s), then EVAL
evaluates the subformulas recursively and then applies the operator to the
result(s). If the QBF is of the form 3x(E) or Vx(E), then EVAL replaces all
occurrences of x in E that are in the scope of the quantifier by 0 to obtain E, and
then evaluates E, recursively. Next EVAL replaces the occurrences of x by 1 to
obtain E,, and evaluates E, recursively. In the case of 3x(E), EVAL returns the
OR of the two results. In the case of Vx(E), EVAL returns the AND.

Since the number of operators plus quantifiers is at most n for a QBF of
length n, the depth of recursion is at most n. Using a Turing tape for the stack of
activation records (as in Theorem 12.11), we see that the tape need never grow
longer than the square of the length of the original QBF. Thus the QBF problem
is in PSPACE. O

Theorem 13.10 The problem of deciding whether a QBF is true is PSPACE
complete.

Proof By Lemma 13.9, we need show only that the language L, of coded true
QBF’s is PSPACE-hard. That is, we must show that every language in PSPACE is
polynomial-time reducible to L.

Let M be a one-tape polynomial space-bounded DTM accepting a language
L. Then for some constant ¢ and polynomial p, M makes no more than ¢?™ moves
on inputs of length n. We can code ID’s of M as in Theorem 13.1, using the
Boolean variables c¢;x, 1 <i < p(n), and X a tape symbol or a composite symbol
representing a symbol and the state of M. Since M is deterministic, there is no need
to code a choice of moves in the composite symbol. Our goal is to construct for
each j, 0 < j < p(n)log ¢, a QBF F(I,, I,), where

1) 1, and I, are each distinct sets of variables, one for each i, | < i < p(n), and
each tape symbol or composite symbol X, analogous to the c;;’s of Theorem
13.1. Say

I, ={cix]1 <i<p(n) and X is such a symbol},
and
I, ={dy|1 <i<p(n) and Y is such a symbol}.

2) FI,,1,)is true ifand only if I, and I, represent ID’s 8, and 8, of M, that is,
for each i, exactly one ¢;y and d,y is true, and §; P>~ §, by a sequence of at
most 2/ moves, where B, = X, X, - X, B =Y, ¥, - Y,,,and X;and ¥,
are the symbols such that ¢, and d,y, are true.

Then given x of length n we may write a QBF
Q, = 3o 3 [[F 105 (I, 1;) AINITIAL(I,) A FINAL(I /)],

where 31, and 31, stand for a collection of existentially quantified variables, one
for each symbol X and integer i, | < i < p(n), as above. INITIAL(I,) is a proposi-
tional formula that says the variables in the set I, represent the initial ID of M
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with input x, and FINAL(I ;) expresses the fact that I , represents an accepting ID
of M. Then Q, is true if and only if x is in L(M). INITIAL and FINAL can be
written in time that is polynomial in n using the techniques of Theorem 13.1.

We now show how to construct, for each j, the formula F j(I 1» 1) The basis,
Jj =0, is easy. Using the technique of Theorem 13.1, we have only to express as a
Boolean formula the facts that

1) I, and I, represent ID’s, say 8, and f,; that is, exactly one variable for each
position in §, and §, is true.

2) Either f, = B, or B, — f,-

For the induction step, we are tempted to write
Fj(llv 12) = (31)[F1— 1(117 I)/\Fj— l(l’ IZ)]

However, if we do so, F; has roughly double the length of F;_,, and the length of
F pmy10g,c Will be at least cP™_ and therefore cannot be written in polynomial time.

Instead we use a trick that enables us to make two uses of an expression like
F;_, in only a small amount (polynomial in n) more space than is required for one
use. The trick is to express that there exist J and K such that if J =1, and K =1

or J =1Iand K =I,, then F;_,(J, K) must be true. The QBF for this is
Fl,, I,)=3[V[EK[(~( =1,AK=1)
A (I =T1AK=1))vF;,_,(J, K)]] (133)

We use expressions like J = I to mean that for each pair of corresponding
variables in the sets J and I, (those representing the same position and symbol),
both are true or both are false. Equation (13.3) states that whenever the pair (J, K)
is either (I,, I) or (I, I,), then F;_(J, K) must be true. This allows us to assert
that both F;_(I,, I} and F;_,(, I,) are true using only one copy of F;_;.
Intuitively, F;_, is used as a “subroutine” that is “called” twice.

The number of symbols in F;, counting any variable as one, is 0(p(n)) plus the
number of symbols in F;_ ;. Since (13.3) introduces 0(p(n)) variables (in the sets I,
J, and K), the number of variables in F; is 0(jp(n)). Thus we can code a variable
with O(log j + log p(n)) bits. It follows by induction on j that F; can be written in
time O(jp(n) (log j + log p(n))). If we let j = p(n) log ¢ and observe that for any
polynomial p(n), log p(n) = O(log n), we see that Q, can be written in 0(p?(n) log 1)
time. Thus there is a polynomial time reduction of L{M) to L. Since M is an
arbitrary polynomial space-bounded TM, we have shown that L, is PSPACE-
complete. O

Context-sensitive recognition

Another PSPACE-complete problem worth noting is: Given a CSG G and a
string w, is w in L(G)? This result is surprising, since the CSL’s occupy the
“bottom” of PSPACE, being exactly NSPACE(n) and contained in DSPACE(n?).
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However, the “padding” technique used in the translation lemma (Lemma 12.2)
makes a proof possible.

To begin, pick a straightforward binary code for grammars as we have done
for Turing machines. Let L be the language consisting of all strings x#w, where x
is the code for a CSG G, and w is a coded string from the input alphabet of G,.
Assume that for a given grammar, all grammar symbols are coded by strings of the
same length. It is easy to design an LBA that, given input x#w, guesses a deriva-
tion in G, such that no sentential form exceeds the length of the string coded by w.
The coded sentential form can be stored on a second track under the cells holding
w. Moves are determined by consulting the x portion of the input (to see how this
may be done it helps to assume the existence of a second tape). We see that L is in
NSPACE(n) and thus in PSPACE.

Theorem 13.11 L, the CSL recognition problem, is PSPACE-complete.

Proof We already know L to be in PSPACE. Let L be an arbitrary member of
PSPACE; say L is accepted by M, a DTM of space complexity p(n). Define L to be
{y$#?*]y is in L}, where $ is a new symbol. It is easy to check that L is in
DSPACE(n) and therefore is a CSL. Let G be a CSG for L, and let x be the binary
encoding of G. Then the polynomial-time mapping that takes y to x#w, where w is
the encoding of y$?"Y is a reduction of L to L, showing L. is PSPACE-
complete. O

135 COMPLETE PROBLEMS FOR # AND NSPACE(LOG n)

It is obvious that DSPACE(log n) € ¢ by Theorem 12.10. Could it be that
#» = DSPACE(log n), or perhaps ¥ < DSPACE(log* n) for some k? Similarly, it
is obvious that DSPACE(log n) < NSPACE(log n). Could these two classes be
equal? If so, then by a translation analogous to Lemma 12.2, it follows that
NSPACE(n) = DSPACE(n), that is, deterministic and nondeterministic CSL’s are
the same.

We shall exhibit a language L, in ¢ such that every language in . is log-space
reducible to L,. Should this language be in DSPACE(log* n) for some k, then
is contained in DSPACE(log* n). Similarly we exhibit an L, in NSPACE(log n)
such that every language in NSPACE(log n) is log-space reducible to L,. Should
L, be in DSPACE(log n), then DSPACE(log n) would equal NSPACE(log n).
There is, of course, no known way to recognize L, in log* n space and no known
way to recognize L, deterministically in log n space.

Languages complete for NSPACE(log n) or for £ are not necessarily hard to
recognize, and in fact, the languages L, and L, are relatively easy. The results of
this section serve merely to reinforce the idea that many complexity classes have
complete problems. They do not suggest intractability the way NP-completeness
or PSPACE-completeness results do.
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Context-free emptiness

Define L, to be the language of coded CFG’s whose languages are empty. L, is
the language L, alluded to above. We shall show that £ is log-space reducible to
ch e

Theorem 13.12 L, the emptiness problem for CFG’s, is complete for 2 with
respect to log-space reductions.

Proof We shall reduce an arbitrary language L in & to L. using only log n
space. Specifically we shall design a log-space transducer M,. Given input x of
length n, M, writes a grammar G, such that I(G,) = ¢ if and only if x is in L. Let
M be a p(n) time-bounded TM accepting the complement of L. Since 2 is effec-
tively closed under complementation, we can find M. Intuitively, a derivation of
G, corresponds to a valid computation of M on x. The nonterminals of G, are all
symbols of the form A,;, where

1) X is a tape symbol of M, a pair [qY], where q is a state and Y a tape symbol, or
the marker symbol # used to denote the ends of ID’s;
2) 0<i<p(n)+1;
3) 0 <t < p(n)
The intention is that Ay; % w for some string w if and only if X is the ith symbol of
the ID of M at time t. The symbol S is also a nonterminal of G,; it is the start
symbol.
The productions of G, are:
1) S— Ay, for all i, ¢, and Y, where g, is a final state.

2) Let f(X, Y, Z) be the symbol in position i of the tth ID whenever XYZ
occupies positions i — 1, i, and i + 1 of the (t — 1)th ID. Since M is deter-
ministic, f (X, Y, Z) is a unique symbol and is independent of i and t. Thus for
eachiand 1, 1 <i,t < p(n), and for each triple X, Y, Z with W = (X, Y, Z),
we have the production

Awie = Axicri-1Avi-1Aziv10-1-

3) Ayoy—>cand A, L4y, — cforall e
4) Ayio— ¢ for 1 <i < p(n) if and only if the ith symbol of the initial ID with
input x is X.
Any easy induction on t shows that for 1 < i < p(n), Ay, % ¢ if and only if W
is the ith symbol of the ID at time t. Of course, no terminal string but ¢ is ever
derived from any nonterminal.

Basis The basis, t = 0, is immediate from rule (4).

Induction If Ay, % ¢, then by rule (2) it must be that for some X, Y,and Z, Wis
f(X, Y, Z) and each of Ay, ;, 4, Ayi—1, and Az;,;,-, derive . By the
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inductive hypothesis the symbols in the ID at time t — 1 in positions i — 1, i, and
i+ lare X, Y, and Z, so W is the symbol at position i and time ¢ by the definition
of f.

Conversely, if W is the symbol at position i and time ¢t > 1, then W = f (X, Y,
Z), where X, Y, and Z are the symbols at time ¢t — 1 in positionsi — 1,i,and i + 1.
By the inductive hypothesis, or by rule (3)if i =0 or i = p(n) + 1,

x,
Axi-1-1Avi-1 Aziv1-1 €

Thus by rule (2), Ay, 2 €.

Then by rule (1), S ¢ if and only if M accepts x.

Finally we need show that the productions of G, can be produced by M, with
input x of length n. First of all, recall that log, p(n) < c log, n for some constant c,
since p(n) is a polynomial. Therefore M, can count from i =0 to p(n) in log n
scratch storage. Similarly M, can count from t =0 to p(n) in log n space. The
productions of G, are easily generated by a double loop on i and t.

Now G, is in L, if and only if M does not accept x and hence if and only if x
is in L. Thus L. is complete for £ with respect to log-space reductions. O

The reachability problem

Now we shall give a problem that is complete for NSPACE(log n) with respect to
log-space reductions. The graph reachability problem is, given a directed graph
with vertices {1, 2, ..., n} determine if there is a path from I to n.

Theorem 13.13 The graph reachability problem is log-space complete for
NSPACE(log n) with respect to log-space reductions.

Proof The formalization of this problem as a language is left to the reader. First
we show that the graph reachability problem is in NSPACE(log n). A nondeter-
ministic TM M can guess the path vertex by vertex. M does not store the path, but
instead verifies the path, storing only the vertex currently reached.

Now, given a language L in NSPACE(log n) we reduce it in log n space
deterministically to the language of encoded digraphs for which a path from the
first vertex to the last exists. Let M be a log n space-bounded nondeterministic
offline TM accepting L. An ID of M can be represented by the storage tape
contents, which takes log n space to represent, the storage tape head position and
state, which may be coded with the storage contents via a composite symbol [gX],
and the input head position, which requires log n bits.

We construct a log-space transducer M, that takes input x and produces a
digraph G, with a path from the first to the last vertex if and only if M accepts x.
The vertices of G, are the ID’s of M with input x (but with the input head position,
rather than with x itself) plus a special vertex, the last one, which represents
acceptance. The first vertex is the initial ID with input x. M, uses its log n storage
to cycle through all the ID’s of M. For each ID I, M, positions its input head at
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the correct input position, so it can see the input symbol scanned by M. M, then
generates arcs I — J for all the finite number of J’s such that I can become J by
one move of M. Since M, has [ available on its storage tape, and J can be easily
constructed from I, this generation requires no more than log n space. If I is an
accepting ID, M, generates the arc I — v, where v is the special vertex.

It is straightforward to check that there is a path in G, from the initial ID to v
if and only if M accepts x. Thus each language in NSPACE(log n) is log-space
reducible to the reachability problem. We conclude that the reachability problem
is complete for NSPACE(log n) with respect to log-space reductions. O

136 SOME PROVABLY INTRACTABLE PROBLEMS

Up to now we have strongly implied that certain problems require exponential
time by proving them NP-complete or PSPACE-complete. We shall now prove
that two problems actually require exponential time. In one case, we reduce to our
problem a language which, by the space hierarchy theorem, is known to require
exponential space and hence exponential time. In the second case, we show how to
reduce to our problem all languages in nondeterministic exponential time and
then argue by a nondeterministic time hierarchy theorem [Cook 1973a] that
among them there must be one that really requires, say, 2" space.

We shall now consider a problem about regular expressions that is somewhat
contrived so that (a) at least 2'%" space is required to solve it and (b) this
requirement can be readily proved. After that, we consider a problem in logic that
is not contrived in that it had been considered long before its complexity was
analyzed, and where proof of exponentiality is far from straightforward.

Regular expressions with exponentiation

Let us consider regular expressions over an alphabet assumed for convenience not
to contain the symbols 7, 0, or 1. Let r T i stand for the regular expression rr - r (i
times), where i is written in binary. The expression r may include the 1 (exponen-
tiation) operator. For example, (a T 11 + b 7 11) T 10 stands for

{aaaaaa, aaabbb, bbbaaa, bbbbbb}.

We assume 1 has higher precedence than the other operators. The problem we
shall show requiring essentially exponential space, that is, 2P space for some
polynomial p(n), is whether a regular expression with exponentiation denotes all
strings over its alphabet (remember 1, 0, and 1 are used as operators and are not
part of the alphabet). First we give an exponential-space algorithm for the
problem.

Theorem 13.14 The problem whether a regular expression with exponentiation
denotes all strings over its alphabet can be solved in exponential space.
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Proof Given a regular expression of length n, we shall expand the 1’s to obtain an
ordinary regular expression and show that it has length at most n2". Then we shall
convert this expression to an NFA of at most n2"* 2 states and test whether that
NFA accepts Z*. (Note that this latter step must be done without conversion to a
DFA, since the DFA might have 2"2"*” states). To eliminate the 1’s we work from
inside out. We prove by induction on j that an expression with 1’s, having length
m, with j 0’s and 1’s, has an equivalent ordinary regular expression of length at
most m2’.

Basis j = 0. The result is immediate.

Induction Scan the expression r of length m from the left until the first 1 is
encountered. Then scan back until the left argument r; of that 1 is found. We
assume T has highest precedence, so its argument must be a single symbol or be
surrounded by parentheses; hence this extraction is easy. Let the expression be
r=r,r, 1iry.Replace rbyr' =r,r r, --- r, ry, where r, is written i times. By the
inductive hypothesis, r’ has an equivalent ordinary regular expression of length at
most (m + (i — 1)|r, |)2/7'°2" symbols. Since 2/7'°827 = 2¥/i, and since |r,| <m,
we see that

n+ (6= 1) s = DI s

If r is of length n, then surely m = n and j < n, so the equivalent ordinary
regular expression has length at most n2".

Now, using the algorithm of Theorem 2.3, we can produce an equivalent NFA
of at most 4n2" = n2"* 2 states. Nondeterministically guess symbol by symbol an
input a, a, --- that the NFA does not accept. Using n2"* 2 cells we can, after each
guess, compute the set of states entered after the NFA reads the sequence of
symbols guessed so far. The input need not be written down, since we can compute
the set of states entered from this set on any input symbol. If we ever guess an
input sequence on which no accepting state of the NFA is entered, we accept; the
original expression does not denote X*. By Savitch’s theorem we may perform this
process deterministically using space n?4”. It is easy to devise an encoding of the
NFA that can be stored in 0(n>2") cells, since about n bits suffice to code a state,
and the input alphabet is no larger than n. As n24" > n®2", it follows that n*4" is an
upper bound on the required space. O

We shall now provide a lower bound of 2'°®" for some constant ¢ on the
space required for the above problem. Observe that proving a certain amount of
space is required also proves that the same amount of time is required (although
the opposite is not true).

Theorem 13.15 There is a constant ¢ > 0 such that every TM accepting the
language L., of regular expressions with exponentiation that denote £* takes
more than 218" space (and therefore 2¢/'°¢" time) infinitely often.
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Proof Consider an arbitrary 2" space bounded single-tape deterministic TM M.
For each input x of length n, we construct a regular expression with exponentia-
tion E, that denotes £*, where X is the alphabet of E,, if and only if M does not
accept x. We do so by making E, denote all invalid computations of M on x. Let X
consist of all tape symbols of M, the composite symbols [¢X], where q is a state
and X a tape symbol, and the marker symbol #. Assume that 1, 0, and 1 are none
of these symbols.

A string y in X* is not an accepting computation of M on x if and only if one
or more of the following are true.

1) The initial ID is wrong.
2) There is no accepting state.
3) One ID does not follow from the previous by a move of M.

In what follows, we use sets of symbols to represent the regular expression
that is the sum of those symbols. Thus, if £ = {a;, a5, ..., a,}, then we use Z as a
shorthand for the regular expression a, + a, + -+ + a,. Similarly we also use
% — a to stand for the regular expression that is the sum of all the symbols in Z
except a.

A regular expression denoting all strings that do not begin with the initial ID
is given by

START = ¢ + (Z — #)S* + A, + A, + - + A,
+EZT(n+ DE+)T(2"—n—1)E - BZ*

+ X 12"+ )X — #)Z%,
where
A =21 1(2 - [‘1001])2**
and for2 <i<n,
A =Z1iE - ag)z*

The next-to-last term denotes £"* ! followed by up to 2" — n — 1 symbols followed
by anything but a blank, and denotes strings such that some position between
n + 1 and 2" of the first ID does not contain a blank. Since nand 2" — n — 1 are
written in binary, the length of this term is proportional to n. The last term
denotes strings in which the (2" + 1)th symbol is not #. It is also of length
proportional to n. The remaining terms are proportional to log n in length, and
there are n + 3 such terms. Thus the length of the expression is proportional to
n log n. Curiously, the length of the expression denoting false initial ID’s domin-
ates the length of the other terms in E..

A regular expression enforcing the condition that there is no accepting state is
given by

FINISH = (X — {[¢X]|q is a final state})*.

This expression is of constant length depending only on M.
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Finally, let f(X, Y, Z) denote the symbol Z such that if W, X, and Y are at
positions i — 1, i, and i + 1 of one ID, then Z will be at position i of the next ID.
Then let

MOVE= + Z*WXYZI!1(2"-1)Z-f(W, X, Y)£*.
(W,X,Y)
That is, MOVE is the sum, over the finite number of triples (W, X, Y) of symbols
in Z, of those strings with W, X, and Y occupying consecutive positions in an ID
that has a wrong next symbol 2" positions to the right. As the length of each term
is linear in n, the length of MOVE is linear in n.

The desired expression is E, = START + FINISH + MOVE. If M accepts x,
then the accepting computation is not in E,. If some string y is not in E,, then it
must begin #[qoa,]a, *-* a,B*~"#, each ID must follow the previous by one
move of M, and acceptance must occur somewhere along the way. Thus M accepts
x. Therefore E, = X* if and only if M does not accept x.

Now, let M be a Turing machine accepting language L that can be accepted in
2" space but not in 2"/n space. The hierarchy theorem for space assures us that
such an M exists. Suppose there were an S(n) space-bounded TM accepting the set
L., of regular expressions with exponentiation denoting X*, suitably coded so
L., has a finite alphabet. Then we could recognize L as follows.

1) From x of length n, construct E,, whose length is proportional to n log n. We
can construct E_ in space proportional to n log n in an obvious way.

2) Code E, into the alphabet of L,.,. As M has a finite number of symbols, the
length of the coded E, is cn log n for some constant c.

3) In S(cn log n) space, determine whether E, is in L_,,. If so, reject x; if not,
accept x.

The total amount of space is the maximum of n log n and S(cn log n). As no
TM using less than 2"/n space and accepting L exists, it must be that

n log n+ S(cn log n) >2%/n 1o, (13.4)
else L could be accepted in 2"/n space by Lemma 12.3. There exists a constant
d > 0 such that if S(m) were less than 2¢/'°¢™ for all but a finite set of m, then (13.4)

would be false. It follows that S(m) > 2"'°t™ for some constant d and an infinite
number of m’s. O

Corollary L., is complete for exponential space with respect to polynomial-time
reduction.

Proof In Theorem 13.15, we gave a polynomial time reduction to L., that works
for every language L in DSPACE(2"). We could easily have generalized it to
reduce any language in DSPACE(2”""), for polynomial p, to L,.,. O

We should observe that the n log n bound on the length of E, is critical for
Theorem 13.15, although for its corollary we could have allowed the length to be
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any polynomial in |x|. If, for example, we could only prove that |E | < |x/?,
then our lower bound on the space required by L., would have been 2% " instead.

Complexity of first-order theories

Now we shall consider a problem that requires at least 2" time, nondeter-
ministically, and is known to be solvable in exponential space and doubly expon-
ential time. As the problem can also be shown nondeterministic exponential time-
hard with respect to polynomial time reductions, proving a better lower bound
regarding the amount of nondeterministic time would improve on Theorem 12.10,
which is most unlikely.

A first-order language consists of a domain (for example, the nonnegative
integers), a set of operations (for example, +, *) a set of predicates (for example, =,
<), a set of constants chosen from the domain, and a set of axioms defining the
meaning of the operators and predicates. For each theory we can define the
language of true expressions over the constants, operators, predicates, variables,
the logical connectives, A, v, and —, and the quantifiers 3 and V.

Example 13.5 (N, +, %, =, <, 0, 1), where N stands for the nonnegative integers,
is known as number theory. Godel’s famous incompleteness theorem states that
the language of true statements in number theory is undecidable. While Godel’s
result predated Turing machines, it is not hard to show his result. If a TM M
accepts when started on blank tape, it does so by a computation in which no ID is
longer than some constant m. We may treat an integer i, in binary, as a computa-
tion of M with ID’s of length m.

The statement that M accepts ¢, which is known to be undecidable, can be
expressed as 3idm(E,(i)), where E,, is a predicate that is true if and only if i is the
binary encoding of a computation leading to acceptance of ¢ with no ID longer
than m. (Some of the details are provided in Exercise 13.37.) Thus, number theory
is an undecidable theory.

There are a number of decidable theories known. For example, (R, +, =, <,
0, 1), the theory of reals with addition, is decidable, and we shall show that it
inherently requires nondeterministic exponential time. If the reals are replaced by
the rationals, we get the same true statements, since without multiplication, it is
impossible to find a statement like Ix(x * x = 2) that is true for the reals but not
the rationals. The theory of integers with addition (Z, +, =, <, 0, 1), called
Presburger arithmetic, is decidable, and is known to require doubly exponential
nondeterministic time. That is, 227 is a lower bound on the nondeterministic time
complexity of Presburger arithmetic.

Example 13.6 Before proceeding, let us consider a number of examples in the
theory of reals with addition. Vx3y(y = x + 1) is true: it says that x + 1 is a real
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whenever x is.
VxVy[x =yvIz(x < zAz < y)vI(y <zAz <x)]

is also true: it states that between two different reals we can find a third real; that
is, the reals are dense. The statement
PVx(x <yvx=y)

is false, since for every real number y there is a greater real. Note that we have not
told how to decide whether a statement is true; the decision depends on knowing
the properties of real numbers, with which we assume the reader is familiar.

A decision procedure for the reals with addition

We shall begin our study of the reals with addition by giving a decision procedure
that requires exponential space and doubly exponential time. To begin, let us put
our given statement in prenex normal form, where all quantifiers apply to the
whole expression. It is easy to obtain an expression in this form if we first rename
quantified variables so they are unique, and then apply the identities

—(Vx(E)) = Ix(mE)  Vx(E,)vE,=Vx(E;vE,)

and four similar rules obtained from these by interchanging V and 3 and/or
replacing v by A. This process does not more than double the length of the
expression; the only symbols that might be added to the expression are a pair
of parentheses per quantifier.f Now we have a formula

Q1x1Q2x2“'memF(xl? x2""’xm)7 (135)

where the Q;’s are quantifiers, and the formula F has no quantifiers. F is therefore
a Boolean expression whose operands are atoms, an atom being a Boolean con-
stant or an expression of the form E, op E,, where opis = or < and E, and E,
are sums of variables and the constants 0 and 1. We know F is of this form because
no other combination of operators make sense. That is, + can be applied only to
variables and constants, < and = relate only arithmetic expressions, and the
Boolean operators can be applied sensibly only to expressions that have true/false
as possible values.

To determine the truth or falsehood of (13.5) we repeatedly substitute for the
innermost quantifier a bounded quantification, which is the logical “or” (in place
of 3) or “and” (for V) of a large but finite number of terms. Suppose in (13.5) we fix
the values of x,, x5, ..., x,,_,. Every atom involving x,, can be put in the form

+ Technically the renaming of variables may increase the length of the formula by a log n factor when
we encode in a fixed alphabet. However, the complexity depends on the original number of symbols
and not the length of the encoded string.
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X,, op t, where op is <, =, or > and t is of the form

m—1

co+ Y X,

i=1
where the ¢;’s are rationals. Suppose all these atoms are x,, op t;, 1 <i < k, where
t; <t; <+ <t for the given values of x,, ..., x,,_ ;. For any value of x,, in the
range t; < x,, < ;4 , €ach atom has the same truth value. Thus the truth of (13.5)
is independent of the actual value of x,, in this range. This leads us to the observa-
tion that the t;’s partition the real line into a finite number of segments, and the
truth of (13.5) depends only on the segment in which x,, lies, and not on the actual
value of x,,. Thus we can test (13.5) by trying one value of x,, from each of a finite
number of regions as suggested in Fig. 13.6.

(I-.+I) Vg T

// N

12 Iy

Flg. 13.6 Representatwe values of x,,.

As the values of x, ..., x,,_, will vary, we do not really know the order of the
t’s. However, trying x, =t; for each i, x, =3(t;+t;) for each i+ j, and
= +o00,T we know that no matter what the order of the t,’s, we are sure to have
a representative x,, in each interval of Fig. 13.6 and also at the t;’s themselves,
where atoms with the = operator may become true.
It follows that if Q,, = 3, then 3x, F(x,, ..., x,,) may be replaced by

F'(Xgy .oy Xppoy) = \/ F(xy, ..\ X,), (13.6)

Xm=1, 01
Xpm=(1/2)(1,+1))
or xm=* o0

that is, by the logical “or” of k(k + 1)/2 + 2 terms, each of which is F with a
substitution for x,,. If Q,, =V, a similar replacement, with A substituting for v,
may be made.

If F has k atoms, F” has k[k(k + 1)/2 + 2] atoms, which is at most k> atoms for
k > 3. Also, if the coefficients in the atoms of F are each the ratio of integers of at
most r bits each, then after grouping terms, solving for x,,, and computing the
average of two t;’s, we find that the coefficients in the atoms of F’ will be ratios of
integers with no more than 4r + 1 bits. This follows since if @, b, ¢, and d are r-bit
integers,

ac ac
bd  bd
+1f x,, = + oo, then x,, =1t and x,, <t are false, and x,, > t is true independently of t. If x,, = —©

analogous simplifications occur.
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is the ratio of integers with at most 2r bits, and
a ¢ ad+bc
— i —_——
b—d bd
is the ratio of a (2r + 1)-bit integer and a 2r-bit integer. For r > 1, then, the
coefficients in F’ are no more than five times the length of the coefficients in F.
If we repeat the above process to eliminate all the quantifiers and variables,
we eventually produce a formula with only logical operators, =, <, and con-

stants. The constants are ratios of integers with at most 5™r bits. The number of
atoms is at most

(- () .. =k
m times

As each atom is a relation between constants of 5r bits, and k, m, and r are less
than n, the length of the expression is at most 227 for some constant ¢ (note that
n¥" < 22”). We may evaluate an atom of the form a/b < ¢/d by computing ad — bc
and comparing it with 0. Thus the entire final expression may be evaluated in the
square of its length. Hence our decision procedure takes 22“ time for some
constant d.

The procedure as we have given it also takes doubly exponential space.
However, we can reduce the space to a single exponential by evaluating F
recursively. We have already seen that we need consider only a finite set of values
for each x;. The values for x; are given by a formula of the form ao + Y 2} a;x;,
where the a;s are rationals that are ratios of 5"77/*! r-bit integers, where r is the
number of bits in the largest constant of the original formula, F; note r < log n.
Thus values for x, are rationals that are at most ratios of 5"r-bit integers, the
values for x, are ratios of at most 5™* *r-bit integers, etc. Thus we need only cycle
through values for each x; that are at most 52™r bits. We use a recursive procedure
EVAL(G) that determines whether G is true when the variables take on the values
+ 0o and any ratio of 52™r-bit integers.

If G has no quantifiers, then it consists only of arithmetic and logical relations
among rationals, so its truth can be determined directly. If G = Vx(G’), EVAL(G)
calls EVAL(G") for all G” formed from G’ by replacing x by +oco or a ratio of
52mr-bit integers. EVAL(G) is true if EVAL(G") returns true for all these expres-
sions G". If G = 3x(G"), we do the same, but EVAL(G) returns true whenever some
EVAL(G") is true.

It is easy to check that no more than m copies of EVAL are active simultan-
eously. The arguments for the active calls to EVAL can be put on a stack, and this
stack takes O(m5?™r) space. Thus, if F is an expression of length 1, we may evaluate
F in space 2" and time 22* for some constants ¢ and d.

A lower bound

We now show that the theory of reals with addition requires essentially non-
deterministic exponential time. A series of lemmas are needed showing that multi-
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plication and exponentiation by limited size integers can be expressed by short
formulas.

Lemma 13.10 There exists ¢ > 0 such that for each n there is a formula M (x, y,
z) that is true if and only if x is a nonnegative integer strictly less than 22", and
xy = z. Furthermore, |M,(x, y, z)| < c(n + 1), and M,(x, y, z) can be constructed
from »n in time polynomial in n.

Proof For n=0,2% = 2. Thus M(x, y, z) can be expressed as (x = 0 Az = 0)v
(x=1Az=y)

Inductive step: (Construction of M, from M,). Let x be an integer less than
22" There exist integers x,, X, X3, X, < 22" such that x = x, x, + x5 + x,. In
proof, let x;, =x, = [\/;J. Now z = xy can be expressed by z = x,(x,y) +
X3y + x4 y. Thus

My (x, y, 2) = Fuy oo Fus Iy o B [Mi(x,, x5, uy)

AX = Uy + X3+ Xg AM(x2, Y, Ug) AM (x4, Uy, u3) AM(x3, ¥, uy)

AM (x4, y, us) Az =us + Uy + us) (13.7)
That is,
Uy =Xy X5, X =Xx1X, + X3 + X4,
U; = X3y, Uz = X1 X3), Uy = X3y, Us = X4,
and

Z=X1Xy + X3y + X4y

The condition that each x; is an integer less than 22* is enforced by each x; being
the first argument of some M,.

Formula (13.7) has five copies of M, so it appears that M, , , must be at least
five times as long as M,. This would make the length of M, exponential in n, not
linear as we asserted. However, we can use the “trick” of Theorem 13.10to replace
several copies of one predicate by a single copy. That is, we may write

Myoy(x p,2) =3y -+ Fus Ixy -0 3xg
[x=u;+x3+x4A2=u3+us+us

AVFNsYI[—r = x; As = Xy AL =Uy)
AT(r =X, As=yAt=1u,)
A(r=x,As=u; At =u;)
AT(r=X3As=yAt=uy,)
AT(r=Xx,As=yAt=us)

v M(r, s, 1)]],

which has a constant number of symbols more than M, does.
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One minor point is that if we introduce new variable names for each M, we
shall eventually introduce a log n factor into the length of M, since variable
names must be coded in a fixed alphabet in the language of true formulas.
However, the scope rules for quantified formulas allow us to reuse variables
subject to the restriction that the twelve new variables introduced in M, don’t
conflict with the free variables x, y, and z. Thus M, requires only 15 different
variables, and its coded length is proportional to the number of symbols. O

Observe that M, (x, 0, 0) states that x is an integer less than 22" Thus we can
make statements about small integers in the theory of reals with addition by using
very short formulas.

Lemma 13.11 There exists a constant ¢ > 0 such that for every n there is a
formula P,(x, y, z) that is true if and only if x and z are integers in the range 0 < x,
z < 2*" and y* = z. Furthermore |P,| < ¢(n + 1) and P, can be constructed from
n in time polynomial in n.

Proof We construct by induction on k a sequence of formulas E,(x, y, z, 4, v, w)
such that E, has both exponentiation and multiplication built into it. The reason
for doing this is that we wish to express E, in terms of several copies of E,_, and
then use universal quantification to express E, in terms of one copy of E,_ ;. We
could not do this with Py, since a formula for P, involves both P,_, and M, _,.

The formula E,(x, y, z, u, v, w) will be true if and only if x, z, and u are integers,
0<x,2z<2¥ z=y50<u<2?” and uv = w.

Basis For k=0,
Eo=(x=0Az=1)v(x=1Ay=0nAz=0)
vix=1Ay=1Az=1)A My(u, v, w).
Induction To construct E,, ((x, y, z, u, v, w) we can use the fact that
E.(0, 0,0, u, v, w) = M, (u, v, w)
to express the conditions on u, v, and w as in Lemma 13.10. Using several copies of

E,, we may assert that there exist integers x, x,, X3, X4 in the range 0 < x; < 2%
such that

X3 VXA

X=X X, + X3+ X, and ye = (y* )y

Finally, we use the “trick” of Theorem 13.10 to express E,, , in terms of one copy
of E, and a constant number of additional symbols. Last, we may write

P,(x, y, z) = E,(x, , 2, 0, 0, 0).

This asserts that z = y*, and x and z are integers in the range 0 < x, z < 22"
O

To improve readability of what follows, we use the abbreviations 2 for 1 + 1,
2xfor x + x, x<yfor x<yvx=ypandx<y<zfor(x=yvx<y)ay<ez



360 INTRACTABLE PROBLEMS

Expanding an abbreviated formula results in at most multiplying the length by a
constant factor. In addition to the above abbreviations, we shall use constants like
2" and multiplications like ab in formulas. Technically these must be replaced by
introducing an existentially quantified variable, say x, and asserting x = 2" or
x = ab by P,(n, 2, x) or M,(a, b, x). This can also increase the length of the formula
by a constant factor.

We intend to encode Turing machine computations as integers. Let M be a 2"
time-bounded NTM. If the total number of tape symbols, composite symbols, and
the marker # is b, then a computation of M is an integer x in the range
0 < x < b2"*D?+1 Agcerting that an integer is a computation is facilitated by a
predicate that interrogates the ith digit in the b-ary representation of x.

Lemma 13.12 For each n and b there exists a constant ¢, depending only on b,
such that there is a formula D, ,(x, i, j) that is true if and only if x and i are integers,
0<x<b?**1 0<i<2" and x, the (i + 1)th digit of x counting from the
low-order end of the b-ary representation of x, is j. Furthermore |D,,| <
c(n+ 1), and D,, can be constructed from n and b in time polynomial in n
and b.

Proof For each b there exists a constant s such that b?"*V**1 < 22" for all n.
Thus that x is an integer in the correct range can be expressed by Im[P,,((2" + 1)?,
b, m) AO < x < m]. (Recall our previous remarks concerning constants like 2" and
their expansions.) That i is an integer in the range 0 < i < 2" can be expressed by
M, (i, 0, 0)A (0 < i < 2"). Now x in base b has zeros in positions 1, 2, ..., i+ 1
if and only if it is divisible by b'*!. Thus x; = j if and only if there exist integers ¢
and r such that x = gb'* ' + rand jb' <r < (j + 1)b". This fact is easily expressed
using P, and M. O

Theorem 13.16 Any nondeterministic algorithm to decide whether a formula in
the first-order theory of reals with addition is true must, for some constant ¢ > 0,
take 2" steps for an infinite number of n’s.

Proof The proof is quite similar in spirit to that of Theorem 13.1. Let M be an
arbitrary 2"-time bounded NTM. Here ID’s in a computation of M consist of 2"
symbols rather than p(n) as in Theorem 13.1. Let the total number of tape sym-
bols, composite symbols, and #’s be b. Then a computation of M on input of
length n consists of [(2" + 1)? + 1] b-ary digits. We may consider this computation
to be an integer i in the range 0 < i < 22" for some constant s. For convenience,
we take the low-order digits of i to be at the left end of the computation.

Let x be an input of length n to M. We construct a formula F, that is true if
and only if M accepts x. F, is of the form 3i(...), where the formula within the
parentheses asserts i is an accepting computation of x. This formula is analogous
to that in Theorem 13.1. The first n + 1 symbols of the computation are

#[‘107 a, m]az Tt ay,
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assuming that x =a,a,--a,, qo is the initial state, and m is any choice of
first move. To say that the first n + 1 symbols of the computation are correct, we
say that there exist u and j such that the value of u represents #[q,, a;, mla, -*-a
for some m, and i = b"*!j + u for some integer j.

We must write this formula in O(n)-space in time that is polynomial in n. By
induction on k =2, 3, ..., n + 1 we can write a formula C,(v) with free variable v,
which asserts that the value of v is the numerical value of the first k symbols of the
computation. For the basis, k = 2, we simply write a formula

Cyl0)=(v=pivo=p2v-rvo=p,)

where the p;s are the integers represented by #[qo, a;, m] for the finite set of
values of m. For the induction,

Ci(v) = W(Cp— s (W) Ao =bw + a, ),

where g, _; is taken to be the numerical value of tape symbol a, _ ,. To avoid using
n variables to express C, . ;, which would make its length O(n log n), we alternate
between two variables, such as v and w, as we construct C,, Cs, ..., C,, -

The desired formula asserts C,, (1) and i = b"* 'j + u for integer j. The latter
assertion is similar to what was done in Lemma 13.12, and the technique will not
be repeated here.

To express that the initial ID was correct in Theorem 13.1 required asserting
that “approximately” p(n) cells contained the blank symbol. This was accom-
plished by the logical v of p(n) items. We must now assert that about 2" cells
contain the blank symbol, and thus we cannot use a logical v of 2" formulas;
this would be too long a formula. Instead we use the quantifier Vj and assert that
either j is not an integer in the range n + 2 < j < 2" + 1 or the jth symbol is the
blank, which we denote by 0. Thus we write

Vi[—M,,(j, 0,0)v —(n + 2 <j < 2"+ 1)v D, (i, j, 0)].

The formulas that force the last ID to contain a final state and force each ID to
follow from the previous ID because of the choice of move embedded in the
previous ID are similarly translated from the techniques of Theorem 13.1. Having
done this, we have a formula E,, whose length is proportional to n, that is true if
and only if M accepts x.

Suppose M accepts a language L in time 2" not accepted by any 22 time-
bounded NTM. (The existence of such a language follows from the NTIME
hierarchy of Cook [1973a), which we have not proved.) We can recognize L as
follows. Given x of length n, produce the formula E, that is true if and only if x is
in L. Now, if T(n) nondeterministic time suffices to accept the set of true formulas
in the first-order theory of reals with addition, we may determine whether x is in L
in time p(n) + T(cn). Then p(n) + T(cn) > 22 for an infinity of n’s, else by Lemma
12.3 we could recognize L in time at most 2”2, for all n. It follows that T(n) > 2"
i.0. for some d > 0. O
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Corollary The theory of reals with addition is nondeterministic exponential
time-hard with respect to polynomial time reductions.

Proof The proof is an easy generalization of the foregoing reduction of a 2"
nondeterministic time TM. g

137 THE # =.t%? QUESTION FOR TURING MACHINES WITH ORACLES:
LIMITS ON OUR ABILITY TO TELL WHETHER 2 =.1%

The reader should recall from Section 8.9 our discussion of Turing machines with
oracles. These TM’s had associated languages, called oracles, and had special
states in which the membership of the string written to the left of their head could
be tested in one step for membership in the oracle. Any oracle TM can have any
oracle “plugged in,” although its behavior will naturally vary depending on the
oracle chosen. If A4 is an oracle, we use M for M with oracle A. The time taken by
an oracle TM is one step for each query to the oracle and one step for each
ordinary move of the TM.

We define 24 to be the set of languages accepted in polynomial time by
DTM'’s with oracle 4. Also define .4/ 2" to be the set of languages accepted by
NTM’s with oracle A in polynomial time. We shall prove that there are oracles 4
and B for which 24 = 42 and 2% # 4 2%, This result has implications regard-
ing our ability to solve the # = 42 question for TM’s without oracles. Intui-
tively all known methods to resolve the question one way or the other will work
when arbitrary oracles are attached. But the existence of 4 and B tells us that no
such method can work for arbitrary oracles. Thus existing methods are probably
insufficient to settle whether 2 = .4#"2. We shall provide details along these lines
after we see the constructions of 4 and B.

An oracle for which 2 =.t'®

Theorem 13.17 2 = 42", where A = L, the set of all true quantified Bool-
ean formulas (or any other PSPACE-complete problem).

Proof Let M" be nondeterministic polynomial time bounded, and let
L= L(M"). Then M* queries its oracle a polynomial number of times on strings
whose lengths are bounded by a polynomial of the length of the input to M™.
Thus we may simulate the oracle computation in polynomial space. It follows
that .+ 24 < PSPACE. However, any language L in PSPACE is accepted by
some DTM M“ that reduces L to 4 in polynomial time and then queries its oracle.
Thus PSPACE < 2. But clearly 24 < .V’ 24, so 4 = . ' P4. O

An oracle for which 2 #.{ %

We now show how to construct an oracle B < (0 + 1)* for which 2% # .v'#%. B
will have at most one word of any length; exactly which words will be discussed
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later. We shall be interested in the language
L = {0°| B has a word of length i}.

We may easily construct an NTM with oracle B that, given input 0, guesses a
string of length i in (0 + 1)* and queries its oracle about the guessed string,
accepting if the oracle says “yes.” Thus L is in .#"25. However, we can construct B
so that the string of each length, if any, is so cleverly hidden that a DTM with
oracle B cannot find it in polynomial time.

Theorem 13.18 There is an oracle B for which 28 #+ 4”25,

Proof We shall give a procedure to enumerate the set B. Set B will have at most
one word of any length. As we generate B, we keep a list of forbidden words; these
words are ruled out of consideration for possible membership in B. Assume an
enumeration of DTM’s with oracle and input alphabet {0, 1}, in which each TM
appears infinitely often. We consider each M;,i=1, 2, ..., in turn. When M; is
considered we shall have generated some forbidden words and a set B; of words so
far in B. There will be at most one word in B; of length 0, 1, ..., i — 1, and no
longer words. Furthermore, no other words of length less than i will subsequently
be put in B. We simulate M? on input 0". If M, queries a word of length less than i,
we consult B;, which is all words in B so far, to see if the oracle responds “yes” or
“no.” If M; queries a word y of length i or more, we assume that y is not in B (i.e.,
answer “no”) and to make sure y is not later placed in B, add y to the list of
forbidden words.

The simulation of M5 on 0° continues for "¢ steps. Afterwards, whether or
not M; has halted, we make a decision about a word to put in B. If within i8¢
steps, M?i halts and rejects 0%, then we put a word of length i that is not on the
forbidden list in B, provided there is such a word. The word may be picked
arbitrarily, say the lexicographically first word that is not forbidden. If M¥ does
not reject 0° within i 7 steps, then no word of length i is placed in B.

There is also no word of length i in B if all words of length i are forbidden by
the time we finish simulating M. However, the number of steps simulated for M%i
is j'°2J, so the total number of words of all lengths forbidden by M ,, M,, ..., M; is
at most

.Z jlogj < i(ilogi) < il+|ogi.
i=1

As there are 2 words of length i, we know that not all words of length i are
forbidden if 2 > i* *'°# that is, if i > (1 + log i) log i. But the latter relation holds
for i > 32, so it is only for a finite number of small i’s that all words of length i
could be forbidden.

Having finished the simulation of M% on 0 for '’ steps, we generate the
selected word, if there is one, obtaining us a new set B;, , of generated words. We
are now ready to repeat the process for M2 on 0'* .
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Next we define a language L that is in 4?5 — 25, Let
L ={0"| B has a word of length i}.

We may easily construct a linear time NTM with oracle B that, given input 0/,
nondeterministically guesses string w of length i in (0 + 1)* and queries its oracle
about w, accepting if the oracle says “yes.” Thus L is in A 25

Suppose L is in 2. Let M? accept L, where M? is a deterministic polynomial
p(n) time-bounded TM with oracle B. As each TM has arbitrarily long codes, we
may pick k such that k > 32 and k'°¢* > p(k). If M} accepts 0%, then 0¥ isin L, so B
has a word of length k. That means M2 rejects 0*. But M2 and M2 must behave
identically on input 0%, since B and B, agree on words shorter than k, and B has no
word of length k or more that is queried by M2 on 0. Thus M? rejects 0%, a
contradiction.

If M{ rejects 0%, so 0% is not in L, then M2 cannot reject 0¥ within k'#* steps.
This follows since k > 32, and had M rejected 0% within k'*¢* steps, there would
still be a word of length k not on the forbidden list, and that word would be in B.
Thus 0* would be in L. Hence M2 does not reject 0¢ within k'*¢* steps. But as
k'*ek > p(k), M2 does not reject 0* at all, another contradiction. We conclude that
Lisin .4 2% — »8 O

Significance of oracle results

Let us consider the ways used in this book to show two language classes to be the
same or different, and see why Theorems 13.17 and 13.18 suggest that these
methods will fail to resolve the £ = .4’ question. We showed certain classes to
be the same by simulation. For example, Chapter 7 contains many simulations of
one type of TM by another. Chapter 5 contained simulations of PDA’s by CFG’s
and conversely.

Suppose we could simulate arbitrary polynomial time-bounded NTM’s by
polynomial time-bounded DTM’s. (Note that giving a polynomial-time algorithm
for any one NP-complete problem is in effect a polynomial-time simulation of all
NTM’s.) It is likely that the simulation would still be valid if we attached the same
oracle to each TM. For example, all the simulations of Chapter 7 are still valid if
we use oracle TM’s. But then we would have #® = 1”8, which was just shown to
be false.

Other classes of languages were shown unequal by diagonalization. The hier-
archy theorems, Theorems 12.8 and 12.9, and the proof that L, is an r.e. set but not
a recursive set are prime examples. Diagonalizations also tend to work when
oracles are attached, at least in the three examples cited above. If we could
diagonalize over # to show a language to be in A2 — &, then the same proof
might well work to show .1"2* — 24 & (. This would violate Theorem 13.17.

We also used translation lemmas to refine time and space hierarchies in
Chapter 12. Could these help show 2 # .#"2? Probably not, because the transla-
tion lemmas also hold when oracles are attached.
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Lastly, we can use closure properties to show a difference between two lan-
guage classes. For example, the DCFL’s are contained in the CFL’s, but the
DCFL’s are closed under complementation and the CFL’s are not. This proves that
there is a CFL that is not a DCFL. Could we find a closure property of 2 that is not
shared by .#"2? This at first appears the most promising approach. While proofs
that 2 is closed under an operation are likely to show also that 24 is closed under
that operation, a nonclosure result for 4”2 might not carry over to A"24. On the
other hand, showing .4#°#2 not closed under an operation involves showing a
particular language not to be in A"2. This proof might be accomplished by
diagonalization, but then it would likely carry over to 4", It might be done by
developing a pumping lemma for 4", but this seems well beyond present capabi-
lity. Finally, we might develop some ad hoc argument, but again, no such argu-
ments have been found, and they appear very difficult.

EXERCISES

13.1  Suppose there is a 2" time-bounded reduction of L, to L,, and L, is in DTIME(2").
What can we conclude about L,?

13.2  Which of the following Boolean formulas are satisfiable.
a) X; AX3A(X2VX;3)
*b) /\ (xin inzvxis)/\ /\ (iil\/iiz\/ih)
iy.02.3 iy
where (iy, i, i3) ranges over all triples of three distinct integers between 1 and 5.

13.3 A clique in a graph G is a subgraph of G that is complete; i.e., each pair of vertices is
connected by an edge. The clique problem is to determine if a given graph G contains a
clique of given size k.
a) Formulate the clique problem as a language recognition problem.
b) Prove that the clique problem is N P-complete by reducing the vertex cover problem to
the clique problem.

[Hint : Consider a graph G and its complement graph G, where G has an edge if and only if
G does not have that edge.]

13.4  Given a graph G and integer k, the clique cover problem is to determine if there exist
k cliques in G such that each vertex of G is in at least one of the k cliques. Prove that the
clique cover problem is NP-complete by reducing the vertex cover problem to the vertex
cover problem for graphs without triangles, thence to the clique cover problem. [Hint:
Consider graphs G = (V, E) and

G’ = (E, {{ey, e2)] ey, e, are incident upon the same vertex in G})].

13.5 Does the graph of Fig. 13.7

a) have a Hamilton circuit?
b) a vertex cover of size 10?
c) a vertex coloring with 2 colors such that no two adjacent vertices are the same color?

13.6  Prove that the chromatic number problem is NP-complete by reducing the 3-CNF
satisfiability problem to the chromatic number problem. [Hint: The graph in Fig. 13.8 can
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Fig. 13.7 An undirected graph.

(a) (b)
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Fig. 13.8 Graph used to show chromatic number problem NP-complete. (a) Complete
graph on n vertices; (b) x; and X; are connected to all v; for which i # j.

be used as a subgraph in your construction. Note that each v, must be colored with a

distinct color, say color i. The entire graph can be colored with n + 1 colors if and only if

for each i, 1 <i < n, one of x; and X; is colored with color i and the other is colored with

color n + 1]

13.7 Show that the following problems are NP-complete.

a) Given a graph G, with integer distances on the edges, and two integers fand d, is there a

way to select f vertices of G on which to locate “firehouses,” so that no vertex is at
distance more than d from a firehouse?
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**b) The one-register code generation problem. Suppose we have a computer with one reg-
ister and instructions
LOAD m bring the value in memory location m to the register
STORE m store the value of the register in memory location m
OP m apply OP, which may be any binary operator, with the register as left
argument and location m as right argument; leave the result in the
register.
Given an arithmetic expression, each of whose operands denotes a memory location
and given a constant k, is there a program that evaluates the expression in k or fewer
instructions?
**c) The unit execution time scheduling problem. Given a set of tasks Ty, ..., Ty, a number of
processors p, a time limit t, and a set of constraints of the form T; < T;, meaning that task
T; must be processed before T;, does there exist a schedule, that is, an assignment of at
most one task to any processor at any time unit, so that if T; < T} is a constraint, then T;
is assigned an earlier time unit than T}, and within ¢ time units each task has been
assigned a processor for one time unit?
**d) The exact cover problem. Given a set S and a set of subsets Sy, S, ..., S, of S, is there a
subset T < {S,, S,, ..., S} so that each x in § is in exactly one S; in T?

138  The spanning tree problem. Determine whether a tree T is isomorphic to some
spanning tree of G.

a) Give a log-space reduction of the Hamilton circuit problem to the spanning tree
problem.
*b) Give a direct log-space reduction of 3-CNF satisfiability to the spanning tree problem.

13.9
a) An n-dimensional grid is a graph G = (V, E) where

V={(iy, iz ..., 0|1 <i;<m, 1 <j<n}

and E = {(v,, v2)| v, and v, differ in only one coordinate, and the difference in v, and v,
in that coordinate is one}. For what values of m; and n does G have a Hamilton circuit?

*b) Let G be a graph whose vertices are the squares of an 8 x 8 chess board and whose
edges are the legal moves of the knight. Find a Hamilton circuit in G.

*13.10 Prove that the Hamilton circuit problem is NP-complete even when restricted to
planar graphs. [Hint: First show that the Hamilton circuit problem is NP-complete for
planar graphs with “constraints,” by reducing L., to it. In particular, consider the class of
planar graphs with constraint arrows connecting certain pairs of edges. Constraint arrows
are allowed to cross each other but cannot cross edges of the graph. Show that the existence
of Hamilton circuits that use exactly one edge from each pair of constrained edges is
NP-complete. Then replace the constraint arrows one by one by graph edges by the
substitution of Fig. 13.9(a). In the process, a constraint arrow may cross a graph edge but
only if the graph edge must be present in any Hamilton circuit. These crossings can be
removed by the substitution of Fig. 13.9(b). The graph of Fig. 13.10 may be helpful in the
first step of the hint to represent a clause x + y + z.]

*13.11 A graph is 4-connected if removal of any three vertices and the incident edges leaves
the graph connected. Prove that the Hamilton circuit problem is NP-complete even for
4-connected graphs. [Hint: Construct a subgraph with four distinguished vertices that can
replace a vertex in an arbitrary graph G so that even if additional edges are added from the
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Fig. 13.9 Transformations for Exercise 13.10.

Fig. 13.10 Graph used in the construction of Exercise 13.10.

four distinguished vertices to other vertices of G, the resulting graph will have a Hamilton
circuit if and only if G did.]

*13.12 Prove that the problem of determining whether a set of linear equations Ax = b has
a solution with k components of x equal to zero is NP-complete. [Hint: If the x; are
constrained to 0 or 1, then an inequality of the form x, + x, + x3 > 1 can be replaced by
an equation of the form y + x, + x, + x; = 4, provided y is constrained to be 1, 2, or 3.
The system of equations y +z, + z, =3, y=2z3+ 24, and z; + z; =1, 1 <i < 4, has no
solution with more than four variables zero and has a solution with exactly four variables
zero if and only if y = 1, 2, or 3]

*13.13 A kernel of a directed graph is a set of vertices such that

1) there is no arc from a vertex in the kernel to another vertex in the kernel, and

2) every vertex is either in the kernel or has an arc into it from the kernel.
Prove that determining whether a directed graph has a kernel is NP-complete. [Hint:
Observe that a cycle of length two or three may have only one vertex in a kernel.]

13.14  Prove that the traveling salesman problem is N P-complete.

**13.15 Consider approximations to the traveling salesman problem. Show that the exist-
ence of a polynomial-time algorithm that produces a tour within twice the cost of the
optimal tour would imply # = ¢ 2.

*$13.16 Consider the traveling salesman problem where the distances satisfy the triangle
inequality, that is

d(vy, v3) < d(vy, v2) + d(vs, v3)-

Give a polynomial-time algorithm to find a tour that is within twice the cost of the optimal
tour.
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*13.17 Suppose there exists a polynomial-time algorithm for finding a clique in a graph
that is of size at least one-half the size of the maximal clique.

a) Prove that there would exist a polynomial-time algorithm for finding a clique which is
of size at least l/ﬁ times the size of the maximal clique. [Hint: Consider replacing
each vertex of a graph by a copy of the graph.]

b) Prove that for any k < 1 there would exist a polynomial-time algorithm for finding a
clique which is of size at least k times the size of the maximal clique.

*13.18 Prove that it is NP-complete to determine whether the chromatic number of a
graph is less than or equal to 3. [Hint: The graph of Fig. 13.11 can be used as a weak form of
an OR gate when only three colors are available, in the sense that the output can be colored
“true” if and only if at least one input is colored “true.”]

Fig. 13.11 Graph used in Exercise 13.18.

**13.19 For n > 6, let G, = (V,, E,) be the graph where
V. ={(i, j, k)}i, j, k are distinct elements of {1, 2, ..., n}},
E, = {(u, v)|u and v are disjoint triples}.

a) Let X ,(G) be the minimum number of colors needed to assign m distinct colors to each
vertex of G so that no two adjacent vertices have a color in common. Prove for n > 6
that X3(G,) = n and X4(G,) =2n — 4.

b) Suppose there were a polynomial-time algorithm to color a graph G with at most twice
the minimum number of colors needed. Then prove that = .4 ’#. [Hint: Combine
part (a) with Exercise 13.18.]

**]13.20 Construct an algorithm for finding a Hamilton circuit in a graph that under the
assumption that .2 = . 1".#, will find a Hamilton circuit in polynomial time whenever such a
circuit exists. If no Hamilton circuit exists, the algorithm need not run in polynomial time.
Note it is not sufficient to design a nondeterministic algorithm and then use the hypothesis
# = .1 to claim that there is a deterministic polynomial-time algorithm. You must
actually exhibit the potentially deterministic polynomial-time algorithm.

**13.21 If .2 # .1°2 prove it is undecidable for L in . { -2 whether L is in 2.

**13.22 Prove that the existence of an NP-complete subset of 0* implies # = .1 2.
*13.23 An integer n is composite if and only if there exists an a, | < a < n, such that either
1) a"!' # 1 mod n, or
2) there exist integers b and i where n — 1 = 2'b and a® and n have a common divisor.
If n is composite, at least one-half of the integers between 1 and n satisfy (1) or (2). Give a
randomized algorithm that with high probability will determine whether a number is prime
in polynomial time.



370 INTRACTABLE PROBLEMS

*13.24 Suppose there exists a function f mapping integers of length k onto integers of
length k such that

1) fis computable in polynomial time;

2) f~' is not computable in polynomial time.

Prove that this would imply
A={x, y)|fYx)<y}isin (#/2 n Co-4'P)—~ 2
13.25 Show that the following problems are PSPACE-complete.

a) Does a given regular expression (with only the usual operators -, +, and ) define all
strings over its alphabet? [Hint: The proof parallels Theorem 13.14.]

**Sb) The Shannon switching game. Given a graph G with two distinguished vertices s and t,
suppose there are two players SHORT and CUT. Alternately, with SHORT first, the
players select vertices of G other than s and 2. SHORT wins by selecting vertices that,
with s and ¢, form a path from s to t. CUT wins if SHORT cannot make such a path.
Can SHORT force a win on G no matter what CUT does?

**13.26 Show that if PSPACE # #, then there exists a proof by diagonalization. That is,
there is an enumeration L,, L,, ... of £, and a computable function f from integers to
strings and a set L in PSPACE such that for each i, f (i) is in Lif and only if f (i) is not in L;.
13.27 Give a polynomial-time algorithm for converting a quantified Boolean formula to
prenex normal form Q, X, Q, X, --- O, X,(E), where E is a Boolean expression in 3-CNF.

*13.28 Can any QBF be converted in polynomial time to an equivalent formula with at
most ten distinct variables?
13.29 Show that the following problems are complete for :# with respect to log-space
reductions.
a) Is x in L(G) for string x and CFG G?
**b) The circuit value problem. Encode a circuit as a sequence Cy, C, ..., C,, where each C;
is a variable x,, x5, ... or A(j, k) or —(j) with j and k less than i. Given an encoding of
a circuit and an assignment of true and false to the variables, is the output of the circuit
true?

**13.30 Show that the following problems are complete for NSPACE(log n) with respect to
log-space reductions.

a) Is a Boolean expression in 2-CNF not satisfiable?

b) Is a directed graph strongly connected?

c) Is L(G) infinite for CFG G without ¢-productions or useless nonterminals?
*13.31 Given CFG’s G, and G, and integer k, show that the problem of determining
whether there are words w, in L(G,) and w, in L(G,) that agree on the first k symbols, is
complete for nondeterministic exponential time with respect to polynomial-time
reductions.

**1332  Show that the problem of determining whether a regular expression with the inter-
section operator permitted denotes all strings in its alphabet requires time 2° " i.0., for some
¢ > 0 and can be solved in time 2%".

13.33

a) Write a formula in the theory of integers under addition expressing that every integer
greater than 5 is the sum of three distinct positive integers.
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b) Write a formula in number theory expressing that d is the greatest common divisor of a
and b.

**c) Write a formula in number theory expressing that z = x”.
13.34 Apply the decision procedure of Section 13.6 for the theory of reals to decide
whether the formula
Iy Ix[(x + y = 14) A(3x + y = 5)] is true.
**13.35
a) Show that the theory of Presburger arithmetic (the integers with +, =, and <)
requires nondeterministic time 22 i.0., for some ¢ > 0. [Hint: Develop the following
formulas of size proportional to n:
1) R,(x, y, z): 0 < y < 2%, and z is the residue of x mod y.
2) P,(x): 0 < x < 2%, and x is a prime.
3) G.(x): x is the smallest integer divisible by all primes less than 27,
4) M,(x, y, z): x, y, and z are integers in the range 0 to 227, and xy = 2]
b) Show that Presburger arithmetic can be decided in 22" space and 22°" time.
¢) Use the algorithm of part (b) to decide

Jy K[(x+y=14)A(3x +y=5)]

**13.36 Extend Presburger arithmetic to allow quantification over arrays of integers. Thus
we could write formulas such as

VA Vn 3B VI[—(1 <i < n)v[3(1 <j < n) A A(i) = B(j)]).
Prove that the theory of Presburger arithmetic with arrays is undecidable.

**13.37 To show that number theory is undecidable, it is convenient to encode a sequence
of length n + 1, x4, X, ..., X,, INt0 an integer x such that each x; can be obtained from
x by a formula.

a) Let m = max {n, xq, Xy, ..., X,}. Prove that the set of u; = 1 + (i + 1)m!, 0 < i < n, are
pairwise relatively prime and that u; > x;. This implies that there exists an integer
b < ugu, - u, such that b=x; mod y;,, 0 <i <n

b) Express Godel’s # function

B(b, ¢, i) =bmod [1 + (i + 1)c]

as a predicate.
c) Prove that number theory is undecidable.

**13.38 Show that there are oracles C, D, and E, for which
a) <, v, and co-. 4 '€ are all different.
b) P # .1»? but 4 ¥ = Co-.+ #°.
c) #* = .1'#* is independent of the axioms of number theory.
*13.39 Show that ## = .+’ if and only if 2 is an AFL.

Solutions to Selected Exercises

13.16 Construct a minimum cost spanning tree by sorting the edges by increasing cost,
selecting edges starting with the lowest cost edge, and discarding any edge that forms a
cycle. Let T, be the minimum cost of a Hamilton circuit and let T, be the cost of the
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minimum cost spanning tree. Clearly T; < T,y,, since a spanning tree can be obtained from
a Hamilton circuit by deleting an edge. Construct a path through all vertices of the graph
by traversing the spanning tree. The path is not a Hamilton circuit, since each edge of the
spanning tree is traversed twice. The cost of this path is at most 2T; < 2T,,,. Traverse
the path until encountering some edge e, leading to a vertex for the second time. Let e, be
the edge immediately following e, on the path. Replace the portion of the path consisting of
e, and e, by a single direct edge. By the triangle inequality this cannot increase the cost.
Repeat the process of replacing pairs of edges by a single edge until a Hamilton circuit is
obtained.

13.25b First we show that the Shannon switching game is in PSPACE. Consider a game
tree. The root indicates the initial game position. Assume SHORT moves first. The sons of
the root correspond to each possible game position after a move of SHORT. In general, a
vertex in the tree corresponds to the moves so far (which determine a game position) and
the sons of the vertex correspond to the board position after each possible additional move.

A position is a winning position if SHORT has a forced win from the position. Thus a
leaf is a winning position only if SHORT has a path from s to t. We can recursively define
winning positions as follows. If vertex v is not a leaf and corresponds to a position in which
it is SHORT’s move, then v is a winning position if there exists a son that is a winning
position. If it is CUT’s move, then v is a winning position only if every son is a winning
position. Since the tree has depth at most n, the number of vertices of G, a recursive
algorithm to determine if the root is a winning position requires space at most n. Thus the
problem is in PSPACE.

To show that the Shannon switching game is PSPACE-complete, we reduce the
quantified Boolean formula problem to it. Consider a quantified Boolean formula and
without loss of generality assume that the quantifiers alternate (otherwise add dummy
quantifiers and variables)

3x; Vxg 3x3 500 VX, 3x, F(xy - x,).

Consider the graph, called a ladder, shown in Fig. 13.12, where n = 3. There will be
additional edges (see dashed lines) but they are unimportant for the first observation.
SHORT plays first. He must at some time select either x,(1) or x,(1). This corresponds to
SHORT selecting a value for the existentially quantified variable x,. The next four moves
are forced, ending up with SHORT having selected x,(1), x,(2), and 3x, and CUT having
selected ¥, (1) and x,(2), or SHORT having selected ¥,(1), X;(2), and 3x, and CUT having
selected x,(1) and x,(2). If SHORT does not select one of x,(1), x,(1), x1(2), x,(2), or 3xy,
then CUT wins. If SHORT selects 3x,, then CUT is given the advantage in selecting x,(1)
or %,(1). The purpose of the vertex 3x, is to consume an additional move of SHORT,
thereby allowing CUT the first selection from the set {x(1), x5(1), x2(2), X2(2)}. This means
that CUT selects the value for the universally quantified variable x,, and so on.

Once the values for x,, x5, ..., x, have been selected, the dashed portion of the graph,
which corresponds to the quantifier-free portion of the formulas, comes into play. Without
loss of generality we can assume that F(xy, ..., x,) is in conjunctive normal form. Let
F=F,AF,n-AF, where each F, is a clause. Construct the tree of Fig. 13.13. Identify
the root 1 with vertex 3x, in Fig. 13.12. From vertex F; add an edge to vertex x;(1) or x(1)if
X; or X;, respectively, appears in F;. Now observe that SHORT selects vertex 1. CUT can
select either F, or 2, and SHORT selects the other. Clearly SHORT can build a path to at
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Fig. 13.12 A ladder for the Shannon switching game.

.

Fig. 13.13 The tree for formula F = F,F,---F,,.
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least one F,, and CUT can force SHORT to reach only one F, and can determine which F;.
Now SHORT has a path from s to t if F; is connected to some x;(1) or X;(1) which “has
value one”; that is, SHORT has selected x;(1) or x;(1).

Observe that if the quantified formula is true, then SHORT can specify the existentially
quantified variables, so that regardless of CUT'’s choices for the universally quantified
variables, F is true. Thus regardless of which F; is forced on SHORT, that F; is true and
hence connected to a selected x; or x;. Hence SHORT can win.

On the other hand, if the quantified Boolean formula is false, CUT can select the
universally quantified variables so that for the assignment to the x’s, F is false. Then CUT
forces SHORT to reach only one F;, and in particular an F, that is false for the assignment.
Thus SHORT does not complete a path, and CUT wins. Thus SHORT is guaranteed a win
if and only if the quantified Boolean formula is true, and hence the Shannon switching
game on vertices is complete for PSPACE.

BIBLIOGRAPHIC NOTES
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taken from Stockmeyer [1973], Exercise 13.10 from Garey. Johnson. and Tarjan [1976], and
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and Szymanski [1976], Hunt and Rosenkrantz [1977], Kirkpatrick and Hell [1978], Lewis
[1978], Schaefer [1978], and Yannakakis [1978].
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rithms run in polynomial time but are guaranteed to come only within some specified range
of the optimum. Johnson [1974] considered approximation algorithms for some of the
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NP-complete problems appearing in Karp [1972]. Sahni and Gonzalez [1976] were the first
to prove the approximation to an N P-complete problem to be NP-complete itself (Exercise
13.15), while Garey and Johnson [1976] showed that coming within less than a factor of two
of the chromatic number of a graph (number of “colors” needed to ensure that each vertex
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[1976]. Rosenkrantz, Stearns, and Lewis [1977] studied approximations to the traveling
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that # # . 4", Ladner [1975a] shows, for example, that if 22 # .4°#, then there are prob-
lems that are neither in # nor NP-complete. Adleman and Manders [1977] show that
certain problems have the property that they are in # if and only if. ¥'# = co-. 1 . Book
[1974, 1976] shows inequality among certain complexity classes, such as DTIME(n*) or
DSPACE(log* n). Exercise 13.39, relating # = .1 to AFL theory, is from Book [1970].
Berman and Hartmanis [1977] look at density-preserving reductions of one problem to
another. Exercise 13.22 is from Berman [1978], and Exercise 13.20 is from Levin [1973].

Particular attention has been given to the complexity of recognizing primes. It is easy
to show that the nonprimes (written in binary) are in . 4", but it was not known that the
primes are in . ¥’ until Pratt [1975]. Thus, if the recognition of primes is NP-complete,
then by Theorem 13.8, co-. 1 .2 = . { .. Miller [1976] gives strong evidence that the recog-
nition of primes written in binary is in 2. Exercise 13.23, which shows an eflicient test
determining primality with high probability, is from Rabin [1977]. A similar result is found
in Solovay and Strassen [1977]. Exercise 13.24 is from Brassard, Fortune, and Hopcroft
[1978].

The first PSPACE-complete problems were introduced by Karp [1972], including CSL
recognition (Theorem [3.11) and “= X*" for regular expressions (Exercise 13.25a).
PSPACE-completeness of quantified Boolean formulas was shown by Stockmeyer [1974].
Exercise 13.25(b), PSPACE completeness of the Shannon switching game, is by Even and
Tarjan [1976]. Stockmeyer [1978] gives a hierarchy of problems between .1 # and
PSPACE, on the assumption that .1 = = PSPACE.

Problems complete for .# with respect to logarithmic space reductions have been con-
sidered by Cook [1973b], Cook and Sethi [1976], Jones [1975], Jones and Laaser [1976]
(including Theorem 13.12) and Ladner [1975b] (Exercise 13.29b). Problems complete for
NSPACE(log 1) with respect to log space reductions are considered in Savitch [1970],
including Theorem 13.13 (on reachability), Sudborough [1975a,b], Springsteel [1976], and
Jones, Lien, and Laaser [1976]. Exercise 13.30 is from Jones, Lien, and Laaser [1976].

The first problem proved to require exponential time (in fact, exponential space) was
presented by Meyer and Stockmeyer [1973]. The problem is similar in spirit to that of
Theorem 13.15. The lower bounds on the complexity of the theory of reals with addition
(Theorem 13.16) and of Presburger arithmetic (Exercise 13.35) are from Fischer and Rabin
[1974]. The upper bounds for these problems are from Cooper [1972], Ferrante, and Rack-
off [1975], and Oppen [1973]. Berman [1977]; and Bruss and Meyer [1978] put what are, in
a sense, more precise bounds (outside the usual time-space hierarchies) on these problems.
The undecidability of Presburger arithmetic with arrays is from Suzuki and Jefferson
[1977].

The literature contains a number of papers that deal with the complexity of a variety of
problems and their special cases, dividing problems into groups, principally: polynomial,
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NP-complete, PSPACE-complete, and provably exponential. A sample of the areas
covered include Diophantine equations in Adleman and Manders [1976], asynchronous
computation in Cardoza, Lipton, and Meyer [1976], problems about regular expressions in
Hunt [1975] (including Exercise 13.32), Hunt, Rosenkrantz, and Szymanski [1976}, and
Stockmeyer and Meyer [1973], problems about context-free grammars in Hunt and
Rosenkrantz [1974, 1977], Hunt and Szymanski [1975, 1976], and Hunt, Szymanski,
and Ullman [1975] (including Exercise 13.31), and game theory in Schaefer [1976].

The results of Section 13.7 and Exercise 13.38, on the 2 = A"2 question in the
presence of oracles, are from Baker, Gill, and Solovay [1975]. However, Kozen [1978]
presents another viewpoint on the issue. Exercise 13.26 is from there. Ladner, Lynch, and
Selman [1974] studied the different kinds of bounded reducibility, such as many-one,
Turing. and truth tables. Another attack on the 2 = A2 question has been the develop-
ment of models whose deterministic and nondeterministic time-bounded versions are
equivalent. The vector machines (Pratt and Stockmeyer [1976]) are the first, and other
models have been proposed by Chandra and Stockmeyer [1976] and Kozen [1976]. The
reader should also note the equivalence for space-bounded versions of the “auxiliary
PDA’s” discussed in Section 14.1.



CHAPTER

HIGHLIGHTS OF
OTHER IMPORTANT
LANGUAGE CLASSES

Numerous models and classes of languages have been introduced in the literature.
This chapter presents a few of those that appear to be of greatest interest.

Section 14.1 discusses auxiliary pushdown automata, which are PDA’s with
two-way input and additional general purpose storage in the form of a space-
bounded Turing tape. The interesting property of auxiliary PDA’s is that for a
fixed amount of extra storage, the deterministic and nondeterministic versions are
equivalent in language-recognizing power, and the class of languages accepted by
auxiliary PDA’s with a given space bound is equivalent to the class of languages
accepted by Turing machines of time complexity exponential in that space bound.

Section 14.2 is concerned with stack automata, which are PDA’s with the
privilege of scanning the stack below the top symbol, but only in a read-only
mode. Languages accepted by variants of the two-way stack automaton turn out
to be time- or space-complexity classes.

Section 14.3 is devoted to indexed languages, since they arise in a number of
contexts and appear to be a natural generalization of the CFL’s. Finally, Section
14.4 introduces developmental systems, which attempt to model certain biological
patterns of growth.

141 AUXILIARY PUSHDOWN AUTOMATA

An S(n) auxiliary pushdown automaton (APDA) is pictured in Fig. 14.1. It consists
of

1) a read-only input tape, surrounded by the endmarkers, ¢ and §,
2) a finite state control,

377
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Fig. 141 Auxiliary PDA.

3) a read-write storage tape of length S(n), where n is the length of the input
string w, and
4) a stack.

A move of the APDA is determined by the state of the finite control, along
with the symbols scanned by the input, storage, and stack heads. In one move, the
APDA may do any or all of the following:

1) change state,
2) move its input head one position left or right, but not off the input,

3) print a symbol on the cell scanned by the storage head and move that head
one position left or right,

4) push a symbol onto the stack or pop the top symbol off the stack.
If the device is nondeterministic, it has a finite number of choices of the above
type. Initially the tape heads are at the left end of the input and storage tapes, with

the finite control in a designated initial state and the stack consisting of a
designated start symbol. Acceptance is by empty stack.

Equivalence of deterministic and nondeterministic APDA’s

The interest in APDA’s originates from the discovery that deterministic and non-
deterministic APDA’s with the same space bound are equivalent, and that S(n)
space on an APDA is equivalent to ¢*™ time on a Turing machine. That is, the
following three statements are equivalent.

1) L is accepted by a deterministic S(n)-APDA.

2) Lis accepted by a nondeterministic S(n)-APDA.

3) Lis in DTIME(*™) for some constant c.

These facts are established in the following series of lemmas.
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Lemma 14.1 If L is accepted by a nondeterministic S(n)-APDA A with S(n) >
log n, then L is in DTIME(c®™) for some constant c.

Proof Let A have s states, t storage symbols, and p stack symbols. Given an input
of length n, there are n + 2 possible input head positions, s possible states, S(n)
possible storage head positions, and 5™ possible storage tape contents, for a total
of
5(n) = (n+ 2)sS(n)tS™

>

possible configurations.t As S(n) >log n, there is a constant d such that
S(n)<d®™ for all n> 1.
Construct a TM M that performs the following operations on input w of

length n.

1) M constructs a PDA P, that on ¢-input simulates all moves of 4 on input w.
2) M converts P, to a CFG G,, by the algorithm of Theorem 5.4.

For fixed A4, P,, is a different PDA for each w, with the state and contents of
input and storage tapes of 4 encoded in the state of P,,. N(P,,) is {¢} or ¢ depend-
ing on whether or not 4 accepts w.

P, has at most $§(n) < d*"™ states and p stack symbols. Therefore G, has
at most pd?>™ + 1 variables. As 4 can push only one symbol, no right side of a
production of G,, has more than two variables, so there are at most rd*™ produc-
tions for any nonterminal of G,,, where r is the maximum number of choices that
A has in any situation. Thus the test of Theorem 6.6, to tell whether L(G,) is
empty, takes time proportional to rp%d>*™, at most. Since r, p, and d are constants,
there is a constant ¢ such that M can determine in time at most ¢ whether L(G,,)
is nonempty, i.e., whether w is accepted by A. O

Lemma 14.2 If L is in DTIME(T(n)), then L is accepted in time T*(n) by a
one-tape TM M that traverses its tape, making a complete scan in one direction,
reaching the first cell it has never before scanned, reversing direction and repeat-
ing the process, as shown in Fig. 14.2.

le N
* " "

Fig. 14.2 Traversal pattern of TM M.

+ Note that a “configuration” in the sense used here does not include the stack contents.
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Proof By Theorems 12.3 and 12.5, L is accepted by a 4T?(n) time-bounded
one-tape TM M,. M simulates M ;, marking on a second track M ,’s head position
and the cells which M has already scanned. As long as the head of M, travels in
the same direction as M’s head, M can simulate a move of M, with each of its own
moves. When M, moves in the opposite direction, M leaves the head marker,
completes its scan and simulates that move on the return pass. Thus M simulates
at least one move of M, per pass, taking at most 3 (¥2T*™ n 4+ i < T*(n) moves to
complete the simulation of M ;. O

Lemma 143 If L is in DTIME(c®™) for any constant c, then L is accepted by a
deterministic S(n)-APDA.

Proof By Lemma 14.2, L is accepted by a ¢*5® time-bounded one-tape TM M
with the traversal pattern of Fig. 14.2. Define d = ¢* so that M is d5" time
bounded. Let the triple (g, Z, ¢) stand for the statement that at time t,+ M is in state
q scanning symbol Z, where t < d™. Note that since the head motion of M is
independent of the data, the cell scanned at time ¢ is easily calculated from t.

The heart of the construction of a deterministic S(n}-APDA A that accepts L
is the recursive procedure TEST of Fig. 14.3, which assigns value true to the triple
(g, Z, t) if and only if

1) t =0, q is the start state, and Z is the symbol in the first tape cell of M, or

2) M scans some cell for the first time at time ¢, Z is the original symbol in that
tape cell, and there is a triple (p, X, ¢t — 1) that is true and implies that M
enters state g after one move, or

3) M previously scanned the cell visited at time ¢ and there are true triples (p;,
X,, t — 1) and (p,, X5, t') such that the first triple implies that state g is
entered after one move, and the second implies that Z was left on the tape cell
the last time the tape cell was scanned. Recall that the head motion of M is
uniform, and thus the time t' at which the cell was last visited is easily
calculated from t.

As TEST only calls itself with smaller third arguments, it eventually termin-
ates. The S(n)-APDA A evaluates TEST by keeping the arguments on the storage
tape. When TEST calls itself, A pushes the old arguments onto the stack, and
when TEST returns, 4 pops them off the stack and puts them on the storage tape.

The complete algorithm that 4 executes is

for each triple (g, Z, t) such that q is an accepting state
and 0 <t < d*" do
if TEST(q, Z, t) then accept O

Theorem 14.1 The following are equivalent for s(n) > log n.

1) L is accepted by a deterministic S(n)-APDA.

+ “At time (" means “after t moves have elapsed,” so initially, r = 0.
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procedure TEST(q, Z, t);
begin
if 1 =0, q is the initial state of M and Z is the first input symbol then return true;
if 1 <t <nand Z is the rth input symbol, or t = in + i(i — 1)/2 for some integer i > 1
and Z = B then
for each state p and symbol X do
if M enters state g when scanning X in state p, and TEST(p, X, t — 1) then return
true;
/* the times in + i(i — 1)/2 are exactly the times when M scans a new cell */
if t>nandt+#in+i(i —1)/2 for any integer i > 1 then
begin
let ¢’ be the previous time M scanned the same cell as at time ¢;
for all states p, and p, and symbols X, and X, do
if M enters state g when scanning X, in state p; and M writes Z when scanning
X , in state p, and TEST(p,, X, t — 1) and TEST(p,, X ,, ') then return true
end;
return false
end

Fig. 143 The procedure TEST.

2) L is accepted by a nondeterministic S(n)-APDA.
3) Lis in DTIME(c’™) for some constant c.

Proof That (1) implies (2) is obvious. Lemma 14.1 established that (2) implies (3)
and Lemma 14.3 established that (3) implies (1). O

Corollary L is in 2 if and only if L is accepted by a log n-APDA.

142 STACK AUTOMATA
The stack automaton (SA) is a PDA with the following two additional features.

1) The input is two-way, read-only with endmarkers.

2) The stack head, in addition to push and pop moves at the top of the stack can
enter the stack in read-only mode, traveling up and down the stack without
rewriting any symbol.

A stack automaton is shown in Fig. 14.4, in read-only mode.

A move of an SA is determined by the state, the input, and stack symbols
scanned, and whether or not the top of the stack is being scanned by the stack
head. In either case, in one move the state may change and the input head may
move one position left or right. If the stack head is not at the top of the stack, a
move may also include a stack head motion, one position up or down the stack. If
the stack head is at the top, the permissible stack actions are:

1) push a symbol onto the stack,
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Top of stack

Finite
control

Fig. 14.4 A stack automaton.

2) pop the top symbol off the stack, or
3) move one position down the stack without pushing or popping.

In actions (1) and (2) the stack head stays at the top; in action (3) it leaves the top
of stack and enters the read-only mode, which it may leave only by returning to
the top of the stack.

Initially, the input head is at the left end, the finite control is in a designated
initial state, and the stack consists of a single designated start symbol. Acceptance
1s by final state.

If there is never more than one move in any situation, the device is deter-
ministic (a DSA); if there is a finite number of choices of moves in any situation,
the automaton is nondeterministic (an NSA). If the device never pops a symbol it
is nonerasing (an NEDSA or NENSA). If the input head never moves left, the
stack automaton is one-way (a 1DSA, INENSA, and so on). In the absence of any
statement to the contrary, we shall assume an SA is two-way, deterministic, and
permits erasing.

Example 14.1 Let L ={0"1"2"|n > 1}. We design an SA to accept L as follows.
The input head moves right at each move. While O’s are encountered, they are
pushed onto the stack above the bottom marker (start symbol) Z,. The stack head
remains at the top of stack in read-write mode. Fig. 14.5(a) shows the situation
after reading 0’s. On seeing the first 1, the stack head moves down, entering the
read-only mode. As successive 1’s are read, the stack head moves one position
down for each 1 (but if the first 2 is not seen at the same time the stack head
reaches the bottom marker, there is no next move, and the SA does not accept)-
The situation in which the SA then finds itself is shown in Fig. 14.5(b). As 2’s are
scanned on the input, the stack head moves up one position for each 2. A move to
an accepting state is permissible only when the stack head is at the top and $ is
scanned on the input, as in Fig. 14.5(c). Of course, the state from which this move
can be made is only entered after we have seen 2’s, so we cannot accept inputs like

¢$ or ¢00S.

Note that the SA we have described is one-way, deterministic, and noneras-
ing.
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|¢000111222$J |¢0001112:25] [¢000111222$]

[ofofofo] [zfoJoJo[ [zfofoJo]
(a) (b) (¢)
Fig. 145 1ID’s of a stack automaton.

Transition tables

In the remainder of the section we give proof sketches for a number of the
fundamental results characterizing the languages accepted by the varieties of SA.
One of the central ideas is the simulation of stack automata by other devices by
means of a transition table, which is a succinct representation of a stack (actually
the stack except for the top symbol). Suppose a deterministic stack automaton is
in state g with the input head at position i and the stack head at the next-to-top
symbol. Then the SA is in read-only mode and the stack cannot change until the
stack head reaches the top. For a particular sequence of stack symbols, the stack
head may never reach the top, or it will first reach there in some state p with input
head in position j. For each g and i the transition table tells whether the stack head
ever moves to the top and if so gives the state p and input head position j when the
top is reached. Thus the transition table completely characterizes the effect of
the sequence of stack symbols below the top, provided acceptance does not occur
when the stack head is inside the stack.

The number of distinct transition tables for an SA with input of length n
(excluding endmarkers) and with s states is thus [s(n + 2) + 1]*"*?. With input
positions encoded in binary, a transition table requires only cn log n bits for some
constant ¢ that depends on the number of states of the given SA.

If the SA is nondeterministic, then for each g and i, the transition table must
give the set of (p, j) pairs such that started in state g, with input position i, and the
stack head at the next-to-top stack symbol, the top of stack can be reached in state
p and input position j. The number of possible transition tables for an s state NSA
with input of length n is [25"*2*+1]5"*2 < 2" 5o such a transition table can
be encoded in cn? bits, where ¢ depends only on the number of states of the NSA.

Characterization of stack languages by time
and space complexity classes

We shall show that a deterministic SA can be simulated by an n log n-APDA and
conversely that an n log n-APDA can be simulated by a DSA establishing the
equivalence of DSA and n log n-APDA. In a similar manner we establish the
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equivalence of NSA and n?>-APDA. For nonerasing SA we establish the equiv-
alence of NEDSA and DSPACE(n log n) and the equivalence of NENSA and
NSPACE(n?). A series of lemmas is used.

Lemma 14.4 Each type of stack automaton is equivalent to one of the same type
that accepts only at the top of stack.

Proof We modify a given SA so that in any accepting state it moves its stack
head up the stack until the top is reached. O

Lemma 14.5 If L is accepted by an NEDSA, then L is in DSPACE(n log n).

Proof Given an NEDSA A that accepts only at the top of the stack, we construct
a Turing machine M that simulates A by keeping track of A’s state, input head
position, top stack symbol, and the transition table for the portion of the stack
below the top symbol. The initial transition table is the table associated with the
empty string (“undefined” for all g and i). We need only explain how to construct
the transition table T’ associated with the stack string X,X, --- X,, given the
table T for X, X, - X,,_;-

For each state g and input position i, execute the algorithm of Fig. 14.6. The
algorithm keeps track of the sequence of state-input-position pairs (p, j) in which
X,, 1s scanned. Each time the stack head moves to X,_,, T is consulted to
determine the next state-position pair in which X,, will be scanned if any. The
variable COUNT checks that the length of the sequence of (p, j)’s does not exceed
the product of s, the number of states, and n + 2, the number of input positions. If
50, A is surely in a loop, so that value of T'(q, i) is “undefined.”

begin
COUNT :=0;
(P, )= (g, i);
while COUNT < s(n + 2) do
begin
COUNT := COUNT + 1
suppose A in state p, scanning stack symbol X, at input position j enters
state r, moves the input head to position k and the stack head in direc-
tion D;
if D = “up” then return (r, k);
if D = “stationary” then (p, j):= (r, k);
if D = “down” then
if T(r, k) = “undefined” then return “undefined”
else (p, j):= T(r, k)
end
return “undefined”
end

Fig. 14.6 Algorithm to compute transition table for NEDSA.
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Note that for given (g, i) the algorithm of Fig. 14.6 requires only O(log n)
space to hold the value of COUNT. Thus T’ can be computed from T and X,, in
the space it takes to store T and T’, which is n log n. The TM M has only to
simulate A directly when the stack head is at the top of the stack, consult the
current transition table when the stack head leaves the top, and compute a new
transition table (throwing away the old) when a stack symbol is pushed. As stack
symbols are never erased, we need not preserve the stack. O

Lemma 14.6 If L is accepted by a NENSA, then L is in NSPACE(n?).

Proof The proof is similar to that of the previous lemma, save that n? space is
needed to store the transition matrix, and the simulation must be nondeter-
ministic. O

Lemma 14.7 If L is accepted by DSA, then L is accepted by a n log n-APDA.

Proof The proof is again similar to that of Lemma 14.5. The APDA uses its stack
(which it may not enter in read-only mode, of course) to hold the stack of the
DSA. Between each DSA stack symbol the APDA stores a transition table. The
transition table above a particular stack symbol corresponds to the entire stack,
up to and including that symbol. The topmost stack symbol and the table for
the stack below it are placed on the storage tape. When the DSA pushes a symbol,
the APDA pushes the table that is on its storage tape along with the old top stack
symbol onto its own stack, and computes the new table as in Lemma 14.5. When
the DSA pops a symbol, the APDA discards the top stack symbol and then moves
the top table to its storage tape. O

Lemma 14.8 If L is accepted by an NSA, then L is accepted by an n*>-APDA.

Proof The proof is a combination of the ideas introduced in Lemmas 14.6 and
14.7. Note that by Theorem 14.1 the APDA may be made deterministic. Od

We now turn to the simulation of space-bounded devices by stack automata.
The key idea here is that the SA can use its input of length n to count n symbols or
“blocks” of symbols down its stack. A sequence of ID’s representing a computa-
tion of a space-bounded device is constructed on the stack by successively copying
the top ID onto the stack, making changes represented by one move of the
space-bounded device. The ability to count down n symbols or “blocks” of sym-
bols allows the SA to copy the current 1D onto the top, symbol by symbol.

As a simple introduction consider the simulation of a deterministic linear
bounded automaton M by an NEDSA A. Given input w=a, --- a,, A pushes
[goa,]a; -+ a,# onto its stack, where g, is the start state and # is a special
symbol separating ID’s. The state is combined with the symbol scanned, so an ID
is always exactly n symbols long. Suppose A has constructed a stack that is a
sequence of ID’s, including the first i symbols of the next ID:

X X, XX, X, X

!
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(Actually one or two of the X’s in the ID being constructed may differ from the
corresponding symbols in the ID below, due to the move made by M). Starting at
the left end of the input, A repeatedly moves one position right on the input and
one position down the stack, until the right endmarker is reached on the input. At
this point A’s stack head will be n 4 1 symbols from the top of the stack, scanning
X;, of the last complete ID. A4 looks one symbol above and below X, , tosee if
X+, changes in the next ID because of the move made by M. A then moves to the
top of the stack and pushes either X, , or the symbol replacing X, in the next
ID due to the move of M. A accepts if and only if M enters an accepting state.

Actually a stack automaton can simulate devices with ID’s of length greater
than n by more clever use of the input. In particular, a DSA can manipulate ID’s
of length n log n, and an NSA can manipulate ID’s of length n2. The nondeter-
ministic case is easier, so we present it first.

Lemma 14.9 If L is in NSPACE(n?), then L is accepted by a NENSA.

Proof Since n? is greater than n we may assume L is accepted by a one-tape TM
rather than an off-line TM. An ID of length n? is represented by listing the tape
symbols, combining the state with the symbol scanned by the tape head. A marker
= is inserted after every n symbols. The n symbols between x’s make up a block.
Successive ID’s are placed on the stack as in the description of the LBA above.
Suppose j blocks and i symbols of the (j + 1)nth block have been copied. The
input tape is used to measure n *’s down the stack to the (j + 1)nth block of the
previous ID. A position k, 1 < k < n, in the (j + 1)nth block is guessed. Checking
one symbol above and below determines if the symbol is affected by a move of
the TM. If so, a move is guessed, provided a move for this ID has not been guessed
previously; otherwise the symbol is recorded in the state of the SA. The input tape
is then used to record k by alternately moving the input head one symbol left
(starting at the right end) and the stack head one symbol down until a * is
encountered. Next the stack head moves to the top of the stack and compares k
with i, the number of symbols of the jth block already copied. If k # i + 1, this
sequence of choices “dies.” If k = i + 1, then the next symbol of the new ID is
placed on top of the stack. The input is then used to determine ifi + 1 = n.Ifsoa
* is printed, and then it is checked whether j + 1 = n. In the casej + 1 = n,a # is
placed on the stack marking the end of an 1D. Acceptance occurs if the symbol
copied includes a final state. Otherwise the next symbol is copied.

A small but important point is that once a move is guessed in copying an ID,
the guess cannot be changed on copying a subsequent symbol in that ID. Other-
wise an invalid successor ID may be constructed. O

Theorem 14.2 The family of languages accepted by nondeterministic, nonerasing
stack automata is exactly NSPACE(n?).

Proof Immediate from Lemmas 14.6 and 14.9. a
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Theorem 14.3 The family of languages accepted by nondeterministic stack auto-
mata is exactly | ., DTIME(c™).

Proof By Theorem 14.1, Lisin | J.»o DTIME(c™) if and only if L is accepted by
an n?-APDA. By Lemma 14.8, if L is accepted by an NSA then L is accepted by a
deterministic n*-APDA. Thus it suffices to show that a deterministic n2-APDA A
can be simulated by an NSA S.

We assume that the input of A4 is kept on the storage tape of A rather than on
a read-only input, since n? exceeds n. The stack of S will hold the stack of 4 as well
as a sequence of ID’s representing the storage tape of A. Suppose S has the current
contents of A’s storage tape on top of its stack, and A4 pushes a symbol. S guesses
the tape contents of A when that symbol is popped and places its guess on top of
the stack. Then S pushes the symbol pushed by 4 and creates the new current tape
contents of 4 from the old, as in Lemma 14.9. The guessed ID intervening is
ignored while running up and down the stack; its symbols can be chosen from a
separate alphabet, so S can skip over it.

If A pops a symbol, S checks that the guessed ID below that symbol is correct;;
that is, the guessed ID is the storage tape of A after the pop move. The current ID
of A held on top of S’s stack is popped one symbol at a time, and each symbol
popped is compared with the corresponding symbol of the guessed ID by a
method similar to that of Lemma 14.9. If the guess is correct, the guessed 1D
becomes the current storage tape content of 4, and the simulation of A4 proceeds;
if not, this sequence of choices by S “dies.” S accepts if and only if 4 empties its
stack. O

Corollary L is accepted by an NSA if and only if L is accepted by an n2>-APDA.

Proof The “only if” portion was established in Lemma 14.8. The “if” follows
immediately from Theorems 14.1 and 14.3. O

In the deterministic case the function n? is replaced by n log n in the analogs
of Theorems 14.2 and 14.3. The reason for this is that in the construction of
Lemma 14.9 the NSA made an essential use of its nondeterminism in copying ID’s
of length n%. A DSA is able only to copy ID’s of length n log n.

Lemma 14.10 If L is in DSPACE(n log n), then L is accepted by an NEDSA.

Proof Let L be accepted by some one-tape TM M that uses exactly n log n cells.
Let ¢ be the number of symbols of the form X or [¢X], where X is a tape symbol
and q a state. These symbols are identified with the digits 1,2, ..., ¢ in base t + L.
Strings of |log, . ;(n)] such symbols of M are encoded as blocks of between 0 and
(n — 1) 0’s. There is an integer c, depending only on M, such that an ID of M may
be represented by cn blocks of 0’s, each block coding [log,,;(n)] symbols,
provided n > t.

Design a stack automaton S to construct a sequence of ID’s of M, each ID
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being a sequence of cn blocks of between 0 and (n — 1) 0’s separated by markers, .
Blocks are copied to the top of the stack by using the input to count cn *’s down
the stack, measuring the length of the block to be copied on the input, moving to
the top of stack and pushing an equal number of 0’s onto the stack.

Before a new block is placed on the stack, it is necessary to determine which, if
any, symbols change. To do so, decode 0* by repeatedly dividing by ¢ + 1, the
successive remainders being the successive symbols of the ID. The division is
accomplished by measuring k on the input and then moving the input back to the
endmarker, placing an X on the stack for every t + 1 positions the input head
moves. The X’s are not part of an ID. The finite control computes k mod (¢ + 1),
and the resulting digit is placed above the X’s. The block of X’s is then measured
on the input and the process repeated until the block of X’s has length zero. The
digits written on the stack between blocks of X’s are the desired block of the ID.

S checks whether the head is scanning a symbol in the block and also notes if
the head moves into an adjacent block. The blocks are re-encoded into strings of 0
to (n — 1) 0’s, making the necessary changes to reflect the move of M. The process
of re-encoding is the reverse of that just described. Note that since S is nonerasing,
it never gets rid of the X’s or digits on its stack; they are simply ignored in
subsequent computation. Also, before copying a block, S must decode the block
above, to see whether the head of M moves left into the present block.

S initializes its stack by coding its own input as an ID of M. The details of this
process are omitted. S accepts if it discovers that M enters an accepting state.

O

Theorem 14.4 L is accepted by a deterministic nonerasing stack automaton if
and only if L is in DSPACE(n log n).

Proof From Lemmas 14.5 and 14.10. O

Theorem 14.5 L is accepted by a deterministic stack automaton if and only if Lis
in { J.>o DTIME(n™).

Proof Note that n®" = 2"t " By Theorem 14.1, Lis in | ], DTIME(n®)if and
only if L is accepted by an n log n-APDA. By Lemma 14.7, if L is accepted by a
DSA, then L is accepted by a deterministic n log n-APDA. Thus it suffices to show
that if L is accepted by a deterministic n log n-APDA A4, then L is accepted by a
DSA S. Again we assume that A’s input tape is combined with its storage tape.
The proof parallels Theorem 14.3, using the techniques of Lemma 14.10 to repre-
sent storage tapes of A4 and simulate moves of 4. However, when A pushes
a symbol X onto its stack, S, being deterministic, cannot guess the storage tape
contents of A4 when A eventually pops that X. Instead S cycles through all possible
1D’s systematically. If it has made the wrong choice, it generates the next possible
ID and restarts the simulation of 4 from the time X was pushed by 4. The fact
that A empties its stack to accept assures that if A accepts, S will eventually get
a chance to generate the correct choice. a
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Corollary L is accepted by a DSA if and only if L is accepted by an n log n-
APDA.

Proof The “only if” portion was established in Lemma 14.7. The “if” follows
immediately from Theorems 14.1 and 14.5. O

One-way stack automata are not powerful enough to simulate tape-bounded
devices. However, there is one important containment relation, which we state
without proof.

Theorem 14.6 If L is accepted by a INSA, then L is in DSPACE(n).

143 INDEXED LANGUAGES

Of the many generalizations of context-free grammars that have been proposed, a
class called “indexed” appears the most natural, in that it arises in a wide variety
of contexts. We give a grammar definition here. Other definitions of the indexed
languages are cited in the bibliographic notes.

An indexed grammar is a 5-tuple (V, T, I, P, S), where V is the set of variables,
T the set of terminals, I the set of indices, S in V is the start symbol, and P is a finite
set of productions of the forms

1) A—q, 2) A-Bf, or 3) Af > a,

where A and Bare in V, fisin I, and a is in (V U T)*.

Derivations in an indexed grammar are similar to those in a CFG except that
variables may be followed by strings of indices. (Terminals may not be followed by
indices.) When a production such as 4 — BC is applied, the string of indices for 4
is attached to both B and C. This feature enables many parts of a sentential form
to be related to each other by sharing a common index string.

Formally, we define the relation = on sentential forms, which are strings in
(VI* U T)*, as follows. Let fand ybein (VI* U T)*, ébeinI*,and X;inV U T.

1) If A—> X, X, --- X, is a production of type (1) then
BASY = BX 10, X0, "+ X, 0,
where §; = § if X;isin V and ; = ¢ if X;is in T. When a production of type (1)
is applied, the string of indices J distributes over all the variables on the right
side.

2) If A— Bf'is a production of type (2), then SA5y = BBfdy. Here f becomes the
first index on the string following variable B, which replaces A.

3) If Af-> X, X, -+~ X, is a production of type (3), then
BAfOy = BX 6, X306, " X\ Oiy,

where 6, = 6 if X;is in ¥ and §; = ¢ if X is in T. The first index on the list for
A is consumed, and the remaining indices distribute over variables as in (1).
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We let 2> be the reflexive and transitive closure of = as usual, and define L(G)
to be {w|S 2w and wis in T*}.

Example 142 Let G= ({S, T, 4, B, C}, {a, b, ¢}, {, g}, P, S), where P consists of
S—Tg, Af — aA, Ag—a,
T T, Bf>bB,  Bg-—b,
T — ABC, Cf— cC, Cg—c.
An example derivation in this indexed grammar is
S=Tg=Tfg=> AfgBfgCfg
= aAgBfgCfg = aaBfgCfg = aabBgCfg

= aabbCfg = aabbcCg=> aabbcc.
In general,
S _3'__> Tflg: AfngflgC'fxg;> ai+lbi+ ICi+ 1‘

As the only freedom in derivations of G consists of trivial variations in order of
replacement and the choice of how many times to apply T — T, it should be clear
that

L(G) = {a"b"c"|n = 1}.

This language is not context free, of course.

We state without proof two major results about indexed languages.

Theorem 14.7 (a) If L is accepted by a one-way nondeterministic stack automa-
ton, then L is an indexed language. (b) If L is an indexed language, then L is a
context-sensitive language.

In fact, (a) can be strengthened by defining a generalization of an SA, called a
“nested stack automaton,” whose one-way nondeterministic variety exactly char-
acterizes the indexed languages. The nested SA has the capability, when the stack
head is inside its stack in read-only mode, to create a new stack. However, this
stack must be destroyed before the stack head can move up in the original stack.
The process of creating new stacks is recursive and allows the creation of new
stacks to an arbitrary depth.

144 DEVELOPMENTAL SYSTEMS

The application of grammars to the study of growth in cellular organisms in-
troduced new grammar families called L-systems. These grammar families differ
from the Chomsky grammars in that

1) no distinction between terminals and nonterminals is made, and
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2) at each step in a derivation, a production is applied to each symbol of a
sentential form, rather than to just one symbol or a short substring.

The modeling of organisms by L-systems allows the testing of hypotheses concern-
ing the mechanisms behind certain observable biological phenomena. Here we
content ourselves with defining only the most basic family of these grammars,
called OL-systems. (The O stands for zero symbols of context; the L acknowledges
Arvid Lindenmeyer, who first used these grammars to study growth in organisms.)
A OL-grammar is a triple G = (X, P, «), where X is a finite alphabet called the
vocabulary, o is a string in £* called the start string, and P is a set of productions
of the form a — B, where a is in £ and f§ is in £*. The relation = is defined by

a,a; ~°"a, =00, ",

if g; — o; 18 in P for 1 < i < n. Note that a; — g; might be a production, permitting
us to avoid substituting for g;. Otherwise, a substitution must be made for each
symbol. The substitution for different occurrences of the same symbol need not be
the same. The relation % is the reflexive. transitive closure of =, and L(G) is

defined to be {f|x = B}.

Example 143 Let G = ({a, b}, P, a), where P consists of a — b and b — ab. In this
case, there is only one production for each symbol, so there is really only one
(infinite length) derivation, and every word in the language appears in that deriva-
tion. The derivation is

a = b= ab = bab = abbab = bahbabbab = - - - .

Note that the length of words in L(G) are exactly the Fibonacci numbers defined
by fi =f,=1landf, =f,_, + f;_, for i > 3. One can prove by induction on i > 3
that the ith word in the derivation has f;_, b’s and f;_, a’s, a total of f; symbols.

Example 144 The language {a, aa} is not a OL-language. Suppose L(G) = {a, aa},
where G = ({a}, P, ). Then o must be a or aa. Now all productions are of the form
a— a' for some i > 0. Suppose « = a. Surely there cannot be a production a — a',
for i > 3. Then there must be a production a — aa, else aa could never be gen-
erated. But then a = aa = aaaa, a contradiction. Suppose next that « = aa. There
must be a production a — ¢, else all strings in L(G) are of length two or more. But
then aa=> ¢, so L(G) # {a, aa} again.

A basic result about OL-languages is the following.
Theorem 14.8 If L is a OL-language, then L is an indexed language.

Proof Let G, = (X, Py, a) be a OL-grammar. Define indexed grammar G, = (V,
%, {f, g5 P;, S), where

V={S, T} v {Ad,|ais in Z},



392 HIGHLIGHTS OF OTHER IMPORTANT LANGUAGE CLASSES

and P, contains
S— Ty,
T - Tf,
T— A, A, A
Auf— Ay, Ay, -+ Ay, for each production a — b b, --- b; in Py,

ak if &=a,a; " a,

A,g—a foreachain X.

Informally the string of /’s counts the number of steps in a derivation of G,,
and index g marks the end of an index string, allowing a variable to be replaced by
the terminal it represents. An easy induction on the length of a derivation shows
that

S&Tf'g2 Ay, [T79Ay, f7ig - Ay [g

in G, if and only if x % b, b, --- b, by a derivation of j steps in G,. Thus
S A,,94,,9 - ApgEbib, - by
ifand only ifa%-b, b, --* b,. O

145 SUMMARY

Figure 14.7 shows the various equivalences and containments proved or stated in
this chapter, plus some others that are immediate from definitions. Containments
are indicated by upward edges.

EXERCISES

14.1

a) Design a one-way DSA to recognize the language {0"1%*|n > 1}.

b) Design a one-way NSA to recognize the language {ww|w is in (0 + 1)*}.
*14.2  Design a two-way DSA to accept the set of binary strings whose value, treated as an
integer, is a power of 3.

**14.3  Since every CFL can be recognized in polynomial time by the CYK algorithm, the
corollary to Theorem 14.1 implies that every CFL is recognized by some deterministic
log n-APDA. Give a direct construction of such an APDA from a CFG.

14.4  Show that the family of 1NSA languages and the family of INENSA languages
form full AFL’s.

145 Show that the families of 1DSA languages and INEDSA languages are closed
under:

a) intersection with a regular set, b) inverse GSM mappings,
**c) complementation, **d) quotient with a regular set.

146  Give indexed grammars generating the following languages.

Sa) {0"|n is a perfect square} b) {0"|n is a power of 2}
c) {0"|n is not a prime} d) {ww|wis in (0 + 1)*}
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NSA=
Us oDTIME (2¢7°)

NENSA =
NSPACE (n?)

NEDSA =
DSPACE (1 log n)

Indexed languages

DSA =
U, o DTIME (n¢")

Fig. 147 Containments among classes of languages.

147  Give OL-grammars generating the following languages.
a) {a"|n is a power of 2} b) {wew®|w is in (0 + 1)*}
*S14.8  Give a OL-grammar with the property that every string generated is of length a

perfect square and furthermore for every perfect square there is at least one string of that
length generated.

*14.9  Of the eight subsets of {¢, a, aa}, how many are OL-languages?

**14.10 Show that the family of OL-languages is not closed under any of the AFL
operations.

**14.11 Show that it is decidable whether the language generated by an indexed grammar is
empty.

*14.12 Show that Greibach’s theorem (Theorem 8.14) applies to the INEDSA languages,
and that “= Z*” is undecidable for this class.

**14.13 Show that it is undecidable whether two OL-languages are equivalent.

Solutions to Selected Exercises

14.6 a) We make use of the fact that the nth perfect square is the sum of the first n odd
integers. The indexed grammar with productions

S — Ag
A— Af
A—B
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B—-CD
Df—- B
Dg — ¢
Cf—00C
Cg—-0

generates {0"|n is a perfect square}. The derivations are trivial variations of the following
derivation.

S=Ag% Af""'g=Bf""g

=Cf""'gDf"" g = Cf""'gBf""?g

= Cf" " 'gCf""2gDf""?g

= fn—lgc n—ZQB n—Sg:.A.

= Cf""'gCf""2g --- CfgCqDg

=Cf""'gCf"" g - CfgCy

L0 " g Cf, Gyt

%, 02710273 - 0% = 0"
14.8 We again make use of the fact that the nth perfect square is the sum of the first n odd
integers. Consider the OL-grammar ({a, b, ¢}, {a — abbc, b — bc, ¢ — ¢}, a). A simple induc-

tion shows that the nth string generated has one a, 2(n — 1) b’s, and (n — 1)? ¢’s. Thus the
length of the nth string is 1 + 2(n — 1) + (n — 1)* or n?.

BIBLIOGRAPHIC NOTES

The auxiliary pushdown automaton and Theorem 14.1 are from Cook [1971a]. Earlier,
Mager [1969] had considered “writing pushdown acceptors,” which are n-APDA’s. Stack
automata were first considered by Ginsburg, Greibach, and Harrison [1967a, b]. Theorems
14.2 and 14.4, relating nonerasing stack automata to space complexity classes, are from
Hopcroft and Ullman [1967a], although the fact that the CSL’s are contained in the
NEDSA languages was known from Ginsburg, Greibach, and Harrison [1967a). Theorems
14.3 and 14.5, relating stack languages to APDA’s and time complexity classes, are by Cook
[1971a].

The basic closure and decision properties of one-way stack languages were treated in
Ginsburg, Greibach, and Harrison [1967b]. Exercise 14.5(d), the closure of 1DSA languages
under quotient with a regular set, is by Hopcroft and Ullman [1968b]. Theorem 14.6,
containment of the INSA languages in DSPACE(n) is by Hopcroft and Ullman [1968c].
Ogden [1969] gives a “pumping lemma” for one-way stack languages. Beeri [1975] shows
that two-way SA’s are equivalent to two-way nested stack automata.

Indexed grammars were first studied by Aho [1968]. Theorem 14.7(b), the containment
within the CSL’s, is from there, as in Exercise 14.11, decidability of emptiness. A variety of
other characterizations of the indexed languages are known. Aho [1969] discusses one-way
nested stack automata, an automaton characterization. Fischer [1968] discusses macro
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grammars, Greibach [1970] provides another automaton characterization—a device with a
stack of stacks, and Maibaum [1974] presents an algebraic characterization. These alterna-
tive formulations lend credence to the idea that the indexed languages are a “natural” class.
Hayashi [1975] gives a “pumping lemma” for indexed languages.

L-systems originated with Lindenmayer [1968], and the OL-systems, on which we have
concentrated, were considered by Lindenmayer [1971]. Exercise 14.10, on nonclosure
properties of these languages, is from Herman [1974]. Exercise 14.13, the undecidability of
equivalence of OL-languages, is implied by a stronger result of Blattner [1973], that it is
undecidable whether the sets of sentential forms generated by two CFG’s are the same.
Much has been written on the subject, and the interested reader is referred to Salomaa
[1973] and Herman and Rozenberg [1975].

We have but touched on some of the multitude of species of automata and grammars
that have been studied. Rosenkrantz [1969] is representative of another early step in this
direction, and Salomaa [1973] covers a variety of classes not touched upon here.
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